To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems...In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.展开更多
A new simple thixotropy model was proposed in the present paper to characterize the thixotropy-loop experiments and the start-up experiment of an LDPE (PE-FSB23D0221Q200) melt. The thixotropy model is a combination ...A new simple thixotropy model was proposed in the present paper to characterize the thixotropy-loop experiments and the start-up experiment of an LDPE (PE-FSB23D0221Q200) melt. The thixotropy model is a combination of a viscoelastic-component and a postulated kinetics process of structure change, which is constituted in terms of the indirect microstructural approach usually adopted in the characterization of thixotropy. The descriptions of the thixotropy model on both the thixotropy-loop tests and the startup test show good agreement with the experimental values, indicating the good capability of the model in characterizing the time-dependent nonlinear viscoelastic. The stress overshoot phenomenon and the stress relaxation after cessation of the thixotropy loop test can be described well by the model, whereas both of the typical viscoelastic phenomena could not be described in our previous work with a variant Huang model.展开更多
Evaluating the reliability of a system requires knowledge of the failure modes to which it is subjected. Complex topology systems generally require a high level of availability, which is a function of the arrangement ...Evaluating the reliability of a system requires knowledge of the failure modes to which it is subjected. Complex topology systems generally require a high level of availability, which is a function of the arrangement of elements (components) in the system. To avoid serious failures for such complex systems, recourse can be had to the redundancy techniques available in the literature. These techniques help to improve system reliability, without affecting the reliability of system components. This paper is interested in the proposal of a model for evaluating the failure rate of a standby multi-components system and in improving the reliability of mechanical systems, arranged in a topology (series, parallel, or mixed).展开更多
Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gate...Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gateroads and intervening pillars which helps to raise the safety and productivity of longwall mining operations. This study presents a novel time-dependent analytical model for determination of the longwall mining-induced stress and investigates the coefficient of stress concentration over adjacent gates and pillars. The model is developed based on the strain energy balance in longwall mining incorporated to a rheological constitutive model of caved materials with time-varying parameters. The study site is the Tabas coal mine of Iran. In the proposed model, height of destressed zone above the mined panel, total longwall mining-induced stress, abutment angle, induced vertical stress, and coefficient of stress concentration over neighboring gates and intervening pillars are calculated. To evaluate the effect of proposed model parameters on the coefficient of stress concentration due to longwall mining, sensitivity analysis is performed based on the field data and experimental constants. Also, the results of the proposed model are compared with those of existing models. The comparative results confirm a good agreement between the proposed model and the in situ measurements. According to the obtained results, it is concluded that the proposed model can be successfully used to calculate the longwall mining-induced stress. Therefore, the optimum design of gate supports and pillar dimensions would be attainable which helps to increase the mining efficiency.展开更多
Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship am...Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship among experts and the internal reliability of experts are important factors in decision-making.This paper focuses on improving the scientificity and effectiveness of decision-making and presents a consensus model combining trust relationship among experts and expert reliability in social network group decision-making(SN-GDM).A concept named matching degree is proposed to measure expert reliability.Meanwhile,linguistic information is applied to manage the imprecise and vague information.Matching degree is expressed by a 2-tuple linguistic model,and experts’preferences are measured by a probabilistic linguistic term set(PLTS).Subsequently,a hybrid weight is explored to weigh experts’importance in a group.Then a consensus measure is introduced and a feedback mechanism is developed to produce some personalized recommendations with higher group consensus.Finally,a comparative example is provided to prove the scientificity and effectiveness of the proposed consensus model.展开更多
Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction seque...Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction sequence and the time-dependent behavior of CABSS,an experimental study of a model bridge was explored.But the measured displacement and stress ratios of arch rib between prototype and model bridge did not subject to linear similarity relation when the time-dependent behavior was considered.So,the three-dimensional finite element models were established,and verified by the measured data.Then,the displacements and stresses of the prototype and model were compared with each other,when the elastic analysis or coupling of temperature and shrinkage,creep effect was considered.Furthermore,a parametric study was studied.The results showed that when the temperature,shrinkage and creep effect of concrete are considered,the finite element analysis results of prototype and model agree well with the measured results.The displacement and stress ratios of prototype and model bridge in construction and bridge completed stage do not present the geometric similarity ratio 7.5 and 1.0,respectively.They are also much influenced by concrete predicting model and variation of temperature.展开更多
In order to evaluate the performance of deep geological disposal of radioactive waste,an underground research laboratory(URL)was constructed by Andra in the Callovo-Oxfordian(COx)claystone formation at the Meuse/Haute...In order to evaluate the performance of deep geological disposal of radioactive waste,an underground research laboratory(URL)was constructed by Andra in the Callovo-Oxfordian(COx)claystone formation at the Meuse/Haute-Marne(MHM).The construction of URL induced the excavation damage of host formations,and the ventilation in the galleries desaturated the host formation close to the gallery wall.Moreover,it is expected that the mechanical behaviour of COx claystone is time-dependent.This study presents a constitutive model developed to describe the viscoplastic behaviour of unsaturated and damaged COx claystone.In this model,the unsaturation effect is considered by adopting the Bishop effective stress and the van Genuchten(VG)water retention model.In terms of the viscoplastic behaviour,the nonstationary flow surface(NSFS)theory for unsaturated soils is used with consideration of the coupled effects of strain rate and suction on the yield stress.A progressive hardening law is adopted.Meanwhile,a non-associated flow rule is used,which is similar to that in Barcelona basic model(BBM).In addition,to describe the damage effect induced by suction change and viscoplastic loading,a damage function is defined based on the crack volume proportion.This damage function contains two variables:unsaturated effective stress and viscoplastic volumetric strain,with the related parameters determined based on the mercury intrusion porosimetry(MIP)tests.For the model validation,different tests on COx claystone under different loading paths are simulated.Comparisons between experimental and simulated results indicated that the present model is able to well describe the viscoplastic behaviour of damaged COx claystone,including swelling/shrinkage,triaxial extension and compression,and triaxial creep.展开更多
Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability ...Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability and are used to modify the cognitive failure probability(CFP).However,the levels of CPCs are usually determined by domain experts,whichmay be subjective and uncertain.What’smore,the classicCREAMassumes that the CPCs are independent,which is unrealistic.Ignoring the dependence among CPCs will result in repeated calculations of the influence of the CPCs on CFP and lead to unreasonable reliability evaluation.To address the issue of uncertain information modeling and processing,this paper introduces evidence theory to evaluate the CPC levels in specific scenarios.To address the issue of dependence modeling,the Decision-Making Trial and Evaluation Laboratory(DEMATEL)method is used to process the dependence among CPCs and calculate the relative weights of each CPC,thus modifying the multiplier of the CPCs.The detailed process of the proposed method is illustrated in this paper and the CFP estimated by the proposed method is more reasonable.展开更多
In order to improve efficiency of coal seam gas drainage, many fracturing techniques, such as waterjet fracturing, hydraulic fracturing and explosive fracturing, etc, have been developed and widely used in China coal ...In order to improve efficiency of coal seam gas drainage, many fracturing techniques, such as waterjet fracturing, hydraulic fracturing and explosive fracturing, etc, have been developed and widely used in China coal mining industry. How- ever, during the engineering applications, it is observed that the efficiency of gas drainage initially improves, but reduces there- after. Thus, it is speculated that the contrasts in coalbed methane drainage efficiency may reflect variation of the closure be- havior of the artificial fracture created. Based on comprehensive gas drainage monitoring data in underground coal mines, the work presented herein uses numerical simulation to show the behavior of the time-dependent closure of coal seam fractures as- sociated with various levels of waterjet fracturing parameters and geomechanical conditions.展开更多
A thermodynamic theory is formulated to describe the phase transition and critical phenomena in pedestrian flow. Based on the extended lattice hydrodynamic pedestrian model taking the interaction of the next-nearest-n...A thermodynamic theory is formulated to describe the phase transition and critical phenomena in pedestrian flow. Based on the extended lattice hydrodynamic pedestrian model taking the interaction of the next-nearest-neighbor persons into account, the time-dependent Ginzburg-Landau (TDGL) equation is derived to describe the pedestrian flow near the critical point through the nonlinear analysis method. The corresponding two solutions, the uniform and the kink solutions, are given. The coexisting curve, spinodal line, and critical point are obtained by the first and second derivatives of the thermodynamic potential.展开更多
Given a sample of regression data from (Y, Z), a new diagnostic plotting method is proposed for checking the hypothesis H0: the data are from a given Cox model with the time-dependent covariates Z. It compares two est...Given a sample of regression data from (Y, Z), a new diagnostic plotting method is proposed for checking the hypothesis H0: the data are from a given Cox model with the time-dependent covariates Z. It compares two estimates of the marginal distribution FY of Y. One is an estimate of the modified expression of FY under H0, based on a consistent estimate of the parameter under H0, and based on the baseline distribution of the data. The other is the Kaplan-Meier-estimator of FY, together with its confidence band. The new plot, called the marginal distribution plot, can be viewed as a test for testing H0. The main advantage of the test over the existing residual tests is in the case that the data do not satisfy any Cox model or the Cox model is mis-specified. Then the new test is still valid, but not the residual tests and the residual tests often make type II error with a very large probability.展开更多
The strategy on repair and strengthening of existing bridges based on time-dependent reliability was analyzed with the maximum expected benefit as the objective function. A sample of risk-ranking decision was illustra...The strategy on repair and strengthening of existing bridges based on time-dependent reliability was analyzed with the maximum expected benefit as the objective function. A sample of risk-ranking decision was illustrated based on updated inspection information with 35 survival age. The effect of improvement of live loads and difference of repair methods on time-dependent reliability of existing bridges are considered. The results show that the decision method can be used in real project, with the cost of failure consequence and the risk of failure considered.展开更多
In order to evaluate the reliability of long-lifetime products with degradation data, a new proportional hazard degradation model is proposed. By the similarity between time-degradation data and stress-accelerated lif...In order to evaluate the reliability of long-lifetime products with degradation data, a new proportional hazard degradation model is proposed. By the similarity between time-degradation data and stress-accelerated lifetime, and the failure rate function of degradation data which is assumed to be proportional to the time covariate, the reliability assessment based on a proportional hazard degradation model is realized. The least squares method is used to estimate the model's parameters. Based on the failure rate of the degradation data and the proportion function of the known time, the failure rate and the reliability function under the given time and the predetermined failure threshold can be extrapolated. A long life GaAs laser is selected as a case study and its reliability is evaluated. The results show that the proposed method can accurately describe the degradation process and it is effective for the reliability assessment of long lifetime products.展开更多
Aim To define a mixed redundant model(MRM), improving the reliability of C 3I system. Methods The model combined the technology characters of two? unit system with one warm stand by unit and function substitute s...Aim To define a mixed redundant model(MRM), improving the reliability of C 3I system. Methods The model combined the technology characters of two? unit system with one warm stand by unit and function substitute system. The reliability and availability equations of MRM were deduced. Results and Conclusion Compared with several other reliability models, it has obvious effect upon improving the system reliability. The effect? cost rate is very high among these models. The model can be used in reliability design, evaluation and check of C 3I system. Only a little attached cost is needed to improve C 3I system reliability effectively.展开更多
Using the characteristic of addition of information quantity and the principle of equivalence of information quantity, this paper derives the general conversion formulae of the formation theory method conversion (synt...Using the characteristic of addition of information quantity and the principle of equivalence of information quantity, this paper derives the general conversion formulae of the formation theory method conversion (synthesis) on the systems consisting of different success failure model units. According to the fundamental method of the unit reliability assessment, the general models of system reliability approximate lower limits are given. Finally, this paper analyses the application of the assessment method by examples, the assessment results are neither conservative nor radical and very satisfactory. The assessment method can be popularized to the systems which have fixed reliability structural models.展开更多
The degradation data of multi-components in missile is derived by periodical testing. How to use these data to assess the storage reliability (SR) of the whole missile is a difficult problem in current research. An SR...The degradation data of multi-components in missile is derived by periodical testing. How to use these data to assess the storage reliability (SR) of the whole missile is a difficult problem in current research. An SR assessment model based on competition failure of multi-components in missile is proposed. By analyzing the missile life profile and its storage failure feature, the key components in missile are obtained and the characteristics voltage is assumed to be its key performance parameter. When the voltage testing data of key components in missile are available, a state space model (SSM) is applied to obtain the whole missile degradation state, which is defined as the missile degradation degree (DD). A Wiener process with the time-scale model (TSM) is applied to build the degradation failure model with individual variability and nonlinearity. The Weibull distribution and proportional risk model are applied to build an outburst failure model with performance degradation effect. Furthermore, a competition failure model with the correlation between degradation failure and outburst failure is proposed. A numerical example with a set of missiles in storage is analyzed to demonstrate the accuracy and superiority of the proposed model.展开更多
As the central component of rotating machine,the performance reliability assessment and remaining useful lifetime prediction of bearing are of crucial importance in condition-based maintenance to reduce the maintenanc...As the central component of rotating machine,the performance reliability assessment and remaining useful lifetime prediction of bearing are of crucial importance in condition-based maintenance to reduce the maintenance cost and improve the reliability.A prognostic algorithm to assess the reliability and forecast the remaining useful lifetime(RUL) of bearings was proposed,consisting of three phases.Online vibration and temperature signals of bearings in normal state were measured during the manufacturing process and the most useful time-dependent features of vibration signals were extracted based on correlation analysis(feature selection step).Time series analysis based on neural network,as an identification model,was used to predict the features of bearing vibration signals at any horizons(feature prediction step).Furthermore,according to the features,degradation factor was defined.The proportional hazard model was generated to estimate the survival function and forecast the RUL of the bearing(RUL prediction step).The positive results show that the plausibility and effectiveness of the proposed approach can facilitate bearing reliability estimation and RUL prediction.展开更多
The conventional stress-strength interference(SSI) model is a basic model for reliability analysis of mechanical components. In this model, the component reliability is defined as the probability of the strength bei...The conventional stress-strength interference(SSI) model is a basic model for reliability analysis of mechanical components. In this model, the component reliability is defined as the probability of the strength being larger than the stress, where the component stress is generally represented by a single random variable(RV). But for a component under multi-operating conditions, its reliability can not be calculated directly by using the SSI model. The problem arises from that the stress on a component under multi-operating conditions can not be described by a single RV properly. Current research concerning the SSI model mainly focuses on the calculation of the static or dynamic reliability of the component under single operation condition. To evaluate the component reliability under multi-operating conditions, this paper uses multiple discrete RVs based on the actual stress range of the component firstly. These discrete RVs have identical possible values and different corresponding probability value, which are used to represent the multi-operating conditions of the component. Then the component reliability under each operating condition is calculated, respectively, by employing the discrete SSI model and the universal generating function technique, and from this the discrete SSI model under multi-operating conditions is proposed. Finally the proposed model is applied to evaluate the reliability of a transmission component of the decelerator installed in an aeroengine. The reliability of this component during taking-off, cruising and landing phases of an aircraft are calculated, respectively. With this model, a basic method for reliability analysis of the component under complex load condition is provided, and the application range of the conventional SSI model is extended.展开更多
Antibiotics may be exposed in a mixed state in natural environments.The toxicity of antibiotic mixtures exhibits time-dependent characteristics,and data on the time-dependent toxicity of antibiotic mixtures is also re...Antibiotics may be exposed in a mixed state in natural environments.The toxicity of antibiotic mixtures exhibits time-dependent characteristics,and data on the time-dependent toxicity of antibiotic mixtures is also relatively lacking.In this study,the toxicities of 45 binary mixtures composed of five antibiotics were investigated against Vibrio qinghaiensis sp.-Q67(Q67)at multiple exposure times(4,6,8,10,and 12 h).Quantitative structure–activity relationship(QSAR)models were developed for predicting the time-dependent toxicities of 45 binary mixtures.The results showed that the best QSAR models presented coefficient of determination(R2)of(0.818–0.913)and explained variance in prediction leave-one-out(Q2LOO)of(0.781–0.894)and predictive ability(Q2F1,Q2F2,Q2F3>0.682,concordance correlation coefficient>0.859).The R2 values of QSAR models outperformed the R2(0.628–0.810)of the conventional concentration addition models and the R2(0.654–0.792)of the independent action models.Furthermore,the QSAR models showed higher R2 and Q2LOO values at 4 h compared to other exposure times.Specifically,the model at the 30%effective concentration(EC30)had R2 of 0.902 and Q2LOO of 0.883,while the model at the 50%effective concentration(EC50)had R2 of 0.913 and Q2LOO of 0.894.The CATS2D_04_DP descriptor was found to be the most dominant and negatively correlated factor influencing the toxicity of mixed antibiotics against Q67 in the nine QSAR models developed over five exposure times.The reduction in the number of DP pharmacophore point pairs with a topological distance of 4 in the represented molecules is the primary cause for the rise in the time-dependent toxicity of the antibiotics against Q67.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
基金partially supported by the National Natural Science Foundation of China(52375238)Science and Technology Program of Guangzhou(202201020213,202201020193,202201010399)GZHU-HKUST Joint Research Fund(YH202109).
文摘In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.
基金The project supported by the National Natural Science Foundation of China(10402024)the Experiment Foundation for Precise Instrument of Shanghai Jiao Tong University(200207)
文摘A new simple thixotropy model was proposed in the present paper to characterize the thixotropy-loop experiments and the start-up experiment of an LDPE (PE-FSB23D0221Q200) melt. The thixotropy model is a combination of a viscoelastic-component and a postulated kinetics process of structure change, which is constituted in terms of the indirect microstructural approach usually adopted in the characterization of thixotropy. The descriptions of the thixotropy model on both the thixotropy-loop tests and the startup test show good agreement with the experimental values, indicating the good capability of the model in characterizing the time-dependent nonlinear viscoelastic. The stress overshoot phenomenon and the stress relaxation after cessation of the thixotropy loop test can be described well by the model, whereas both of the typical viscoelastic phenomena could not be described in our previous work with a variant Huang model.
文摘Evaluating the reliability of a system requires knowledge of the failure modes to which it is subjected. Complex topology systems generally require a high level of availability, which is a function of the arrangement of elements (components) in the system. To avoid serious failures for such complex systems, recourse can be had to the redundancy techniques available in the literature. These techniques help to improve system reliability, without affecting the reliability of system components. This paper is interested in the proposal of a model for evaluating the failure rate of a standby multi-components system and in improving the reliability of mechanical systems, arranged in a topology (series, parallel, or mixed).
文摘Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gateroads and intervening pillars which helps to raise the safety and productivity of longwall mining operations. This study presents a novel time-dependent analytical model for determination of the longwall mining-induced stress and investigates the coefficient of stress concentration over adjacent gates and pillars. The model is developed based on the strain energy balance in longwall mining incorporated to a rheological constitutive model of caved materials with time-varying parameters. The study site is the Tabas coal mine of Iran. In the proposed model, height of destressed zone above the mined panel, total longwall mining-induced stress, abutment angle, induced vertical stress, and coefficient of stress concentration over neighboring gates and intervening pillars are calculated. To evaluate the effect of proposed model parameters on the coefficient of stress concentration due to longwall mining, sensitivity analysis is performed based on the field data and experimental constants. Also, the results of the proposed model are compared with those of existing models. The comparative results confirm a good agreement between the proposed model and the in situ measurements. According to the obtained results, it is concluded that the proposed model can be successfully used to calculate the longwall mining-induced stress. Therefore, the optimum design of gate supports and pillar dimensions would be attainable which helps to increase the mining efficiency.
基金the National Natural Science Foundation of China(71871121).
文摘Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship among experts and the internal reliability of experts are important factors in decision-making.This paper focuses on improving the scientificity and effectiveness of decision-making and presents a consensus model combining trust relationship among experts and expert reliability in social network group decision-making(SN-GDM).A concept named matching degree is proposed to measure expert reliability.Meanwhile,linguistic information is applied to manage the imprecise and vague information.Matching degree is expressed by a 2-tuple linguistic model,and experts’preferences are measured by a probabilistic linguistic term set(PLTS).Subsequently,a hybrid weight is explored to weigh experts’importance in a group.Then a consensus measure is introduced and a feedback mechanism is developed to produce some personalized recommendations with higher group consensus.Finally,a comparative example is provided to prove the scientificity and effectiveness of the proposed consensus model.
基金Projects(20-JKKJ-17,18-JKKJ-05)supported by the Shanxi Communications Holding Group Co.,Ltd.,ChinaProject(41907239)supported by the National Natural Science Foundation of China+1 种基金Project(2020M670698)supported by the China Postdoctoral Science FoundationProject(2019L0295)supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi,China。
文摘Beipanjiang Bridge is a long-span concrete arch bridges with stiffened skeleton(CABSS)in China.It has a fixed end arch with the span of 445 m and the rise of 100 m.To evaluate the rationality of the construction sequence and the time-dependent behavior of CABSS,an experimental study of a model bridge was explored.But the measured displacement and stress ratios of arch rib between prototype and model bridge did not subject to linear similarity relation when the time-dependent behavior was considered.So,the three-dimensional finite element models were established,and verified by the measured data.Then,the displacements and stresses of the prototype and model were compared with each other,when the elastic analysis or coupling of temperature and shrinkage,creep effect was considered.Furthermore,a parametric study was studied.The results showed that when the temperature,shrinkage and creep effect of concrete are considered,the finite element analysis results of prototype and model agree well with the measured results.The displacement and stress ratios of prototype and model bridge in construction and bridge completed stage do not present the geometric similarity ratio 7.5 and 1.0,respectively.They are also much influenced by concrete predicting model and variation of temperature.
文摘In order to evaluate the performance of deep geological disposal of radioactive waste,an underground research laboratory(URL)was constructed by Andra in the Callovo-Oxfordian(COx)claystone formation at the Meuse/Haute-Marne(MHM).The construction of URL induced the excavation damage of host formations,and the ventilation in the galleries desaturated the host formation close to the gallery wall.Moreover,it is expected that the mechanical behaviour of COx claystone is time-dependent.This study presents a constitutive model developed to describe the viscoplastic behaviour of unsaturated and damaged COx claystone.In this model,the unsaturation effect is considered by adopting the Bishop effective stress and the van Genuchten(VG)water retention model.In terms of the viscoplastic behaviour,the nonstationary flow surface(NSFS)theory for unsaturated soils is used with consideration of the coupled effects of strain rate and suction on the yield stress.A progressive hardening law is adopted.Meanwhile,a non-associated flow rule is used,which is similar to that in Barcelona basic model(BBM).In addition,to describe the damage effect induced by suction change and viscoplastic loading,a damage function is defined based on the crack volume proportion.This damage function contains two variables:unsaturated effective stress and viscoplastic volumetric strain,with the related parameters determined based on the mercury intrusion porosimetry(MIP)tests.For the model validation,different tests on COx claystone under different loading paths are simulated.Comparisons between experimental and simulated results indicated that the present model is able to well describe the viscoplastic behaviour of damaged COx claystone,including swelling/shrinkage,triaxial extension and compression,and triaxial creep.
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability and are used to modify the cognitive failure probability(CFP).However,the levels of CPCs are usually determined by domain experts,whichmay be subjective and uncertain.What’smore,the classicCREAMassumes that the CPCs are independent,which is unrealistic.Ignoring the dependence among CPCs will result in repeated calculations of the influence of the CPCs on CFP and lead to unreasonable reliability evaluation.To address the issue of uncertain information modeling and processing,this paper introduces evidence theory to evaluate the CPC levels in specific scenarios.To address the issue of dependence modeling,the Decision-Making Trial and Evaluation Laboratory(DEMATEL)method is used to process the dependence among CPCs and calculate the relative weights of each CPC,thus modifying the multiplier of the CPCs.The detailed process of the proposed method is illustrated in this paper and the CFP estimated by the proposed method is more reasonable.
文摘In order to improve efficiency of coal seam gas drainage, many fracturing techniques, such as waterjet fracturing, hydraulic fracturing and explosive fracturing, etc, have been developed and widely used in China coal mining industry. How- ever, during the engineering applications, it is observed that the efficiency of gas drainage initially improves, but reduces there- after. Thus, it is speculated that the contrasts in coalbed methane drainage efficiency may reflect variation of the closure be- havior of the artificial fracture created. Based on comprehensive gas drainage monitoring data in underground coal mines, the work presented herein uses numerical simulation to show the behavior of the time-dependent closure of coal seam fractures as- sociated with various levels of waterjet fracturing parameters and geomechanical conditions.
基金the National Natural Science Foundation of China(Grant Nos.11072117 and 61074142)the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6110007)+3 种基金the Scientific Research Fund of Zhejiang Provincial Education Department,China(Grant No.Z201119278)the Natural Science Foundation of Ningbo,China(Grant Nos.2012A610152 and 2012A610038)the K.C.Wong Magna Fund in Ningbo University,Chinathe Research Grant Council,Government of the Hong Kong Administrative Region,China(Grant Nos.CityU9041370 and CityU9041499)
文摘A thermodynamic theory is formulated to describe the phase transition and critical phenomena in pedestrian flow. Based on the extended lattice hydrodynamic pedestrian model taking the interaction of the next-nearest-neighbor persons into account, the time-dependent Ginzburg-Landau (TDGL) equation is derived to describe the pedestrian flow near the critical point through the nonlinear analysis method. The corresponding two solutions, the uniform and the kink solutions, are given. The coexisting curve, spinodal line, and critical point are obtained by the first and second derivatives of the thermodynamic potential.
文摘Given a sample of regression data from (Y, Z), a new diagnostic plotting method is proposed for checking the hypothesis H0: the data are from a given Cox model with the time-dependent covariates Z. It compares two estimates of the marginal distribution FY of Y. One is an estimate of the modified expression of FY under H0, based on a consistent estimate of the parameter under H0, and based on the baseline distribution of the data. The other is the Kaplan-Meier-estimator of FY, together with its confidence band. The new plot, called the marginal distribution plot, can be viewed as a test for testing H0. The main advantage of the test over the existing residual tests is in the case that the data do not satisfy any Cox model or the Cox model is mis-specified. Then the new test is still valid, but not the residual tests and the residual tests often make type II error with a very large probability.
基金TheLiaoningProviceCommunicationDe partmentKeyScienceFoundation (No .0 10 1)
文摘The strategy on repair and strengthening of existing bridges based on time-dependent reliability was analyzed with the maximum expected benefit as the objective function. A sample of risk-ranking decision was illustrated based on updated inspection information with 35 survival age. The effect of improvement of live loads and difference of repair methods on time-dependent reliability of existing bridges are considered. The results show that the decision method can be used in real project, with the cost of failure consequence and the risk of failure considered.
基金The National Natural Science Foundation of China (No.50405021)
文摘In order to evaluate the reliability of long-lifetime products with degradation data, a new proportional hazard degradation model is proposed. By the similarity between time-degradation data and stress-accelerated lifetime, and the failure rate function of degradation data which is assumed to be proportional to the time covariate, the reliability assessment based on a proportional hazard degradation model is realized. The least squares method is used to estimate the model's parameters. Based on the failure rate of the degradation data and the proportion function of the known time, the failure rate and the reliability function under the given time and the predetermined failure threshold can be extrapolated. A long life GaAs laser is selected as a case study and its reliability is evaluated. The results show that the proposed method can accurately describe the degradation process and it is effective for the reliability assessment of long lifetime products.
文摘Aim To define a mixed redundant model(MRM), improving the reliability of C 3I system. Methods The model combined the technology characters of two? unit system with one warm stand by unit and function substitute system. The reliability and availability equations of MRM were deduced. Results and Conclusion Compared with several other reliability models, it has obvious effect upon improving the system reliability. The effect? cost rate is very high among these models. The model can be used in reliability design, evaluation and check of C 3I system. Only a little attached cost is needed to improve C 3I system reliability effectively.
文摘Using the characteristic of addition of information quantity and the principle of equivalence of information quantity, this paper derives the general conversion formulae of the formation theory method conversion (synthesis) on the systems consisting of different success failure model units. According to the fundamental method of the unit reliability assessment, the general models of system reliability approximate lower limits are given. Finally, this paper analyses the application of the assessment method by examples, the assessment results are neither conservative nor radical and very satisfactory. The assessment method can be popularized to the systems which have fixed reliability structural models.
基金supported by the National Defense Foundation of China(71601183)
文摘The degradation data of multi-components in missile is derived by periodical testing. How to use these data to assess the storage reliability (SR) of the whole missile is a difficult problem in current research. An SR assessment model based on competition failure of multi-components in missile is proposed. By analyzing the missile life profile and its storage failure feature, the key components in missile are obtained and the characteristics voltage is assumed to be its key performance parameter. When the voltage testing data of key components in missile are available, a state space model (SSM) is applied to obtain the whole missile degradation state, which is defined as the missile degradation degree (DD). A Wiener process with the time-scale model (TSM) is applied to build the degradation failure model with individual variability and nonlinearity. The Weibull distribution and proportional risk model are applied to build an outburst failure model with performance degradation effect. Furthermore, a competition failure model with the correlation between degradation failure and outburst failure is proposed. A numerical example with a set of missiles in storage is analyzed to demonstrate the accuracy and superiority of the proposed model.
基金Project(61174115)supported by the National Natural Science Foundation of ChinaProject(L2013001)supported by Scientific Research Program of Liaoning Provincial Education Department,China
文摘As the central component of rotating machine,the performance reliability assessment and remaining useful lifetime prediction of bearing are of crucial importance in condition-based maintenance to reduce the maintenance cost and improve the reliability.A prognostic algorithm to assess the reliability and forecast the remaining useful lifetime(RUL) of bearings was proposed,consisting of three phases.Online vibration and temperature signals of bearings in normal state were measured during the manufacturing process and the most useful time-dependent features of vibration signals were extracted based on correlation analysis(feature selection step).Time series analysis based on neural network,as an identification model,was used to predict the features of bearing vibration signals at any horizons(feature prediction step).Furthermore,according to the features,degradation factor was defined.The proportional hazard model was generated to estimate the survival function and forecast the RUL of the bearing(RUL prediction step).The positive results show that the plausibility and effectiveness of the proposed approach can facilitate bearing reliability estimation and RUL prediction.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z403)Sichuan Provincial Key Technologies R&D Program of China(Grant No. 07GG012- 002)+1 种基金Gansu Provincial Basal Research Fund of the Higher Education Institutions of China (Grant No. GCJ 2009019)Research Fund of Lanzhou University of Technology of China(Grant No. BS02200903)
文摘The conventional stress-strength interference(SSI) model is a basic model for reliability analysis of mechanical components. In this model, the component reliability is defined as the probability of the strength being larger than the stress, where the component stress is generally represented by a single random variable(RV). But for a component under multi-operating conditions, its reliability can not be calculated directly by using the SSI model. The problem arises from that the stress on a component under multi-operating conditions can not be described by a single RV properly. Current research concerning the SSI model mainly focuses on the calculation of the static or dynamic reliability of the component under single operation condition. To evaluate the component reliability under multi-operating conditions, this paper uses multiple discrete RVs based on the actual stress range of the component firstly. These discrete RVs have identical possible values and different corresponding probability value, which are used to represent the multi-operating conditions of the component. Then the component reliability under each operating condition is calculated, respectively, by employing the discrete SSI model and the universal generating function technique, and from this the discrete SSI model under multi-operating conditions is proposed. Finally the proposed model is applied to evaluate the reliability of a transmission component of the decelerator installed in an aeroengine. The reliability of this component during taking-off, cruising and landing phases of an aircraft are calculated, respectively. With this model, a basic method for reliability analysis of the component under complex load condition is provided, and the application range of the conventional SSI model is extended.
基金National Natural Science Foundation of China(No.22266012)Guangxi Key Research and Development Program(Guike-AB23026045)+2 种基金Guilin Science and Technology Program(20220114-2)Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source PollutionModern Industry College of Ecology and Environmental Protection,Guilin University of Technology.
文摘Antibiotics may be exposed in a mixed state in natural environments.The toxicity of antibiotic mixtures exhibits time-dependent characteristics,and data on the time-dependent toxicity of antibiotic mixtures is also relatively lacking.In this study,the toxicities of 45 binary mixtures composed of five antibiotics were investigated against Vibrio qinghaiensis sp.-Q67(Q67)at multiple exposure times(4,6,8,10,and 12 h).Quantitative structure–activity relationship(QSAR)models were developed for predicting the time-dependent toxicities of 45 binary mixtures.The results showed that the best QSAR models presented coefficient of determination(R2)of(0.818–0.913)and explained variance in prediction leave-one-out(Q2LOO)of(0.781–0.894)and predictive ability(Q2F1,Q2F2,Q2F3>0.682,concordance correlation coefficient>0.859).The R2 values of QSAR models outperformed the R2(0.628–0.810)of the conventional concentration addition models and the R2(0.654–0.792)of the independent action models.Furthermore,the QSAR models showed higher R2 and Q2LOO values at 4 h compared to other exposure times.Specifically,the model at the 30%effective concentration(EC30)had R2 of 0.902 and Q2LOO of 0.883,while the model at the 50%effective concentration(EC50)had R2 of 0.913 and Q2LOO of 0.894.The CATS2D_04_DP descriptor was found to be the most dominant and negatively correlated factor influencing the toxicity of mixed antibiotics against Q67 in the nine QSAR models developed over five exposure times.The reduction in the number of DP pharmacophore point pairs with a topological distance of 4 in the represented molecules is the primary cause for the rise in the time-dependent toxicity of the antibiotics against Q67.