Abstract We develop a highly efficient scheme for numerically solving the three-dimensional time-dependent Schrödinger equation of the single-active-electron atom in the field of laser pulses by combining smooth ...Abstract We develop a highly efficient scheme for numerically solving the three-dimensional time-dependent Schrödinger equation of the single-active-electron atom in the field of laser pulses by combining smooth exterior complex scaling(SECS)absorbing method and Arnoldi propagation method.Such combination has not been reported in the literature.The proposed scheme is particularly useful in the applications involving long-time wave propagation.The SECS is a wonderful absorber,but its application results in a non-Hermitian Hamiltonian,invalidating propagators utilizing the Hermitian symmetry of the Hamiltonian.We demonstrate that the routine Arnoldi propagator can be modified to treat the non-Hermitian Hamiltonian.The efficiency of the proposed scheme is checked by tracking the time-dependent electron wave packet in the case of both weak extreme ultraviolet(XUV)and strong infrared(IR)laser pulses.Both perfect absorption and stable propagation are observed.展开更多
In this paper,with the relative Morse index,we will study the existence of solutions of(1.1)under the assumptions that V satisfies some weaker conditions than those in[2].
We study the generalized Darboux transformation to the three-component coupled nonlinear Schr ¨odinger equation.First-and second-order localized waves are obtained by this technique.In first-order localized wave,...We study the generalized Darboux transformation to the three-component coupled nonlinear Schr ¨odinger equation.First-and second-order localized waves are obtained by this technique.In first-order localized wave,we get the interactional solutions between first-order rogue wave and one-dark,one-bright soliton respectively.Meanwhile,the interactional solutions between one-breather and first-order rogue wave are also given.In second-order localized wave,one-dark-one-bright soliton together with second-order rogue wave is presented in the first component,and two-bright soliton together with second-order rogue wave are gained respectively in the other two components.Besides,we observe second-order rogue wave together with one-breather in three components.Moreover,by increasing the absolute values of two free parameters,the nonlinear waves merge with each other distinctly.These results further reveal the interesting dynamic structures of localized waves in the three-component coupled system.展开更多
We consider a five-dimensional Minkowski space with two time dimensions characterized by distinct speeds of causality and three space dimensions. Formulas for relativistic coordinate and velocity transformations are d...We consider a five-dimensional Minkowski space with two time dimensions characterized by distinct speeds of causality and three space dimensions. Formulas for relativistic coordinate and velocity transformations are derived, leading to a new expression for the speed limit. Extending the ideas of Einstein’s Theory of Special Relativity, concepts of five-velocity and five-momenta are introduced. We get a new formula for the rest energy of a massive object. Based on a non-relativistic limit, a two-time dependent Schrödinger-like equation for infinite square-well potential is developed and solved. The extra time dimension is compactified on a closed loop topology with a period matching the Planck time. It generates interference of additional quantum states with an ultra-small period of oscillation. Some cosmological implications of the concept of four-dimensional versus five-dimensional masses are briefly discussed, too.展开更多
In this paper,we construct a Crank-Nicolson finite volume element scheme and a two-grid decoupling algorithm for solving the time-dependent Schr¨odinger equation.Combining the idea of two-grid discretization,the ...In this paper,we construct a Crank-Nicolson finite volume element scheme and a two-grid decoupling algorithm for solving the time-dependent Schr¨odinger equation.Combining the idea of two-grid discretization,the decoupling algorithm involves solving a small coupling system on a coarse grid space and a decoupling system with two independent Poisson problems on a fine grid space,which can ensure the accuracy while the size of coarse grid is much coarser than that of fine grid.We further provide the optimal error estimate of these two schemes rigorously by using elliptic projection operator.Finally,numerical simulations are provided to verify the correctness of the theoretical analysis.展开更多
This paper aims to build a new framework of convergence analysis of conservative Fourier pseudo-spectral method for the general nonlinear Schr¨odinger equation in two dimensions,which is not restricted that the n...This paper aims to build a new framework of convergence analysis of conservative Fourier pseudo-spectral method for the general nonlinear Schr¨odinger equation in two dimensions,which is not restricted that the nonlinear term is mere cubic.The new framework of convergence analysis consists of two steps.In the first step,by truncating the nonlinear term into a global Lipschitz function,an alternative numerical method is proposed and proved in a rigorous way to be convergent in the discrete L2 norm;followed in the second step,the maximum bound of the numerical solution of the alternative numerical method is obtained by using a lifting technique,as implies that the two numerical methods are the same one.Under our framework of convergence analysis,with neither any restriction on the grid ratio nor any requirement of the small initial value,we establish the error estimate of the proposed conservative Fourier pseudo-spectral method,while previous work requires the certain restriction for the focusing case.The error bound is proved to be of O(h^(r)+t^(2))with grid size h and time step t.In fact,the framework can be used to prove the unconditional convergence of many other Fourier pseudo-spectral methods for solving the nonlinear Schr¨odinger-type equations.Numerical results are conducted to indicate the accuracy and efficiency of the proposed method,and investigate the effect of the nonlinear term and initial data on the blow-up solution.展开更多
A linearized transformed L1 Galerkin finite element method(FEM)is presented for numerically solving the multi-dimensional time fractional Schr¨odinger equations.Unconditionally optimal error estimates of the full...A linearized transformed L1 Galerkin finite element method(FEM)is presented for numerically solving the multi-dimensional time fractional Schr¨odinger equations.Unconditionally optimal error estimates of the fully-discrete scheme are proved.Such error estimates are obtained by combining a new discrete fractional Gr¨onwall inequality,the corresponding Sobolev embedding theorems and some inverse inequalities.While the previous unconditional convergence results are usually obtained by using the temporal-spatial error spitting approaches.Numerical examples are presented to confirm the theoretical results.展开更多
In this paper, we establish exact solutions for five complex nonlinear Schr¨odinger equations. The semiinverse variational principle(SVP) is used to construct exact soliton solutions of five complex nonlinear Sch...In this paper, we establish exact solutions for five complex nonlinear Schr¨odinger equations. The semiinverse variational principle(SVP) is used to construct exact soliton solutions of five complex nonlinear Schr¨odinger equations. Many new families of exact soliton solutions of five complex nonlinear Schr¨odinger equations are successfully obtained.展开更多
Combining symplectic algorithm,splitting technique and compact method,a compact splitting symplectic scheme is proposed to solve the fourth-order dispersive Schr¨odinger equation with cubic-quintic nonlinear term...Combining symplectic algorithm,splitting technique and compact method,a compact splitting symplectic scheme is proposed to solve the fourth-order dispersive Schr¨odinger equation with cubic-quintic nonlinear term.The scheme has fourth-order accuracy in space and second-order accuracy in time.The discrete charge conservation law and stability of the scheme are analyzed.Numerical examples are given to confirm the theoretical results.展开更多
In this paper,symplectic schemes and symmetric schemes are presented to simulate Nonlinear Schrodinger Equation(NLSE)in case of dark soliton motion.Firstly,by Ablowitz–Ladik model(A–L model),the NLSE is discretized...In this paper,symplectic schemes and symmetric schemes are presented to simulate Nonlinear Schrodinger Equation(NLSE)in case of dark soliton motion.Firstly,by Ablowitz–Ladik model(A–L model),the NLSE is discretized into a non-canonical Hamiltonian system.Then,different kinds of coordinate transformations can be used to standardize the non-canonical Hamiltonian system.Therefore,the symplectic schemes and symmetric schemes can be employed to simulate the solitons motion and test the preservation of the invariants of the A–L model and the conserved quantities approximations of the original NLSE.The numerical experiments show that symplectic schemes and symmetric schemes have similar simulation effect,and own significant superiority over non-symplectic and non-symmetric schemes in long-term tracking the motion of solitons,preserving the invariants and the approximations of conserved quantities.Moreover,it is obvious that coordinate transformations with more symmetry have a better simulation effect.展开更多
In this paper we study numerical issues related to the Schr ¨odinger equationwith sinusoidal potentials at infinity. An exact absorbing boundary condition in a formof Dirichlet-to-Neumann mapping is derived. This...In this paper we study numerical issues related to the Schr ¨odinger equationwith sinusoidal potentials at infinity. An exact absorbing boundary condition in a formof Dirichlet-to-Neumann mapping is derived. This boundary condition is based on ananalytical expression of the logarithmic derivative of the Floquet solution toMathieu’sequation, which is completely new to the author’s knowledge. The implementationof this exact boundary condition is discussed, and a fast evaluation method is used toreduce the computation burden arising from the involved half-order derivative operator.Some numerical tests are given to showthe performance of the proposed absorbingboundary conditions.展开更多
We propose improved ring shaped like potential of the form,V(r,θ)=V(r)+(h^2/2M r^2)[(βsin^2θ+γcos^2θ+2λ)/sinθcosθ]^2 and its exact solutions are presented via the Nikiforov–Uvarov method.The angle ...We propose improved ring shaped like potential of the form,V(r,θ)=V(r)+(h^2/2M r^2)[(βsin^2θ+γcos^2θ+2λ)/sinθcosθ]^2 and its exact solutions are presented via the Nikiforov–Uvarov method.The angle dependent part V(θ)=(h^2/2M r^2)[(βsin^2θ+γcos^2θ+λ)/sinθcosθ]^2,which is reported for the first time embodied the novel angle dependent(NAD)potential and harmonic novel angle dependent potential(HNAD)as special cases.We discuss in detail the effects of the improved ring shaped like potential on the radial parts of the spherical harmonic and Coulomb potentials.展开更多
The interaction between three optical solitons is a complex and valuable research direction,which is of practical application for promoting the development of optical communication and all-optical information processi...The interaction between three optical solitons is a complex and valuable research direction,which is of practical application for promoting the development of optical communication and all-optical information processing technology.In this paper,we start from the study of the variable-coefficient coupled higher-order nonlinear Schodinger equation(VCHNLSE),and obtain an analytical three-soliton solution of this equation.Based on the obtained solution,the interaction of the three optical solitons is explored when they are incident from different initial velocities and phases.When the higher-order dispersion and nonlinear functions are sinusoidal,hyperbolic secant,and hyperbolic tangent functions,the transmission properties of three optical solitons before and after interactions are discussed.Besides,this paper achieves effective regulation of amplitude and velocity of optical solitons as well as of the local state of interaction process,and interaction-free transmission of the three optical solitons is obtained with a small spacing.The relevant conclusions of the paper are of great significance in promoting the development of high-speed and large-capacity optical communication,optical signal processing,and optical computing.展开更多
We theoretically study the quantum speed limit of a single atom trapped in a Fabry-Perot microresonator.The cavity mode will be squeezed when a driving laser is applied to the second-order nonlinear medium,and the eff...We theoretically study the quantum speed limit of a single atom trapped in a Fabry-Perot microresonator.The cavity mode will be squeezed when a driving laser is applied to the second-order nonlinear medium,and the effective Hamiltonian can be obtained under the Bogoliubov squeezing transformation.The analytical expression of the evolved atom state can be obtained by using the non-Hermitian Schr¨odinger equation for the initial excited state,and the quantum speed limit time coincides very well for both the analytical expression and the master equation method.From the perspective of quantum speed limit,it is more conducive to accelerate the evolution of the quantum state for the large detuning,strong driving,and coupling strength.For the case of the initial superposition state,the form of the initial state has more influence on the evolution speed.The quantum speed limit time is not only dependent on the system parameters but also determined by the initial state.展开更多
We calibrate the macroscopic vortex high-order harmonic generation(HHG)obtained by the quantitative rescattering(QRS)model to compute single-atom induced dipoles against that by solving the time-dependent Schr?dinger ...We calibrate the macroscopic vortex high-order harmonic generation(HHG)obtained by the quantitative rescattering(QRS)model to compute single-atom induced dipoles against that by solving the time-dependent Schr?dinger equation(TDSE).We show that the QRS perfectly agrees with the TDSE under the favorable phase-matching condition,and the QRS can accurately predict the main features in the spatial profiles of vortex HHG if the phase-matching condition is not good.We uncover that harmonic emissions from short and long trajectories are adjusted by the phase-matching condition through the time-frequency analysis and the QRS can simulate the vortex HHG accurately only when the interference between two trajectories is absent.This work confirms that it is an efficient way to employ the QRS model in the single-atom response for precisely simulating the macroscopic vortex HHG.展开更多
The dissipative nonlinear Schrdinger equation with a forcing item is derived by using of multiple scales analysis and perturbation method as a mathematical model of describing envelope solitary Rossby waves with dis...The dissipative nonlinear Schrdinger equation with a forcing item is derived by using of multiple scales analysis and perturbation method as a mathematical model of describing envelope solitary Rossby waves with dissipation effect and external forcing in rotational stratified fluids. By analyzing the evolution of amplitude of envelope solitary Rossby waves, it is found that the shear of basic flow, Brunt–Vaisala frequency and β effect are important factors in forming the envelope solitary Rossby waves. By employing Jacobi elliptic function expansion method and Hirota's direct method, the analytic solutions of dissipative nonlinear Schr¨odinger equation and forced nonlinear Schr¨odinger equation are derived, respectively. With the help of these solutions, the effects of dissipation and external forcing on the evolution of envelope solitary Rossby wave are also discussed in detail. The results show that dissipation causes slowly decrease of amplitude of envelope solitary Rossby waves and slowly increase of width, while it has no effect on the propagation speed and different types of external forcing can excite the same envelope solitary Rossby waves. It is notable that dissipation and different types of external forcing have certain influence on the carrier frequency of envelope solitary Rossby waves.展开更多
A one-dimensional harmonic oscillator with position-dependent effective mass is studied. We quantize the oscillator to obtain a quantum Hamiltonian, which is manifestly Hermitian in configuration space, and the exact ...A one-dimensional harmonic oscillator with position-dependent effective mass is studied. We quantize the oscillator to obtain a quantum Hamiltonian, which is manifestly Hermitian in configuration space, and the exact solutions to the corresponding Schr¨odinger equation are obtained analytically in terms of modified Hermite polynomials.It is shown that the obtained solutions reduce to those of simple harmonic oscillator as the position dependence of the mass vanishes.展开更多
In this paper, the generalized Darboux transformation is constructed to variable coefficient nonlinear Schrdinger(NLS) equation. The N-th order rogue wave solution of this variable coefficient NLS equation is obtain...In this paper, the generalized Darboux transformation is constructed to variable coefficient nonlinear Schrdinger(NLS) equation. The N-th order rogue wave solution of this variable coefficient NLS equation is obtained by determinant expression form. In particular, we present rogue waves from first to third-order through some figures and analyze their dynamics.展开更多
In this paper, we introduce a new definition of fractional derivative which contains a fractional factor, and its physical meanings are given. When studying the fractional Schrdinger equation(FSE) with this form of fr...In this paper, we introduce a new definition of fractional derivative which contains a fractional factor, and its physical meanings are given. When studying the fractional Schrdinger equation(FSE) with this form of fractional derivative, the result shows that under the description of time FSE with fractional factor, the probability of finding a particle in the whole space is still conserved. By using this new definition to construct space FSE, we achieve a continuous transition from standard Schrdinger equation to the fractional one. When applying this form of Schrdinger equation to a particle in an infinite symmetrical square potential well, we find that the probability density distribution loses spatial symmetry and shows a kind of attenuation property. For the situation of a one-dimensional infinite δ potential well,the first derivative of time-independent wave function Φ to space coordinate x can be continuous everywhere when the particle is at some special discrete energy levels, which is much different from the standard Schrdinger equation.展开更多
基金the National Natural Science Foundation of China(Grant Nos.12074265 and 11804233).
文摘Abstract We develop a highly efficient scheme for numerically solving the three-dimensional time-dependent Schrödinger equation of the single-active-electron atom in the field of laser pulses by combining smooth exterior complex scaling(SECS)absorbing method and Arnoldi propagation method.Such combination has not been reported in the literature.The proposed scheme is particularly useful in the applications involving long-time wave propagation.The SECS is a wonderful absorber,but its application results in a non-Hermitian Hamiltonian,invalidating propagators utilizing the Hermitian symmetry of the Hamiltonian.We demonstrate that the routine Arnoldi propagator can be modified to treat the non-Hermitian Hamiltonian.The efficiency of the proposed scheme is checked by tracking the time-dependent electron wave packet in the case of both weak extreme ultraviolet(XUV)and strong infrared(IR)laser pulses.Both perfect absorption and stable propagation are observed.
基金Supported by DEU of Henan(Grant No.19A110011)and PSF of China(Grant No.188576).
文摘In this paper,with the relative Morse index,we will study the existence of solutions of(1.1)under the assumptions that V satisfies some weaker conditions than those in[2].
基金Project supported by the Global Change Research Program of China(Grant No.2015CB953904)the National Natural Science Foundation of China(Grant Nos.11275072 and 11435005)+2 种基金the Doctoral Program of Higher Education of China(Grant No.20120076110024)the Network Information Physics Calculation of Basic Research Innovation Research Group of China(Grant No.61321064)Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things,China(Grant No.ZF1213)
文摘We study the generalized Darboux transformation to the three-component coupled nonlinear Schr ¨odinger equation.First-and second-order localized waves are obtained by this technique.In first-order localized wave,we get the interactional solutions between first-order rogue wave and one-dark,one-bright soliton respectively.Meanwhile,the interactional solutions between one-breather and first-order rogue wave are also given.In second-order localized wave,one-dark-one-bright soliton together with second-order rogue wave is presented in the first component,and two-bright soliton together with second-order rogue wave are gained respectively in the other two components.Besides,we observe second-order rogue wave together with one-breather in three components.Moreover,by increasing the absolute values of two free parameters,the nonlinear waves merge with each other distinctly.These results further reveal the interesting dynamic structures of localized waves in the three-component coupled system.
文摘We consider a five-dimensional Minkowski space with two time dimensions characterized by distinct speeds of causality and three space dimensions. Formulas for relativistic coordinate and velocity transformations are derived, leading to a new expression for the speed limit. Extending the ideas of Einstein’s Theory of Special Relativity, concepts of five-velocity and five-momenta are introduced. We get a new formula for the rest energy of a massive object. Based on a non-relativistic limit, a two-time dependent Schrödinger-like equation for infinite square-well potential is developed and solved. The extra time dimension is compactified on a closed loop topology with a period matching the Planck time. It generates interference of additional quantum states with an ultra-small period of oscillation. Some cosmological implications of the concept of four-dimensional versus five-dimensional masses are briefly discussed, too.
基金the helpful suggestions.This work was supported by National Natural Science Foundation of China(Nos.11771375,11971152)Shandong Province Natural Science Foundation(No.ZR2018MA008)NSF of Henan Province(No.202300410167).
文摘In this paper,we construct a Crank-Nicolson finite volume element scheme and a two-grid decoupling algorithm for solving the time-dependent Schr¨odinger equation.Combining the idea of two-grid discretization,the decoupling algorithm involves solving a small coupling system on a coarse grid space and a decoupling system with two independent Poisson problems on a fine grid space,which can ensure the accuracy while the size of coarse grid is much coarser than that of fine grid.We further provide the optimal error estimate of these two schemes rigorously by using elliptic projection operator.Finally,numerical simulations are provided to verify the correctness of the theoretical analysis.
基金Jialing Wang’s work is supported by the National Natural Science Foundation of China(Grant No.11801277)Tingchun Wang’s work is supported by the National Natural Science Foundation of China(Grant No.11571181)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20171454)Qing Lan Project.Yushun Wang’s work is supported by the National Natural Science Foundation of China(Grant Nos.11771213 and 12171245).
文摘This paper aims to build a new framework of convergence analysis of conservative Fourier pseudo-spectral method for the general nonlinear Schr¨odinger equation in two dimensions,which is not restricted that the nonlinear term is mere cubic.The new framework of convergence analysis consists of two steps.In the first step,by truncating the nonlinear term into a global Lipschitz function,an alternative numerical method is proposed and proved in a rigorous way to be convergent in the discrete L2 norm;followed in the second step,the maximum bound of the numerical solution of the alternative numerical method is obtained by using a lifting technique,as implies that the two numerical methods are the same one.Under our framework of convergence analysis,with neither any restriction on the grid ratio nor any requirement of the small initial value,we establish the error estimate of the proposed conservative Fourier pseudo-spectral method,while previous work requires the certain restriction for the focusing case.The error bound is proved to be of O(h^(r)+t^(2))with grid size h and time step t.In fact,the framework can be used to prove the unconditional convergence of many other Fourier pseudo-spectral methods for solving the nonlinear Schr¨odinger-type equations.Numerical results are conducted to indicate the accuracy and efficiency of the proposed method,and investigate the effect of the nonlinear term and initial data on the blow-up solution.
基金supported by the National Natural Science Foundation of China under grants No.11971010,11771162,12231003.
文摘A linearized transformed L1 Galerkin finite element method(FEM)is presented for numerically solving the multi-dimensional time fractional Schr¨odinger equations.Unconditionally optimal error estimates of the fully-discrete scheme are proved.Such error estimates are obtained by combining a new discrete fractional Gr¨onwall inequality,the corresponding Sobolev embedding theorems and some inverse inequalities.While the previous unconditional convergence results are usually obtained by using the temporal-spatial error spitting approaches.Numerical examples are presented to confirm the theoretical results.
文摘In this paper, we establish exact solutions for five complex nonlinear Schr¨odinger equations. The semiinverse variational principle(SVP) is used to construct exact soliton solutions of five complex nonlinear Schr¨odinger equations. Many new families of exact soliton solutions of five complex nonlinear Schr¨odinger equations are successfully obtained.
基金This work is partially supported by grants from the National Natural Science Foun-dation of China(Nos.11701196,11701197 and 11501224)the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University(No.ZQN-YX502)the Key Laboratory of Applied Mathematics of Fujian Province University(Putian University)(No.SX201802).
文摘Combining symplectic algorithm,splitting technique and compact method,a compact splitting symplectic scheme is proposed to solve the fourth-order dispersive Schr¨odinger equation with cubic-quintic nonlinear term.The scheme has fourth-order accuracy in space and second-order accuracy in time.The discrete charge conservation law and stability of the scheme are analyzed.Numerical examples are given to confirm the theoretical results.
基金This work was supported by the Fundamental Research Funds for the Central Universities(Nos.2018ZY14,2019ZY20 and 2015ZCQ-LY-01)Beijing Higher Education Young Elite Teacher Project(YETP0769)the National Natural Science Foundation of China(Grant Nos.61571002,61179034 and 61370193).
文摘In this paper,symplectic schemes and symmetric schemes are presented to simulate Nonlinear Schrodinger Equation(NLSE)in case of dark soliton motion.Firstly,by Ablowitz–Ladik model(A–L model),the NLSE is discretized into a non-canonical Hamiltonian system.Then,different kinds of coordinate transformations can be used to standardize the non-canonical Hamiltonian system.Therefore,the symplectic schemes and symmetric schemes can be employed to simulate the solitons motion and test the preservation of the invariants of the A–L model and the conserved quantities approximations of the original NLSE.The numerical experiments show that symplectic schemes and symmetric schemes have similar simulation effect,and own significant superiority over non-symplectic and non-symmetric schemes in long-term tracking the motion of solitons,preserving the invariants and the approximations of conserved quantities.Moreover,it is obvious that coordinate transformations with more symmetry have a better simulation effect.
基金the National Natural Science Foundation of China underGrant No. 10401020.
文摘In this paper we study numerical issues related to the Schr ¨odinger equationwith sinusoidal potentials at infinity. An exact absorbing boundary condition in a formof Dirichlet-to-Neumann mapping is derived. This boundary condition is based on ananalytical expression of the logarithmic derivative of the Floquet solution toMathieu’sequation, which is completely new to the author’s knowledge. The implementationof this exact boundary condition is discussed, and a fast evaluation method is used toreduce the computation burden arising from the involved half-order derivative operator.Some numerical tests are given to showthe performance of the proposed absorbingboundary conditions.
文摘We propose improved ring shaped like potential of the form,V(r,θ)=V(r)+(h^2/2M r^2)[(βsin^2θ+γcos^2θ+2λ)/sinθcosθ]^2 and its exact solutions are presented via the Nikiforov–Uvarov method.The angle dependent part V(θ)=(h^2/2M r^2)[(βsin^2θ+γcos^2θ+λ)/sinθcosθ]^2,which is reported for the first time embodied the novel angle dependent(NAD)potential and harmonic novel angle dependent potential(HNAD)as special cases.We discuss in detail the effects of the improved ring shaped like potential on the radial parts of the spherical harmonic and Coulomb potentials.
基金supported by the Scientific Research Foundation of Weifang University of Science and Technology(Grant Nos.KJRC2022002 and KJRC2023035).
文摘The interaction between three optical solitons is a complex and valuable research direction,which is of practical application for promoting the development of optical communication and all-optical information processing technology.In this paper,we start from the study of the variable-coefficient coupled higher-order nonlinear Schodinger equation(VCHNLSE),and obtain an analytical three-soliton solution of this equation.Based on the obtained solution,the interaction of the three optical solitons is explored when they are incident from different initial velocities and phases.When the higher-order dispersion and nonlinear functions are sinusoidal,hyperbolic secant,and hyperbolic tangent functions,the transmission properties of three optical solitons before and after interactions are discussed.Besides,this paper achieves effective regulation of amplitude and velocity of optical solitons as well as of the local state of interaction process,and interaction-free transmission of the three optical solitons is obtained with a small spacing.The relevant conclusions of the paper are of great significance in promoting the development of high-speed and large-capacity optical communication,optical signal processing,and optical computing.
基金Project supported by the National Natural Science Foundation of China(Grant No.12175029)the Fundamental Research Program of Shanxi Province,China(Grant No.20210302123063)。
文摘We theoretically study the quantum speed limit of a single atom trapped in a Fabry-Perot microresonator.The cavity mode will be squeezed when a driving laser is applied to the second-order nonlinear medium,and the effective Hamiltonian can be obtained under the Bogoliubov squeezing transformation.The analytical expression of the evolved atom state can be obtained by using the non-Hermitian Schr¨odinger equation for the initial excited state,and the quantum speed limit time coincides very well for both the analytical expression and the master equation method.From the perspective of quantum speed limit,it is more conducive to accelerate the evolution of the quantum state for the large detuning,strong driving,and coupling strength.For the case of the initial superposition state,the form of the initial state has more influence on the evolution speed.The quantum speed limit time is not only dependent on the system parameters but also determined by the initial state.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12274230,91950102,and 11834004)the Funding of Nanjing University of Science and Technology (Grant No.TSXK2022D005)the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China (Grant No.KYCX230443)。
文摘We calibrate the macroscopic vortex high-order harmonic generation(HHG)obtained by the quantitative rescattering(QRS)model to compute single-atom induced dipoles against that by solving the time-dependent Schr?dinger equation(TDSE).We show that the QRS perfectly agrees with the TDSE under the favorable phase-matching condition,and the QRS can accurately predict the main features in the spatial profiles of vortex HHG if the phase-matching condition is not good.We uncover that harmonic emissions from short and long trajectories are adjusted by the phase-matching condition through the time-frequency analysis and the QRS can simulate the vortex HHG accurately only when the interference between two trajectories is absent.This work confirms that it is an efficient way to employ the QRS model in the single-atom response for precisely simulating the macroscopic vortex HHG.
基金Supported by Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No.41421005National Natural Science Foundation of China under Grant Nos.41376030,41376029,41476019+1 种基金NSFC–Shandong Joint Fund for Marine Science Research Centers Grant(U1406401)Special Funds for Theoretical Physics of the National Natural Science Foundation of China under Grant No.11447205
文摘The dissipative nonlinear Schrdinger equation with a forcing item is derived by using of multiple scales analysis and perturbation method as a mathematical model of describing envelope solitary Rossby waves with dissipation effect and external forcing in rotational stratified fluids. By analyzing the evolution of amplitude of envelope solitary Rossby waves, it is found that the shear of basic flow, Brunt–Vaisala frequency and β effect are important factors in forming the envelope solitary Rossby waves. By employing Jacobi elliptic function expansion method and Hirota's direct method, the analytic solutions of dissipative nonlinear Schr¨odinger equation and forced nonlinear Schr¨odinger equation are derived, respectively. With the help of these solutions, the effects of dissipation and external forcing on the evolution of envelope solitary Rossby wave are also discussed in detail. The results show that dissipation causes slowly decrease of amplitude of envelope solitary Rossby waves and slowly increase of width, while it has no effect on the propagation speed and different types of external forcing can excite the same envelope solitary Rossby waves. It is notable that dissipation and different types of external forcing have certain influence on the carrier frequency of envelope solitary Rossby waves.
文摘A one-dimensional harmonic oscillator with position-dependent effective mass is studied. We quantize the oscillator to obtain a quantum Hamiltonian, which is manifestly Hermitian in configuration space, and the exact solutions to the corresponding Schr¨odinger equation are obtained analytically in terms of modified Hermite polynomials.It is shown that the obtained solutions reduce to those of simple harmonic oscillator as the position dependence of the mass vanishes.
基金Supported by the Hujiang Foundation of China under Grant No.B14005the National Natural Science Foundation of China under Grant No.11071164+4 种基金the Innovation Program of Shanghai Municipal Education Commission under Grant Nos.12YZ105 and 13ZZ118the Shanghai Leading Academic Discipline Project under Grant No.XTKX2012the Foundation of University Young Teachers Training Program of Shanghai Municipal Education Commission under Grant No.slg11029the Natural Science Foundation of Shanghai under Grant No.12ZR1446800Science and Technology Commission of Shanghai municipality and the National Natural Science Foundation of China under Grant Nos.11201302 and 11171220
文摘In this paper, the generalized Darboux transformation is constructed to variable coefficient nonlinear Schrdinger(NLS) equation. The N-th order rogue wave solution of this variable coefficient NLS equation is obtained by determinant expression form. In particular, we present rogue waves from first to third-order through some figures and analyze their dynamics.
基金Supported by National Natural Science Foundation of China under Grant Nos.11472247 and 11872335
文摘In this paper, we introduce a new definition of fractional derivative which contains a fractional factor, and its physical meanings are given. When studying the fractional Schrdinger equation(FSE) with this form of fractional derivative, the result shows that under the description of time FSE with fractional factor, the probability of finding a particle in the whole space is still conserved. By using this new definition to construct space FSE, we achieve a continuous transition from standard Schrdinger equation to the fractional one. When applying this form of Schrdinger equation to a particle in an infinite symmetrical square potential well, we find that the probability density distribution loses spatial symmetry and shows a kind of attenuation property. For the situation of a one-dimensional infinite δ potential well,the first derivative of time-independent wave function Φ to space coordinate x can be continuous everywhere when the particle is at some special discrete energy levels, which is much different from the standard Schrdinger equation.