The equation of motion for a large-deflection beam in the Lagrangian description are derived using the coupling of flexural deformation and midplane stretching as a key source of nonlinearity and taking into account t...The equation of motion for a large-deflection beam in the Lagrangian description are derived using the coupling of flexural deformation and midplane stretching as a key source of nonlinearity and taking into account the transverse, axial and rotary inertia effects. Assuming a traveling wave solution, the nonlinear partial differential equations are then transformed into ordinary differential equations. Qualitative analysis indicates that the system can have either a homoclinic orbit or a heteroclinic orbit, depending on whether the rotary inertia effect is taken into account. Furthermore, exact periodic solutions of the nonlinear wave equations are obtained by means of the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function m→1 in the degenerate case, either a solitary wave solution or a shock wave solution can be obtained.展开更多
The paper presents an improved technique of calculating total deflections of flexural reinforced concrete elements that takes discrete crack formation into account. The technique is based on determining the curvature ...The paper presents an improved technique of calculating total deflections of flexural reinforced concrete elements that takes discrete crack formation into account. The technique is based on determining the curvature of the cross section of reinforced concrete elements with cracks and fissures in the area between cracks. The curvature of the element is calculated using a non-linear function of the deformation of concrete under compression. Approximating dependency of concrete resistance on compression developed by one of the authors is presented. An algorithm of finding the curvature and formulas for calculating curvature and deflection are provided. The function of the curvature distribution along the length of a flexible element is proposed by the authors. The paper also presents the results of the author's experimental research. The characteristics of samples tested are described. The experimental research results of deflections of fiexural reinforced concrete elements made of conventional and high-strength concretes are presented. Comparison of the values calculated using the technique with those obtained from the experimental research as well as those calculated according to existing regulations in Russia, USA and Europe is drawn.展开更多
Liquid polymers(LP)have become an important structural material used in the construction industry in the last decade.This paper investigates the viability of using commercially available LPs as a coating materia...Liquid polymers(LP)have become an important structural material used in the construction industry in the last decade.This paper investigates the viability of using commercially available LPs as a coating material to improve the flexural strength of fiber-modified concrete beams.The scope included preparing rectangular prism concrete beams with a concrete mixture including fly ash and fiber and coating them with four different liquid polymers at a uniform thickness following the curing process while one set of samples was maintained under the same conditions as a control group without coating.In addition,cylindrical samples were prepared to determine the compressive strength of the concrete mixture.Following the curing process in an unconfined open-air laboratory environment for another 28 days,concrete samples were tested to determine the flexural strength and deflection characteristics under center point loading equipment.The results revealed that all four coating types enhanced both the flexural strength and the average maximum deflection of the beams compared to the control group.While the enhancement in the flexural strength changed approximately between 5%and 36%depending on the coating type,the improvements in average maximum deflections varied between 3.7%and 28.4%.展开更多
The determinations of flexural behavior of some engineering structures are based on different theories and equations, but it has been observed that some of these equations may not give true representation. This work h...The determinations of flexural behavior of some engineering structures are based on different theories and equations, but it has been observed that some of these equations may not give true representation. This work has looked into the difference that may occur between theoretical and experimental results. An experimental test carried out on models of waffle and solid slabs structures were described and results from twenty test samples are presented. Each specimen was subjected to an incremental axial loading of 1 kN interval after 28 days of casting. The flexural moments, deflections and crack width at failure were obtained. The experimental flexural crack and theoretical flexural cracks for both types of slabs were compared. The result for flexural moments for waffle was 5.526 kNm, while solid slab was 3.684 kNm. The deflections showed that waffle slabs has 3.64 mm while solid has 9.28 mm, hence waffle has a higher structural stiffness than solid slabs, but the flexural cracks did not give the same results especially for the estimated crack width. It was concluded that estimated results based on developed equations may not be accurate because it is based on ideal situation.展开更多
Layered steel fiber reinforced rubber concrete (LSFRRC), a new type of pavement concrete based on the requirements of national standard were experimentally researched. The different properties of flexural-tensile st...Layered steel fiber reinforced rubber concrete (LSFRRC), a new type of pavement concrete based on the requirements of national standard were experimentally researched. The different properties of flexural-tensile strength from plain concrete (PC), rubber concrete (RC), layered steel fiber reinforced concrete (LSFRC) and LSFRRC were presented. Experimental results show that the tensile strength of LSFRRC is improved by 4.12% compared with PC, by 13.75% compared with RC. The load-deflection curve on flexural-tensile propertiesis put forward. The flexural-tensile toughness index I10 of LSFRRC is improved 10.32 times compared with PC.展开更多
A variety of new materials in the field of concrete technology have been developed during the past three decades with the ongoing demand of construction industry to meet the functional, strength, economical and durabi...A variety of new materials in the field of concrete technology have been developed during the past three decades with the ongoing demand of construction industry to meet the functional, strength, economical and durability requirements. Though reinforced concrete has high strength and is most widely used construction material it suffers from disadvantages like corrosion of steel, susceptibility to chemical and environmental attack. In order to overcome the above deficiencies of reinforced concrete new materials (special concrete composites) have been developed over the past three decades. Glass Fibre Reinforced Polymer (GFRP) is one such material with wide range of applications. Based on the preliminary investigations on GFRP bars, an optimum fiber/resin ratio of 7:3 was arrived. The tensile strength of GFRP bars is comparable to that of the mild steel as per the tests carried out, but the modulus of elasticity is about 25-30 percentage of that of steel bars. This paper deals with the experimental investigations carried out on small slab panels supported on all four edges with effective spans of 0.9 m ~ 0.45 m, which is a part of large research problem undertaken with different ratios of 10ng span to short span with different support conditions. The test results are compared with similar slab panels reinforced with conventional mild steel bars.展开更多
基金supported by the National Natural Science Foundation of China(Nos.10772129 and 10702047).
文摘The equation of motion for a large-deflection beam in the Lagrangian description are derived using the coupling of flexural deformation and midplane stretching as a key source of nonlinearity and taking into account the transverse, axial and rotary inertia effects. Assuming a traveling wave solution, the nonlinear partial differential equations are then transformed into ordinary differential equations. Qualitative analysis indicates that the system can have either a homoclinic orbit or a heteroclinic orbit, depending on whether the rotary inertia effect is taken into account. Furthermore, exact periodic solutions of the nonlinear wave equations are obtained by means of the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function m→1 in the degenerate case, either a solitary wave solution or a shock wave solution can be obtained.
文摘The paper presents an improved technique of calculating total deflections of flexural reinforced concrete elements that takes discrete crack formation into account. The technique is based on determining the curvature of the cross section of reinforced concrete elements with cracks and fissures in the area between cracks. The curvature of the element is calculated using a non-linear function of the deformation of concrete under compression. Approximating dependency of concrete resistance on compression developed by one of the authors is presented. An algorithm of finding the curvature and formulas for calculating curvature and deflection are provided. The function of the curvature distribution along the length of a flexible element is proposed by the authors. The paper also presents the results of the author's experimental research. The characteristics of samples tested are described. The experimental research results of deflections of fiexural reinforced concrete elements made of conventional and high-strength concretes are presented. Comparison of the values calculated using the technique with those obtained from the experimental research as well as those calculated according to existing regulations in Russia, USA and Europe is drawn.
文摘Liquid polymers(LP)have become an important structural material used in the construction industry in the last decade.This paper investigates the viability of using commercially available LPs as a coating material to improve the flexural strength of fiber-modified concrete beams.The scope included preparing rectangular prism concrete beams with a concrete mixture including fly ash and fiber and coating them with four different liquid polymers at a uniform thickness following the curing process while one set of samples was maintained under the same conditions as a control group without coating.In addition,cylindrical samples were prepared to determine the compressive strength of the concrete mixture.Following the curing process in an unconfined open-air laboratory environment for another 28 days,concrete samples were tested to determine the flexural strength and deflection characteristics under center point loading equipment.The results revealed that all four coating types enhanced both the flexural strength and the average maximum deflection of the beams compared to the control group.While the enhancement in the flexural strength changed approximately between 5%and 36%depending on the coating type,the improvements in average maximum deflections varied between 3.7%and 28.4%.
文摘The determinations of flexural behavior of some engineering structures are based on different theories and equations, but it has been observed that some of these equations may not give true representation. This work has looked into the difference that may occur between theoretical and experimental results. An experimental test carried out on models of waffle and solid slabs structures were described and results from twenty test samples are presented. Each specimen was subjected to an incremental axial loading of 1 kN interval after 28 days of casting. The flexural moments, deflections and crack width at failure were obtained. The experimental flexural crack and theoretical flexural cracks for both types of slabs were compared. The result for flexural moments for waffle was 5.526 kNm, while solid slab was 3.684 kNm. The deflections showed that waffle slabs has 3.64 mm while solid has 9.28 mm, hence waffle has a higher structural stiffness than solid slabs, but the flexural cracks did not give the same results especially for the estimated crack width. It was concluded that estimated results based on developed equations may not be accurate because it is based on ideal situation.
文摘Layered steel fiber reinforced rubber concrete (LSFRRC), a new type of pavement concrete based on the requirements of national standard were experimentally researched. The different properties of flexural-tensile strength from plain concrete (PC), rubber concrete (RC), layered steel fiber reinforced concrete (LSFRC) and LSFRRC were presented. Experimental results show that the tensile strength of LSFRRC is improved by 4.12% compared with PC, by 13.75% compared with RC. The load-deflection curve on flexural-tensile propertiesis put forward. The flexural-tensile toughness index I10 of LSFRRC is improved 10.32 times compared with PC.
文摘A variety of new materials in the field of concrete technology have been developed during the past three decades with the ongoing demand of construction industry to meet the functional, strength, economical and durability requirements. Though reinforced concrete has high strength and is most widely used construction material it suffers from disadvantages like corrosion of steel, susceptibility to chemical and environmental attack. In order to overcome the above deficiencies of reinforced concrete new materials (special concrete composites) have been developed over the past three decades. Glass Fibre Reinforced Polymer (GFRP) is one such material with wide range of applications. Based on the preliminary investigations on GFRP bars, an optimum fiber/resin ratio of 7:3 was arrived. The tensile strength of GFRP bars is comparable to that of the mild steel as per the tests carried out, but the modulus of elasticity is about 25-30 percentage of that of steel bars. This paper deals with the experimental investigations carried out on small slab panels supported on all four edges with effective spans of 0.9 m ~ 0.45 m, which is a part of large research problem undertaken with different ratios of 10ng span to short span with different support conditions. The test results are compared with similar slab panels reinforced with conventional mild steel bars.