This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting eff...This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.展开更多
The effects of time-delayed vibration absorber(TDVA) on the dynamic characteristics of a flexible beam are investigated. First, the vibration suppression effect of a single TDVA on a continuous beam is studied. The fi...The effects of time-delayed vibration absorber(TDVA) on the dynamic characteristics of a flexible beam are investigated. First, the vibration suppression effect of a single TDVA on a continuous beam is studied. The first optimization criterion is given,and the results show that the introduction of time-delayed feedback control(TDFC) is beneficial to improving the vibration suppression at the anti-resonance band. When a single TDVA is used, the anti-resonance is located at a specific frequency by the optimum design of TDFC parameters. Then, in order to obtain low-frequency and broad bands for vibration suppression, multiple TDVAs are uniformly distributed on a continuous beam,and the relationship between the dynamic responses and the TDFC parameters is investigated. The obtained relationship shows that the TDVA has a significant regulatory effect on the vibration behavior of the continuous beam. The effects of the number of TDVAs and the nonlinearity on the bandgap variation are discussed. As the multiple TDVAs are applied, according to the different requirements on the location and bandwidth of the effective vibration suppression band, the optimization criteria for the TDFC parameters are given, which provides guidance for the applications of TDVAs in practical projects such as bridge and aerospace.展开更多
For the typical first-order systems with time-delay,this paper explors the control capability of linear active disturbance rejection control(LADRC).Firstly,the critical time-delay of LADRC is analyzed using the freque...For the typical first-order systems with time-delay,this paper explors the control capability of linear active disturbance rejection control(LADRC).Firstly,the critical time-delay of LADRC is analyzed using the frequency-sweeping method and the Routh criterion,and the stable time-delay interval starting from zero is accurately obtained,which reveals the limitations of general LADRC on large time-delay.Then in view of the large time-delay,an LADRC controller is developed and verified to be effective,along with the robustness analysis.Finally,numerical simulations show the accuracy of critical time-delay,and demonstrate the effectiveness and robustness of the proposed controller compared with other modified LADRCs.展开更多
A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two s...A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two subgroups with communications between them,agents in the two subgroups achieve consensus and containment,respectively.For MASs with both time-delays and additive noises,two group control protocols are proposed to solve this problem for the containment-oriented case and consensus-oriented case,respectively.By developing a new analysis idea,some sufficient conditions and necessary conditions related to the communication intensity betw een the two subgroups are obtained for the following two types of group hybrid coordination behavior:1)Agents in one subgroup and in another subgroup achieve weak consensus and containment,respectively;2)Agents in one subgroup and in another subgroup achieve strong consensus and containment,respectively.It is revealed that the decay of the communication impact betw een the two subgroups is necessary for the consensus-oriented case.Finally,the validity of the group control results is verified by several simulation examples.展开更多
In this paper, the influence of physical parameters on the width of saturated control frequency band and the influence of time delay parameters on the stability of saturated control system are studied. The analytical ...In this paper, the influence of physical parameters on the width of saturated control frequency band and the influence of time delay parameters on the stability of saturated control system are studied. The analytical solution of the motion equation of the system when the main resonance and the 1:2 internal resonance occur simultaneously is obtained by multiple scale method, experimentally measured natural frequencies of nonlinear beams. The effects of excitation amplitude, delay feedback coefficients and nonlinear coefficients on saturation control are investigated. The results of the study show that the bandwidth of the saturation control can be increased by increasing the value of the external excitation, the nonlinear coefficients enhance the nonlinear phenomena of the system.展开更多
The temperature-humidity models of wood drying were developed based on Time-delay neural network and the identification structures of Time-delay neural network were given. The controlling model and the schedule model,...The temperature-humidity models of wood drying were developed based on Time-delay neural network and the identification structures of Time-delay neural network were given. The controlling model and the schedule model, which revealed the relation between controlling signal and temperature-humidity and the relation between wood moisture content and temperature-humidity of wood drying, were separately presented. The models were simulated by using the measured data of the experimental drying kiln. The numerical simulation results showed that the modeling method was feasible, and the models were effective.展开更多
Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issu...Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.展开更多
Stochastic resonance(SR) is investigated in an underdamped tri-stable potential system driven by Gaussian colored noise and a periodic excitation, where both displacement and velocity time-delayed states feedback are ...Stochastic resonance(SR) is investigated in an underdamped tri-stable potential system driven by Gaussian colored noise and a periodic excitation, where both displacement and velocity time-delayed states feedback are considered. It is challenging to study SR in a second-order delayed multi-stable system analytically. In this paper, the improved energy envelope stochastic average method is developed to derive the analytical expressions of stationary probability density(SPD)and spectral amplification. The effects of noise intensity, damping coefficient, and time delay on SR are analyzed. The results show that the shapes of joint SPD can be adjusted to the desired structure by choosing the time delay and feedback gains. For fixed time delay, the SR peak is increased for negative displacement or velocity feedback gain. Meanwhile, the SR peak is decreased while the optimal noise intensity increases with increasing correlation time of noise. The Monte Carlo simulations(MCS) confirm the effectiveness of the theoretical results.展开更多
A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the paramet...A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the parameters, the back- propagation algorithm is applied to train the proposed neural networks. The proposed model is verified by the typical odd- order-only memory polynomial model in simulation, and the performance is compared with different numbers of taped delay lines(TDLs) and perceptrons of the hidden layer. For validating the TDFFNN model by experiments, a digital test bench is set up to collect input and output data of power amplifiers at a 60 × 10^6 sample/s sampling rate. The 3.75 MHz 16-QAM signal generated in the vector signal generator(VSG) is chosen as the input signal, when measuring the dynamic AM/AM and AM/PM characteristics of power amplifiers. By comparisons and analyses, the presented model provides a good performance in convergence, accuracy and efficiency, which is approved by simulation results and experimental results in the time domain and frequency domain.展开更多
Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary freque...Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy.展开更多
The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the trackin...The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme.展开更多
Traditional passive vibration absorbers are effective only when their natural frequencies are close to those of the excitations. To solve this problem, a vibration absorber with time-delayed feedback control is propos...Traditional passive vibration absorbers are effective only when their natural frequencies are close to those of the excitations. To solve this problem, a vibration absorber with time-delayed feedback control is proposed to suppress vibration of the primary system under excitation with changing frequency. Firstly, the mechanical model of the delay coupled system is established. Then, the displacement transfer ratio of the system is obtained. The stability of the system is analyzed since delay may result in destabilization. Next, in order to design the control parameters, the vibration absorption performances of the proposed time-delayed vibration absorber are studied. The vibration absorption region is shown. The results show that time-delayed feedback control is able to change the response of the system. The effective vibration absorption frequency band is adjustable by tuning the control gain and time delay. The effective frequency band can be widened when choosing appropriate control parameters. The vibration absorption performances can be greatly improved by the time-delayed absorber. In addition, the optimum control parameters are obtained. Finally, the experimental prototype is constructed. Several tests with different control parameters are taken. The experimental and analytical results match quite well.展开更多
One of challenging issues on stability analysis of time-delay systems is how to obtain a stability criterion from a matrix-valued polynomial on a time-varying delay.The first contribution of this paper is to establish...One of challenging issues on stability analysis of time-delay systems is how to obtain a stability criterion from a matrix-valued polynomial on a time-varying delay.The first contribution of this paper is to establish a necessary and sufficient condition on a matrix-valued polynomial inequality over a certain closed interval.The degree of such a matrix-valued polynomial can be an arbitrary finite positive integer.The second contribution of this paper is to introduce a novel LyapunovKrasovskii functional,which includes a cubic polynomial on a time-varying delay,in stability analysis of time-delay systems.Based on the novel Lyapunov-Krasovskii functional and the necessary and sufficient condition on matrix-valued polynomial inequalities,two stability criteria are derived for two cases of the time-varying delay.A well-studied numerical example is given to show that the proposed stability criteria are of less conservativeness than some existing ones.展开更多
In this paper, delay-dependent stability analysis and robust stabilization for uncertain singular time-delay systems are addressed. By using Jensen integral inequality, an improved delay-dependent criterion of admissi...In this paper, delay-dependent stability analysis and robust stabilization for uncertain singular time-delay systems are addressed. By using Jensen integral inequality, an improved delay-dependent criterion of admissibility for singular time-delay systems is proposed in terms of linear matrix inequality (LMI). Our new proposed criterion is less conservative and the numerical complexity is smaller than the existing ones. Based on this criterion, a state feedback controller is designed to ensure that the uncertain singular time-delay system is admissible. Finally, three numerical examples are employed to illustrate the effectiveness of the proposed method.展开更多
The problem of robust H-infinity control for a class of uncertain singular time-delay systems is studied in this paper. A new approach is proposed to describe the relationship between slow and fast subsystems of singu...The problem of robust H-infinity control for a class of uncertain singular time-delay systems is studied in this paper. A new approach is proposed to describe the relationship between slow and fast subsystems of singular time- delay systems, based on which, a sufficient condition is presented for a singular time-delay system to be regular, impulse free and stable with an H-infinity performance. The robust H-infinity control problem is solved and an explicit expression of the desired state-feedback control law is also given. The obtained results are formulated in terms of strict linear matrix inequalities (LMIs) involving no decomposition of system matrices. A numerical example is given to show the effectiveness of the proposed method.展开更多
To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (I...To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (IMC-PID) controller was proposed for the first order plus time-delay (FOPTD) process and the second order plus time-delay (SOPTD) process. By approximating the time-delay term of the process model with the first-order Taylor series, the expressions for IMC-PID controller parameters were derived, and they had only one adjustable parameter 2 which was directly related to the dynamic performance and robustness of the system. Moreover, an analytical approach of selecting 2 was given based on the maximum sensitivity Ms. Then, the robust tuning of the system could be achieved according to the value of Ms. In addition, the proposed method could be extended to the integrator plus time-delay (IPTD) process and the first order delay integrating (FODI) process. Simulation studies were carried out on various processes with time-delay, and the results show that the proposed method could provide a better dynamic performance of both the set-point tracking and disturbance rejection and robustness against parameters perturbation.展开更多
The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadra...The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadratic cost performance function. The problem that is addressed in this study is to design a decentralized robust guaranteed cost state feedback controller such that the closed-loop system is not only regular, impulse-free and stable, but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of the decentralized robust guaranteed cost state feedback controllers is proposed in terms of a linear matrix inequality (LMI) via LMI approach. When this condition is feasible, the desired state feedback decentralized robust guaranteed cost controller gain matrices can be obtained. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed approach.展开更多
Fault diagnostics is an important research area including different techniques.Principal component analysis(PCA)is a linear technique which has been widely used.For nonlinear processes,however,the nonlinear principal ...Fault diagnostics is an important research area including different techniques.Principal component analysis(PCA)is a linear technique which has been widely used.For nonlinear processes,however,the nonlinear principal component analysis(NLPCA)should be applied.In this work,NLPCA based on auto-associative neural network(AANN)was applied to model a chemical process using historical data.First,the residuals generated by the AANN were used for fault detection and then a reconstruction based approach called enhanced AANN(E-AANN)was presented to isolate and reconstruct the faulty sensor simultaneously.The proposed method was implemented on a continuous stirred tank heater(CSTH)and used to detect and isolate two types of faults(drift and offset)for a sensor.The results show that the proposed method can detect,isolate and reconstruct the occurred fault properly.展开更多
This paper investigates the stochastic resonance in a time-delayed bistable system subjected to multiplicative and additive white noise and asymmetric dichotomous noise. Under the adiabatic approximation condition, th...This paper investigates the stochastic resonance in a time-delayed bistable system subjected to multiplicative and additive white noise and asymmetric dichotomous noise. Under the adiabatic approximation condition, the expression of the signal-to-noise ratio (SNR) is obtained. It finds that the SNR is a non-monotonic function of the delayed times, of the amplitude of the driving square-wave signal, as well as of the asymmetry of the dichotomous noise. In addition, the SNR varies non-monotonously with the intensities of the multiplicative and additive noise as well as the system parameters. Moreover, the SNR depends non-monotonically on the correlate rate of the dichotomous noise.展开更多
In this paper, a new bilateral control algorithm based on absolute stability theory is put forward, which aims at the time-delay teleoperation system with force feedback from the slave directly. In the new control alg...In this paper, a new bilateral control algorithm based on absolute stability theory is put forward, which aims at the time-delay teleoperation system with force feedback from the slave directly. In the new control algorithm, the delay-dependent stability, instead of delay-independent stability, is taken as the aim of control design. It improves the transparency of the system at the price of unnecessary stability. With this algorithm, the time-delay teleoperation systems have good transparency and stability. A simulation system is established to verify the effect of this algorithm.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11902081)the Science and Technology Projects of Guangzhou (Grant No. 202201010326)the Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No. 2023A1515010833)。
文摘This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.
基金Project supported by the National Natural Science Foundation of China (Nos. 12122208, 11972254,and 11932015)。
文摘The effects of time-delayed vibration absorber(TDVA) on the dynamic characteristics of a flexible beam are investigated. First, the vibration suppression effect of a single TDVA on a continuous beam is studied. The first optimization criterion is given,and the results show that the introduction of time-delayed feedback control(TDFC) is beneficial to improving the vibration suppression at the anti-resonance band. When a single TDVA is used, the anti-resonance is located at a specific frequency by the optimum design of TDFC parameters. Then, in order to obtain low-frequency and broad bands for vibration suppression, multiple TDVAs are uniformly distributed on a continuous beam,and the relationship between the dynamic responses and the TDFC parameters is investigated. The obtained relationship shows that the TDVA has a significant regulatory effect on the vibration behavior of the continuous beam. The effects of the number of TDVAs and the nonlinearity on the bandgap variation are discussed. As the multiple TDVAs are applied, according to the different requirements on the location and bandwidth of the effective vibration suppression band, the optimization criteria for the TDFC parameters are given, which provides guidance for the applications of TDVAs in practical projects such as bridge and aerospace.
基金supported by the National Natural Science Foundation of China(61973175,61973172,62073177)the Key Technologies R&D Program of Tianjin(19JCZDJC32800)Tianjin Research Innovation Project for Postgraduate Students(2020YJSZXB02).
文摘For the typical first-order systems with time-delay,this paper explors the control capability of linear active disturbance rejection control(LADRC).Firstly,the critical time-delay of LADRC is analyzed using the frequency-sweeping method and the Routh criterion,and the stable time-delay interval starting from zero is accurately obtained,which reveals the limitations of general LADRC on large time-delay.Then in view of the large time-delay,an LADRC controller is developed and verified to be effective,along with the robustness analysis.Finally,numerical simulations show the accuracy of critical time-delay,and demonstrate the effectiveness and robustness of the proposed controller compared with other modified LADRCs.
基金supported by the National Natural Science Foundation of China(62073305)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(CUG170610)。
文摘A new kind of group coordination control problemgroup hybrid coordination control is investigated in this paper.The group hybrid coordination control means that in a whole multi-agent system(MAS)that consists of two subgroups with communications between them,agents in the two subgroups achieve consensus and containment,respectively.For MASs with both time-delays and additive noises,two group control protocols are proposed to solve this problem for the containment-oriented case and consensus-oriented case,respectively.By developing a new analysis idea,some sufficient conditions and necessary conditions related to the communication intensity betw een the two subgroups are obtained for the following two types of group hybrid coordination behavior:1)Agents in one subgroup and in another subgroup achieve weak consensus and containment,respectively;2)Agents in one subgroup and in another subgroup achieve strong consensus and containment,respectively.It is revealed that the decay of the communication impact betw een the two subgroups is necessary for the consensus-oriented case.Finally,the validity of the group control results is verified by several simulation examples.
文摘In this paper, the influence of physical parameters on the width of saturated control frequency band and the influence of time delay parameters on the stability of saturated control system are studied. The analytical solution of the motion equation of the system when the main resonance and the 1:2 internal resonance occur simultaneously is obtained by multiple scale method, experimentally measured natural frequencies of nonlinear beams. The effects of excitation amplitude, delay feedback coefficients and nonlinear coefficients on saturation control are investigated. The results of the study show that the bandwidth of the saturation control can be increased by increasing the value of the external excitation, the nonlinear coefficients enhance the nonlinear phenomena of the system.
基金This study was supported by the Key Program of Ministry of Education of China (01066)
文摘The temperature-humidity models of wood drying were developed based on Time-delay neural network and the identification structures of Time-delay neural network were given. The controlling model and the schedule model, which revealed the relation between controlling signal and temperature-humidity and the relation between wood moisture content and temperature-humidity of wood drying, were separately presented. The models were simulated by using the measured data of the experimental drying kiln. The numerical simulation results showed that the modeling method was feasible, and the models were effective.
基金supported in part by the National Natural Science Foundation of China (61973219,U21A2019,61873058)the Hainan Province Science and Technology Special Fund (ZDYF2022SHFZ105)。
文摘Secure platooning control plays an important role in enhancing the cooperative driving safety of automated vehicles subject to various security vulnerabilities.This paper focuses on the distributed secure control issue of automated vehicles affected by replay attacks.A proportional-integral-observer(PIO)with predetermined forgetting parameters is first constructed to acquire the dynamical information of vehicles.Then,a time-varying parameter and two positive scalars are employed to describe the temporal behavior of replay attacks.In light of such a scheme and the common properties of Laplace matrices,the closed-loop system with PIO-based controllers is transformed into a switched and time-delayed one.Furthermore,some sufficient conditions are derived to achieve the desired platooning performance by the view of the Lyapunov stability theory.The controller gains are analytically determined by resorting to the solution of certain matrix inequalities only dependent on maximum and minimum eigenvalues of communication topologies.Finally,a simulation example is provided to illustrate the effectiveness of the proposed control strategy.
基金Project supported by the National Natural Science Foundation of China (Grant No.12072025)the Beijing Natural Science Foundation (Grant No.1222015)。
文摘Stochastic resonance(SR) is investigated in an underdamped tri-stable potential system driven by Gaussian colored noise and a periodic excitation, where both displacement and velocity time-delayed states feedback are considered. It is challenging to study SR in a second-order delayed multi-stable system analytically. In this paper, the improved energy envelope stochastic average method is developed to derive the analytical expressions of stationary probability density(SPD)and spectral amplification. The effects of noise intensity, damping coefficient, and time delay on SR are analyzed. The results show that the shapes of joint SPD can be adjusted to the desired structure by choosing the time delay and feedback gains. For fixed time delay, the SR peak is increased for negative displacement or velocity feedback gain. Meanwhile, the SR peak is decreased while the optimal noise intensity increases with increasing correlation time of noise. The Monte Carlo simulations(MCS) confirm the effectiveness of the theoretical results.
基金The National Natural Science Foundation of China(No.60621002)the National High Technology Research and Development Pro-gram of China(863 Program)(No.2007AA01Z2B4).
文摘A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the parameters, the back- propagation algorithm is applied to train the proposed neural networks. The proposed model is verified by the typical odd- order-only memory polynomial model in simulation, and the performance is compared with different numbers of taped delay lines(TDLs) and perceptrons of the hidden layer. For validating the TDFFNN model by experiments, a digital test bench is set up to collect input and output data of power amplifiers at a 60 × 10^6 sample/s sampling rate. The 3.75 MHz 16-QAM signal generated in the vector signal generator(VSG) is chosen as the input signal, when measuring the dynamic AM/AM and AM/PM characteristics of power amplifiers. By comparisons and analyses, the presented model provides a good performance in convergence, accuracy and efficiency, which is approved by simulation results and experimental results in the time domain and frequency domain.
基金the support of the National Natural Science Foundation of China(52077061)Fundamental Research Funds for the Central Universities(B240201121).
文摘Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy.
基金This project was supported by the National Natural Science Foundation of China (60074001) and the Natural ScienceFoundation of Shandong Province (Y2000G02)
文摘The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme.
基金the National Natural Science Foundation of China (Grants 11572224 and 11772229).
文摘Traditional passive vibration absorbers are effective only when their natural frequencies are close to those of the excitations. To solve this problem, a vibration absorber with time-delayed feedback control is proposed to suppress vibration of the primary system under excitation with changing frequency. Firstly, the mechanical model of the delay coupled system is established. Then, the displacement transfer ratio of the system is obtained. The stability of the system is analyzed since delay may result in destabilization. Next, in order to design the control parameters, the vibration absorption performances of the proposed time-delayed vibration absorber are studied. The vibration absorption region is shown. The results show that time-delayed feedback control is able to change the response of the system. The effective vibration absorption frequency band is adjustable by tuning the control gain and time delay. The effective frequency band can be widened when choosing appropriate control parameters. The vibration absorption performances can be greatly improved by the time-delayed absorber. In addition, the optimum control parameters are obtained. Finally, the experimental prototype is constructed. Several tests with different control parameters are taken. The experimental and analytical results match quite well.
基金supported in part by the Australian Research Council Discovery Project(Grant No.DP160103567)。
文摘One of challenging issues on stability analysis of time-delay systems is how to obtain a stability criterion from a matrix-valued polynomial on a time-varying delay.The first contribution of this paper is to establish a necessary and sufficient condition on a matrix-valued polynomial inequality over a certain closed interval.The degree of such a matrix-valued polynomial can be an arbitrary finite positive integer.The second contribution of this paper is to introduce a novel LyapunovKrasovskii functional,which includes a cubic polynomial on a time-varying delay,in stability analysis of time-delay systems.Based on the novel Lyapunov-Krasovskii functional and the necessary and sufficient condition on matrix-valued polynomial inequalities,two stability criteria are derived for two cases of the time-varying delay.A well-studied numerical example is given to show that the proposed stability criteria are of less conservativeness than some existing ones.
基金supported by National Natural Science Foundation of China (No.60904009,No.60974004)
文摘In this paper, delay-dependent stability analysis and robust stabilization for uncertain singular time-delay systems are addressed. By using Jensen integral inequality, an improved delay-dependent criterion of admissibility for singular time-delay systems is proposed in terms of linear matrix inequality (LMI). Our new proposed criterion is less conservative and the numerical complexity is smaller than the existing ones. Based on this criterion, a state feedback controller is designed to ensure that the uncertain singular time-delay system is admissible. Finally, three numerical examples are employed to illustrate the effectiveness of the proposed method.
基金This work was supported by the National Creative Research Groups Science Foundation of China (No. 60421002) and the New Century 151 Talent Projectof Zhejiang Province.
文摘The problem of robust H-infinity control for a class of uncertain singular time-delay systems is studied in this paper. A new approach is proposed to describe the relationship between slow and fast subsystems of singular time- delay systems, based on which, a sufficient condition is presented for a singular time-delay system to be regular, impulse free and stable with an H-infinity performance. The robust H-infinity control problem is solved and an explicit expression of the desired state-feedback control law is also given. The obtained results are formulated in terms of strict linear matrix inequalities (LMIs) involving no decomposition of system matrices. A numerical example is given to show the effectiveness of the proposed method.
基金Project(2007011049) supported by the Natural Science Foundation of Shanxi Province,China
文摘To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (IMC-PID) controller was proposed for the first order plus time-delay (FOPTD) process and the second order plus time-delay (SOPTD) process. By approximating the time-delay term of the process model with the first-order Taylor series, the expressions for IMC-PID controller parameters were derived, and they had only one adjustable parameter 2 which was directly related to the dynamic performance and robustness of the system. Moreover, an analytical approach of selecting 2 was given based on the maximum sensitivity Ms. Then, the robust tuning of the system could be achieved according to the value of Ms. In addition, the proposed method could be extended to the integrator plus time-delay (IPTD) process and the first order delay integrating (FODI) process. Simulation studies were carried out on various processes with time-delay, and the results show that the proposed method could provide a better dynamic performance of both the set-point tracking and disturbance rejection and robustness against parameters perturbation.
基金This project was supported by the National Natural Science Foundation of China (60474078)Science Foundation of High Education of Jiangsu of China (04KJD120016).
文摘The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadratic cost performance function. The problem that is addressed in this study is to design a decentralized robust guaranteed cost state feedback controller such that the closed-loop system is not only regular, impulse-free and stable, but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of the decentralized robust guaranteed cost state feedback controllers is proposed in terms of a linear matrix inequality (LMI) via LMI approach. When this condition is feasible, the desired state feedback decentralized robust guaranteed cost controller gain matrices can be obtained. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed approach.
基金Project(1390/2)supported by Khuzestan Gas Company,Iran
文摘Fault diagnostics is an important research area including different techniques.Principal component analysis(PCA)is a linear technique which has been widely used.For nonlinear processes,however,the nonlinear principal component analysis(NLPCA)should be applied.In this work,NLPCA based on auto-associative neural network(AANN)was applied to model a chemical process using historical data.First,the residuals generated by the AANN were used for fault detection and then a reconstruction based approach called enhanced AANN(E-AANN)was presented to isolate and reconstruct the faulty sensor simultaneously.The proposed method was implemented on a continuous stirred tank heater(CSTH)and used to detect and isolate two types of faults(drift and offset)for a sensor.The results show that the proposed method can detect,isolate and reconstruct the occurred fault properly.
基金supported by the Doctor Foundation of Southwest University of Science and Technology of China (Grant No. 08zx7108)
文摘This paper investigates the stochastic resonance in a time-delayed bistable system subjected to multiplicative and additive white noise and asymmetric dichotomous noise. Under the adiabatic approximation condition, the expression of the signal-to-noise ratio (SNR) is obtained. It finds that the SNR is a non-monotonic function of the delayed times, of the amplitude of the driving square-wave signal, as well as of the asymmetry of the dichotomous noise. In addition, the SNR varies non-monotonously with the intensities of the multiplicative and additive noise as well as the system parameters. Moreover, the SNR depends non-monotonically on the correlate rate of the dichotomous noise.
基金This work was supported by 863 Program of PRC (No.2002AA742045).
文摘In this paper, a new bilateral control algorithm based on absolute stability theory is put forward, which aims at the time-delay teleoperation system with force feedback from the slave directly. In the new control algorithm, the delay-dependent stability, instead of delay-independent stability, is taken as the aim of control design. It improves the transparency of the system at the price of unnecessary stability. With this algorithm, the time-delay teleoperation systems have good transparency and stability. A simulation system is established to verify the effect of this algorithm.