期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Long-term deformation analysis of Shuibuya concrete face rockfill dam based on response surface method and improved genetic algorithm 被引量:12
1
作者 Fu-hai Yao Shao-heng Guan +4 位作者 He Yang Yuan Chen Huan-feng Qiu Gang Ma Qi-wen Liu 《Water Science and Engineering》 EI CAS CSCD 2019年第3期196-204,共9页
Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained fr... Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained from laboratory triaxial tests often underestimate the deformation of high rockfill dams.Therefore, constitutive model parameters obtained by back analysis were used to calculate and predict the long-term deformation of rockfill dams.Instead of using artificial neural networks (ANNs), the response surface method (RSM) was employed to replace the finite element simulation used in the optimization iteration.Only 27 training samples were required for RSM, improving computational efficiency compared with ANN, which required 300 training samples.RSM can be used to describe the relationship between the constitutive model parameters and dam settlements.The inversion results of the Shuibuya concrete face rockfill dam (CFRD) show that the calculated settlements agree with the measured data, indicating the accuracy and efficiency of RSM. 展开更多
关键词 SHUIBUYA ROCKFILL DAM Parameter BACK analysis Response surface method Duncan EB model time-dependent deformation
下载PDF
Time-dependent dilatancy for brittle rocks 被引量:1
2
作者 Jie Li Mingyang Wang +2 位作者 Kaiwen Xia Ning Zhang Houxu Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1054-1070,共17页
This paper presents a theoretical study on time-dependent dilatancy behaviors for brittle rocks. The theory employs a well-accepted postulation that macroscopically observed dilatancy originates from the expansion of ... This paper presents a theoretical study on time-dependent dilatancy behaviors for brittle rocks. The theory employs a well-accepted postulation that macroscopically observed dilatancy originates from the expansion of microcracks. The mechanism and dynamic process that microcracks initiate from local stress concentration and grow due to localized tensile stress are analyzed. Then, by generalizing the results from the analysis of single cracks, a parameter and associated equations for its evolution are developed to describe the behaviors of the microcracks. In this circumstance, the relationship between microcracking and dilatancy can be established, and the theoretical equations for characterizing the process of rock dilatancy behaviors are derived. Triaxial compression and creep tests are conducted to validate the developed theory. With properly chosen model parameters, the theory yields a satisfactory accuracy in comparison with the experimental results. 展开更多
关键词 time-dependent dilatancy Microcracking Subcritical crack growth Rock deformation and failure
下载PDF
Time-dependent deviation of bridge pile foundations caused by adjacent large-area surcharge loads in soft soils and its preventive measures
3
作者 Shuanglong LI Limin WEI +4 位作者 Jingtai NIU Zhiping DENG Bangbin WU Wuwen QIAN Feifei HE 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第2期184-201,共18页
Time-dependent characteristics(TDCs)have been neglected in most previous studies investigating the deviation mechanisms of bridge pile foundations and evaluating the effectiveness of preventive measures.In this study,... Time-dependent characteristics(TDCs)have been neglected in most previous studies investigating the deviation mechanisms of bridge pile foundations and evaluating the effectiveness of preventive measures.In this study,the stress-strain-time characteristics of soft soils were illustrated by consolidation-creep tests based on a typical engineering case.An extended Koppejan model was developed and then embedded in a finite element(FE)model via a user-material subroutine(UMAT).Based on the validated FE model,the time-dependent deformation mechanism of the pile foundation was revealed,and the preventive effect of applying micropiles and stress-release holes to control the deviation was investigated.The results show that the calculated maximum lateral displacement of the cap differs from the measured one by 6.5%,indicating that the derived extended Koppejan model reproduced the deviation process of the bridge cap-pile foundation with time.The additional load acting on the pile side caused by soil lateral deformation was mainly concentrated within the soft soil layer and increased with the increase in load duration.Compared with t=3 d(where t is surcharge time),the maximum lateral additional pressure acting on Pile 2#increased by approximately 47.0%at t=224 d.For bridge pile foundation deviation in deep soft soils,stress-release holes can provide better prevention compared to micropiles and are therefore recommended. 展开更多
关键词 bridge pile foundation surcharge load soft soil time-dependent deformation interaction mechanism preventive measure
原文传递
Establishing time-dependent model of deformation modulus caused by bedrock excavation rebound by inverse analysis method 被引量:3
4
作者 WU ZhongRu1,2,GU YanChang1,3,GU ChongShi1,2,GUO HaiQing1 & SU HuaiZhi1,2 1 Hohai University,Nanjing 210098,China 2 National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety,Nanjing 210098,China 3 Nanjing Hydraulic Research Institute,Nanjing 210029,China 《Science China(Technological Sciences)》 SCIE EI CAS 2008年第S2期1-7,共7页
Rock rebound relaxation deformation,or even rock burst,caused by the excavation of dam base and abutment or high rock slope affects their stability and results in the fall of mechanical properties of the rock.So an in... Rock rebound relaxation deformation,or even rock burst,caused by the excavation of dam base and abutment or high rock slope affects their stability and results in the fall of mechanical properties of the rock.So an inverse analysis method was proposed in this paper to establish the time-dependent model of deformation modulus caused by excavation rebound.The basic principle is based on the combination of observed data of the excavation rebound deformation of dam abutment or rock slope,and the calculated rebound deformation by FEM under ground stress at the corresponding time in the excavation process.The norm of the residuals of observed data and calculated data are taken as the objective function.Accordingly,the time-dependent model of bedrock deformation modulus can be established.The method displays its significance in the design of excavation,construction and operation management of dam base and high slope. 展开更多
关键词 DAM base REBOUND deformation MODULUS inverse analysis method time-dependent model Xiaowan HYDROPOWER Station
原文传递
Feinberg-Horodecki Exact Momentum States of Improved Deformed Exponential-Type Potential 被引量:1
5
作者 Mahmoud Farout Ahmed Bassalat Sameer M. Ikhdair 《Journal of Applied Mathematics and Physics》 2020年第8期1496-1506,共11页
We obtain the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, and the momentum eigenstates for the space-like Schrodinger equation, the Feinberg-Horodecki equation, with the improved de... We obtain the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, and the momentum eigenstates for the space-like Schrodinger equation, the Feinberg-Horodecki equation, with the improved deformed exponential-type potential which is constructed by temporal counterpart of the spatial form of these potentials. We also plot the variations of the improved deformed exponential-type potential with its momentum eigenvalues for few quantized states against the screening parameter. 展开更多
关键词 Quantized Momentum States Feinberg-Horodecki Equation The time-dependent Improved deformed Exponential-Type Potential
下载PDF
Dynamic strength of rocks and physical nature of rock strength 被引量:5
6
作者 Qihu Qian Chengzhi Qi Mingyang Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期1-10,共10页
Time-dependence of rock deformation and fracturing is often ignored.However,the consideration of the time-dependence is essential to the study of the deformation and fracturing processes of materials,especially for th... Time-dependence of rock deformation and fracturing is often ignored.However,the consideration of the time-dependence is essential to the study of the deformation and fracturing processes of materials,especially for those subject to strong dynamic loadings.In this paper,we investigate the deformation and fracturing of rocks,its physical origin at the microscopic scale,as well as the mechanisms of the time-dependence of rock strength.Using the thermo-activated and macro-viscous mechanisms,we explained the sensitivity of rock strength to strain rate.These mechanisms dominate the rock strength in different ranges of strain rates.It is also shown that a strain-rate dependent Mohr-Coulomb-type constitutive relationship can be used to describe the influence of strain rate on dynamic rock fragmentation.A relationship between the particle sizes of fractured rocks and the strain rate is also proposed.Several time-dependent fracture criteria are discussed,and their intrinsic relations are discussed.Finally,the application of dynamic strength theories is discussed. 展开更多
关键词 rock dynamics deformation and fracturing time-dependENCE dynamic strength criteria of fracturing
下载PDF
Time-varying nonlinear dynamics of a deploying piezoelectric laminated composite plate under aerodynamic force 被引量:1
7
作者 S.F.Lu W.Zhang X.J.Song 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第2期303-314,共12页
Using Reddy’s high-order shear theory for laminated plates and Hamilton’s principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, un... Using Reddy’s high-order shear theory for laminated plates and Hamilton’s principle, a nonlinear partial differential equation for the dynamics of a deploying cantilevered piezoelectric laminated composite plate, under the combined action of aerodynamic load and piezoelectric excitation, is introduced. Two-degree of freedom(DOF)nonlinear dynamic models for the time-varying coefficients describing the transverse vibration of the deploying laminate under the combined actions of a first-order aerodynamic force and piezoelectric excitation were obtained by selecting a suitable time-dependent modal function satisfying the displacement boundary conditions and applying second-order discretization using the Galerkin method. Using a numerical method, the time history curves of the deploying laminate were obtained, and its nonlinear dynamic characteristics,including extension speed and different piezoelectric excitations, were studied. The results suggest that the piezoelectric excitation has a clear effect on the change of the nonlinear dynamic characteristics of such piezoelectric laminated composite plates. The nonlinear vibration of the deploying cantilevered laminate can be effectively suppressed by choosing a suitable voltage and polarity. 展开更多
关键词 Deploying piezoelectric laminated composite plate Time-varying nonlinear dynamics Third-order shear deformation plate theory time-dependent modal function Aerodynamic force
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部