A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretizatio...A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.展开更多
This paper studies the long time behavior of solutions to the Navier-Stokes equations with linear damping on R^2. The authors prove the existence of L^2-global attractor and Hi-global attractor by showing that the cor...This paper studies the long time behavior of solutions to the Navier-Stokes equations with linear damping on R^2. The authors prove the existence of L^2-global attractor and Hi-global attractor by showing that the corresponding semigroup is asymptotically compact. Thereafter, they establish that the two attractors are the same and thus reveal the asymptotic smoothing effect of the solutions.展开更多
In this paper, the time-dependent invariant of the Dirac equation with time-dependent linear potential has been constructed in non-commutative phase space. The corresponding analytical solution of the Dirac equation i...In this paper, the time-dependent invariant of the Dirac equation with time-dependent linear potential has been constructed in non-commutative phase space. The corresponding analytical solution of the Dirac equation is presented by Lewis-Riesenfield invariant method.展开更多
A wide range of quantum systems are time-invariant and the corresponding dynamics is dic- tated by linear differential equations with constant coefficients. Although simple in math- ematical concept, the integration o...A wide range of quantum systems are time-invariant and the corresponding dynamics is dic- tated by linear differential equations with constant coefficients. Although simple in math- ematical concept, the integration of these equations is usually complicated in practice for complex systems, where both the computational time and the memory storage become limit- ing factors. For this reason, low-storage Runge-Kutta methods become increasingly popular for the time integration. This work suggests a series of s-stage sth-order explicit Runge- Kutta methods specific for autonomous linear equations, which only requires two times of the memory storage for the state vector. We also introduce a 13-stage eighth-order scheme for autonomous linear equations, which has optimized stability region and is reduced to a fifth-order method for general equations. These methods exhibit significant performance improvements over the previous general-purpose low-stage schemes. As an example, we ap- ply the integrator to simulate the non-Markovian exciton dynamics in a 15-site linear chain consisting of perylene-bisimide derivatives.展开更多
The linear analysis of the Rayleigh-Taylor instability in metal material is extended from the perfect plastic constitutive model to the Johnson-Cook and Steinberg-Guinan constitutive model, and from the constant loadi...The linear analysis of the Rayleigh-Taylor instability in metal material is extended from the perfect plastic constitutive model to the Johnson-Cook and Steinberg-Guinan constitutive model, and from the constant loading to a time-dependent loading. The analysis is applied to two Rayleigh-Taylor instability experiments in aluminum and vanadium with peak pressures of 20 GPa and 90 GPa, and strain rates of 6 × 106 s−1 and 3 × 107 s−1 respectively. When the time-dependent loading and the Steinberg-Guinan constitutive model are used in the linear analysis, the analytic results are in close agreement with experiments quantitatively, which indicates that the method in this paper is applicable to the Rayleigh-Taylor instability in aluminum and vanadium metal materials under high pressure and high strain rate. From these linear analyses, we find that the constitutive models and the loading process are of crucial importance in the linear analysis of the Rayleigh-Taylor instability in metal material, and a better understanding of the Rayleigh-Taylor instability in metals is gained. These results will serve as important references for evolving high-pressure, high-strain-rate experiments and numerical simulations.展开更多
A linear stability analysis is applied to a system consisting of a linear magneto-fluid layer overlying a porous layer affected by rotation and salt concentration on both layers. The flow in the fluid layer is governe...A linear stability analysis is applied to a system consisting of a linear magneto-fluid layer overlying a porous layer affected by rotation and salt concentration on both layers. The flow in the fluid layer is governed by Navier-Stokes’s equations and while governed by Darcy-Brinkman’s law in the porous medium. Numerical solutions are obtained using Legendre polynomials. These solutions are studied through two modes of instability: stationary instability and overstability when the heat and the salt concentration are effected from above and below.展开更多
In the paper, we establish a new criterion for stability of system dx/dt =A(t)x, which is based on the assumption that one leading principal submatrixof order r and its complementary submatrix in A(t) both have eigenv...In the paper, we establish a new criterion for stability of system dx/dt =A(t)x, which is based on the assumption that one leading principal submatrixof order r and its complementary submatrix in A(t) both have eigenvalues withonly negative real parts. And also a feasible method for decomposition andaggregation of large-scale systems is provided.展开更多
This paper is devoted to study the Crouzeix-Raviart (C-R) type nonconforming linear triangular finite element method (FEM) for the nonstationary Navier-Stokes equations on anisotropic meshes. By intro- ducing auxi...This paper is devoted to study the Crouzeix-Raviart (C-R) type nonconforming linear triangular finite element method (FEM) for the nonstationary Navier-Stokes equations on anisotropic meshes. By intro- ducing auxiliary finite element spaces, the error estimates for the velocity in the L2-norm and energy norm, as well as for the pressure in the L2-norm are derived.展开更多
In practical engineering, many uncertain factors in loading or degradation of material properties may vary with time. Stochastic process modeling constitutes a suitable approach for describing these time-dependent unc...In practical engineering, many uncertain factors in loading or degradation of material properties may vary with time. Stochastic process modeling constitutes a suitable approach for describing these time-dependent uncertainties. By adopting this approach, however, the timedependent reliability calculation is a great challenge owing to the complexity and the huge computational burden. This paper presents a new instantaneous response surface method t-IRS for time-dependent reliability analysis. Different from the adaptive extreme response surface approach, the proposed method does not need to build and update surrogate models separately at each time node. It first uses the expansion optimal linear estimation method to discretize the stochastic processes into a set of independent standard normal variables together with some deterministic functions of time. Time is then treated as an independent one-dimensional variable. Next, initial samples are generated by Latin hypercube sampling, and the corresponding response values are calculated and utilized to construct an instantaneous response surrogate model of the Kriging type. The active learning method is applied to update the Kriging surrogate model until satisfactory accuracy is achieved. Finally, the instantaneous response surrogate model is used to compute the time-dependent reliability via Monte Carlo simulation. Four case studies are utilized to demonstrate the effectiveness of the ^-IRS method for time-dependent reliability analysis.展开更多
A model containing two two-level atoms and a single-mode cavity is considered, and the effect of the time-dependent atom-field couplings on entanglement between the two atoms is studied. The results indicate that both...A model containing two two-level atoms and a single-mode cavity is considered, and the effect of the time-dependent atom-field couplings on entanglement between the two atoms is studied. The results indicate that both for one-photon processes and for two-photon processes, the disappearance of the initial entanglement is delayed due to the linear modulation of the atom-field coupling coefficients as compared to the constant coupling model. The delayed time of the disappearance of the initial entanglement for the two-photon processes is much longer than that for the one-photon processes in the case of adiabatic variation.展开更多
In this paper,the transient Navier-Stokes equations with damping are considered.Firstly,the semi-discrete scheme is discussed and optimal error estimates are derived.Secondly,a linearized backward Euler scheme is prop...In this paper,the transient Navier-Stokes equations with damping are considered.Firstly,the semi-discrete scheme is discussed and optimal error estimates are derived.Secondly,a linearized backward Euler scheme is proposed.By the error split technique,the Stokes operator and the H^(-1)-norm estimate,unconditional optimal error estimates for the velocity in the norms L^(∞)(L^(2)) and L^(∞)(H^(1)),and the pressure in the norm L^(∞)(L^(2))are deduced.Finally,two numerical examples are provided to confirm the theoretical analysis.展开更多
Based on the non-Darcian flow law described by exponent m and threshold gradient i 1 under a low hydraulic gradient and the classical nonlinear relationships e-lgσ′ and e-lgk v (Mesri and Rokhsar, 1974), the governi...Based on the non-Darcian flow law described by exponent m and threshold gradient i 1 under a low hydraulic gradient and the classical nonlinear relationships e-lgσ′ and e-lgk v (Mesri and Rokhsar, 1974), the governing equation of 1D nonlinear consolidation was modified by considering both uniform distribution of self-weight stress and linear increment of self-weight stress. The numerical solutions for the governing equation were derived by the finite difference method (FDM). Moreover, the solutions were verified by comparing the numerical results with those by analytical method under a specific case. Finally, consolidation behavior under different parameters was investigated, and the results show that the rate of 1D nonlinear consolidation will slow down when the non-Darcian flow law is considered. The consolidation rate with linear increment of self-weight stress is faster than that with uniform distribution one. Compared to Darcy's flow law, the influence of parameters describing non-linearity of soft soil on consolidation behavior with non-Darcian flow has no significant change.展开更多
The estimation problem for diffusion coefficients in diffusion processes has been studied in many papers,where the diffusion coefficient function is assumed to be a 1-dimensional bounded Lipschitzian function of the s...The estimation problem for diffusion coefficients in diffusion processes has been studied in many papers,where the diffusion coefficient function is assumed to be a 1-dimensional bounded Lipschitzian function of the state or the time only.There is no previous work for the nonparametric estimation of time-dependent diffusion models where the diffusion coefficient depends on both the state and the time.This paper introduces and studies a wavelet estimation of the time-dependent diffusion coefficient under a more general assumption that the diffusion coefficient is a linear growth Lipschitz function.Using the properties of martingale,we translate the problems in diffusion into the nonparametric regression setting and give the Lr convergence rate.A strong consistency of the estimate is established.With this result one can estimate the time-dependent diffusion coefficient using the same structure of the wavelet estimators under any equivalent probability measure.For example,in finance,the wavelet estimator is strongly consistent under the market probability measure as well as the risk neutral probability measure.展开更多
We deal with the numerical solution of the Navier-Stokes equations describing a motion of viscous compressible fluids.In order to obtain a sufficiently stable higher order scheme with respect to the time and space coo...We deal with the numerical solution of the Navier-Stokes equations describing a motion of viscous compressible fluids.In order to obtain a sufficiently stable higher order scheme with respect to the time and space coordinates,we develop a combination of the discontinuous Galerkin finite element(DGFE)method for the space discretization and the backward difference formulae(BDF)for the time discretization.Since the resulting discrete problem leads to a system of nonlinear algebraic equations at each time step,we employ suitable linearizations of inviscid as well as viscous fluxes which give a linear algebraic problem at each time step.Finally,the resulting BDF-DGFE scheme is applied to steady as well as unsteady flows and achieved results are compared with reference data.展开更多
In this paper, we present an efficient energy stable scheme to solve a phase field model incorporating contact line condition. Instead of the usually used Cahn-Hilliard type phase equation, we adopt the Allen-Cahn typ...In this paper, we present an efficient energy stable scheme to solve a phase field model incorporating contact line condition. Instead of the usually used Cahn-Hilliard type phase equation, we adopt the Allen-Cahn type phase field model with the static contact line boundary condition that coupled with incompressible Navier-Stokes equations with Navier boundary condition. The projection method is used to deal with the Navier-Stokes equa- tions and an auxiliary function is introduced for the non-convex Ginzburg-Landau bulk potential. We show that the scheme is linear, decoupled and energy stable. Moreover, we prove that fully discrete scheme is also energy stable. An efficient finite element spatial discretization method is implemented to verify the accuracy and efficiency of proposed schemes. Numerical results show that the proposed scheme is very efficient and accurate.展开更多
基金supported by the National Natural Science Foundation of China(No.10771150)the National Basic Research Program of China(No.2005CB321701)+1 种基金the Program for New Century Excellent Talents in University(No.NCET-07-0584)the Natural Science Foundation of Sichuan Province(No.07ZB087)
文摘A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.
基金Supported by Natural Science Foundation of China(1077107410771139)+1 种基金Supported by the NSF of Wenzhou University(2007L024)Supported by the NSF of Zhejiang Province(Y6080077)
文摘This paper studies the long time behavior of solutions to the Navier-Stokes equations with linear damping on R^2. The authors prove the existence of L^2-global attractor and Hi-global attractor by showing that the corresponding semigroup is asymptotically compact. Thereafter, they establish that the two attractors are the same and thus reveal the asymptotic smoothing effect of the solutions.
文摘In this paper, the time-dependent invariant of the Dirac equation with time-dependent linear potential has been constructed in non-commutative phase space. The corresponding analytical solution of the Dirac equation is presented by Lewis-Riesenfield invariant method.
基金This work is supported by the National Natural Science Foundation of China (No.21373064), the Program for Innovative Research Team of Guizhou Province (No.QKTD[2014]4021), and the Natural Sci- entific Foundation from Guizhou Provincial Department of Education (No.ZDXK[2014]IS). All the calculations were performed at Guizhou Provincial High- Performance Computing Center of Condensed Mate- rials and Molecular Simulation in Guizhou Education University.
文摘A wide range of quantum systems are time-invariant and the corresponding dynamics is dic- tated by linear differential equations with constant coefficients. Although simple in math- ematical concept, the integration of these equations is usually complicated in practice for complex systems, where both the computational time and the memory storage become limit- ing factors. For this reason, low-storage Runge-Kutta methods become increasingly popular for the time integration. This work suggests a series of s-stage sth-order explicit Runge- Kutta methods specific for autonomous linear equations, which only requires two times of the memory storage for the state vector. We also introduce a 13-stage eighth-order scheme for autonomous linear equations, which has optimized stability region and is reduced to a fifth-order method for general equations. These methods exhibit significant performance improvements over the previous general-purpose low-stage schemes. As an example, we ap- ply the integrator to simulate the non-Markovian exciton dynamics in a 15-site linear chain consisting of perylene-bisimide derivatives.
文摘The linear analysis of the Rayleigh-Taylor instability in metal material is extended from the perfect plastic constitutive model to the Johnson-Cook and Steinberg-Guinan constitutive model, and from the constant loading to a time-dependent loading. The analysis is applied to two Rayleigh-Taylor instability experiments in aluminum and vanadium with peak pressures of 20 GPa and 90 GPa, and strain rates of 6 × 106 s−1 and 3 × 107 s−1 respectively. When the time-dependent loading and the Steinberg-Guinan constitutive model are used in the linear analysis, the analytic results are in close agreement with experiments quantitatively, which indicates that the method in this paper is applicable to the Rayleigh-Taylor instability in aluminum and vanadium metal materials under high pressure and high strain rate. From these linear analyses, we find that the constitutive models and the loading process are of crucial importance in the linear analysis of the Rayleigh-Taylor instability in metal material, and a better understanding of the Rayleigh-Taylor instability in metals is gained. These results will serve as important references for evolving high-pressure, high-strain-rate experiments and numerical simulations.
文摘A linear stability analysis is applied to a system consisting of a linear magneto-fluid layer overlying a porous layer affected by rotation and salt concentration on both layers. The flow in the fluid layer is governed by Navier-Stokes’s equations and while governed by Darcy-Brinkman’s law in the porous medium. Numerical solutions are obtained using Legendre polynomials. These solutions are studied through two modes of instability: stationary instability and overstability when the heat and the salt concentration are effected from above and below.
文摘In the paper, we establish a new criterion for stability of system dx/dt =A(t)x, which is based on the assumption that one leading principal submatrixof order r and its complementary submatrix in A(t) both have eigenvalues withonly negative real parts. And also a feasible method for decomposition andaggregation of large-scale systems is provided.
基金Supported by National Science Foundation of China(No.10971203No.11271340)Research Fund for the Doctoral Program of Higher Education of China(No.20094101110006)
文摘This paper is devoted to study the Crouzeix-Raviart (C-R) type nonconforming linear triangular finite element method (FEM) for the nonstationary Navier-Stokes equations on anisotropic meshes. By intro- ducing auxiliary finite element spaces, the error estimates for the velocity in the L2-norm and energy norm, as well as for the pressure in the L2-norm are derived.
基金supported by the National Natural Science Foundation of China (Nos.11572134 and 11832013).
文摘In practical engineering, many uncertain factors in loading or degradation of material properties may vary with time. Stochastic process modeling constitutes a suitable approach for describing these time-dependent uncertainties. By adopting this approach, however, the timedependent reliability calculation is a great challenge owing to the complexity and the huge computational burden. This paper presents a new instantaneous response surface method t-IRS for time-dependent reliability analysis. Different from the adaptive extreme response surface approach, the proposed method does not need to build and update surrogate models separately at each time node. It first uses the expansion optimal linear estimation method to discretize the stochastic processes into a set of independent standard normal variables together with some deterministic functions of time. Time is then treated as an independent one-dimensional variable. Next, initial samples are generated by Latin hypercube sampling, and the corresponding response values are calculated and utilized to construct an instantaneous response surrogate model of the Kriging type. The active learning method is applied to update the Kriging surrogate model until satisfactory accuracy is achieved. Finally, the instantaneous response surrogate model is used to compute the time-dependent reliability via Monte Carlo simulation. Four case studies are utilized to demonstrate the effectiveness of the ^-IRS method for time-dependent reliability analysis.
基金Supported by the NSFC-Henan Talent Development Joint Fund under Grant No.U1204616the National Natural Science Foundation of China under Grant No.61378011the Fundamental Research of The Education Department of Henan Province of China under Grant Nos.13A140798,2010A140010
文摘A model containing two two-level atoms and a single-mode cavity is considered, and the effect of the time-dependent atom-field couplings on entanglement between the two atoms is studied. The results indicate that both for one-photon processes and for two-photon processes, the disappearance of the initial entanglement is delayed due to the linear modulation of the atom-field coupling coefficients as compared to the constant coupling model. The delayed time of the disappearance of the initial entanglement for the two-photon processes is much longer than that for the one-photon processes in the case of adiabatic variation.
基金supported by Fundamental Research Funds for the Henan Provincial Colleges and Universities(No.20A110002).
文摘In this paper,the transient Navier-Stokes equations with damping are considered.Firstly,the semi-discrete scheme is discussed and optimal error estimates are derived.Secondly,a linearized backward Euler scheme is proposed.By the error split technique,the Stokes operator and the H^(-1)-norm estimate,unconditional optimal error estimates for the velocity in the norms L^(∞)(L^(2)) and L^(∞)(H^(1)),and the pressure in the norm L^(∞)(L^(2))are deduced.Finally,two numerical examples are provided to confirm the theoretical analysis.
基金Project supported by the National Natural Science Foundation of China (No. 51109092)the National Science Foundation for Post-doctoral Scientists of China (No. 2013M530237)the Jiangsu University Foundation for Advanced Talents (No. 12JDG098), China
文摘Based on the non-Darcian flow law described by exponent m and threshold gradient i 1 under a low hydraulic gradient and the classical nonlinear relationships e-lgσ′ and e-lgk v (Mesri and Rokhsar, 1974), the governing equation of 1D nonlinear consolidation was modified by considering both uniform distribution of self-weight stress and linear increment of self-weight stress. The numerical solutions for the governing equation were derived by the finite difference method (FDM). Moreover, the solutions were verified by comparing the numerical results with those by analytical method under a specific case. Finally, consolidation behavior under different parameters was investigated, and the results show that the rate of 1D nonlinear consolidation will slow down when the non-Darcian flow law is considered. The consolidation rate with linear increment of self-weight stress is faster than that with uniform distribution one. Compared to Darcy's flow law, the influence of parameters describing non-linearity of soft soil on consolidation behavior with non-Darcian flow has no significant change.
基金This work was partially supported by the National Natural Science Foundation of China (Grant No.10671089)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20060254006)
文摘The estimation problem for diffusion coefficients in diffusion processes has been studied in many papers,where the diffusion coefficient function is assumed to be a 1-dimensional bounded Lipschitzian function of the state or the time only.There is no previous work for the nonparametric estimation of time-dependent diffusion models where the diffusion coefficient depends on both the state and the time.This paper introduces and studies a wavelet estimation of the time-dependent diffusion coefficient under a more general assumption that the diffusion coefficient is a linear growth Lipschitz function.Using the properties of martingale,we translate the problems in diffusion into the nonparametric regression setting and give the Lr convergence rate.A strong consistency of the estimate is established.With this result one can estimate the time-dependent diffusion coefficient using the same structure of the wavelet estimators under any equivalent probability measure.For example,in finance,the wavelet estimator is strongly consistent under the market probability measure as well as the risk neutral probability measure.
文摘We deal with the numerical solution of the Navier-Stokes equations describing a motion of viscous compressible fluids.In order to obtain a sufficiently stable higher order scheme with respect to the time and space coordinates,we develop a combination of the discontinuous Galerkin finite element(DGFE)method for the space discretization and the backward difference formulae(BDF)for the time discretization.Since the resulting discrete problem leads to a system of nonlinear algebraic equations at each time step,we employ suitable linearizations of inviscid as well as viscous fluxes which give a linear algebraic problem at each time step.Finally,the resulting BDF-DGFE scheme is applied to steady as well as unsteady flows and achieved results are compared with reference data.
基金R. Chen is partially supported by the Fundamental Research Funds for Central Universities 24820182018RC25-500418780 and by the China Postdoctoral Science Foundation grant No. 2016M591122. X. Yang is partially supported by NSF DMS-1200487, NSF DMS-1418898, AFOSR FA9550-12-1-0178. H. Zhang is partially supported by NSFC/RGC Joint Research Scheme No. 11261160486, NSFC grant No. 11471046, 11571045.
文摘In this paper, we present an efficient energy stable scheme to solve a phase field model incorporating contact line condition. Instead of the usually used Cahn-Hilliard type phase equation, we adopt the Allen-Cahn type phase field model with the static contact line boundary condition that coupled with incompressible Navier-Stokes equations with Navier boundary condition. The projection method is used to deal with the Navier-Stokes equa- tions and an auxiliary function is introduced for the non-convex Ginzburg-Landau bulk potential. We show that the scheme is linear, decoupled and energy stable. Moreover, we prove that fully discrete scheme is also energy stable. An efficient finite element spatial discretization method is implemented to verify the accuracy and efficiency of proposed schemes. Numerical results show that the proposed scheme is very efficient and accurate.