Accuracy of time-depth conversion in data processing of transient electromagnetic prospecting always affects the accu- rate positioning of water bodies in coal mines. In order to improve the accuracy of time-depth con...Accuracy of time-depth conversion in data processing of transient electromagnetic prospecting always affects the accu- rate positioning of water bodies in coal mines. In order to improve the accuracy of time-depth conversion, we established a mathe- matical model of time-depth conversion for a transient electromagnetic method based on the theory of "double smoke ring effect" of full space transient electromagnetic field transmission. Using a 3-layer as well as a 4-layer geo-electric model for roadway floors, we performed the time-depth conversion of theoretical curves of apparent resistance varying over time. In these curves, the depth corresponding to extreme value points is nearly the same as the depth of a geo-electric model. The position of water body deter- mined by our time-depth conversion method agrees well with the result of borehole drilling, indicating that the established time-depth conversion model can clearly improve the accuracy of spatial positioning of water bodies in coal mines.展开更多
The oxygen evolution reaction(OER)is the essential module in energy conversion and storage devices such as electrolyzer,rechargeable metal–air batteries and regenerative fuel cells.The adsorption energy scaling relat...The oxygen evolution reaction(OER)is the essential module in energy conversion and storage devices such as electrolyzer,rechargeable metal–air batteries and regenerative fuel cells.The adsorption energy scaling relations between the reaction intermediates,however,impose a large intrinsic overpotential and sluggish reaction kinetics on OER catalysts.Developing advanced electrocatalysts with high activity and stability based on non-noble metal materials is still a grand challenge.Central to the rational design of novel and high-efficiency catalysts is the development and understanding of quantitative structure–activity relationships,which correlate the catalytic activities with structural and electronic descriptors.This paper comprehensively reviews the benchmark descriptors for OER electrolysis,aiming to give an in-depth understanding on the origins of the electrocatalytic activity of the OER and further contribute to building the theory of electrocatalysis.Meanwhile,the cutting-edge research frontiers for proposing new OER paradigms and crucial strategies to circumvent the scaling relationship are also summarized.Challenges,opportunities and perspectives are discussed,intending to shed some light on the rational design concepts and advance the development of more efficient catalysts for enhancing OER performance.展开更多
There are rich natural gas resources in the northwestern South China Sea deepwater areas, with poor degree of exploration. Because of the unique tectonic, sedimentary background of the region, velocity model building ...There are rich natural gas resources in the northwestern South China Sea deepwater areas, with poor degree of exploration. Because of the unique tectonic, sedimentary background of the region, velocity model building and time-depth conversion have been an important and difficult problem for a long time. Recent researches in this direction have revealed three major problems for deepwater areas, i.e., the way to determine error correction for drilling velocity, the optimization of velocity modeling, and the understanding and analysis of velocity variations in the slope areas. The present contribution proposes technical solutions to the problems:(1) velocity correction version can be established by analyzing the geology, reservoir, water depths and velocity spectrum characteristics;(2) a unified method can be adopted to analyze the velocity variation patterns in drilled pale structural positions;and (3) across-layer velocity is analyzed to establish the velocity model individually for each of the layers. Such a solution is applicable, as shown in an example from the northwestern South China Sea deepwater areas, in which an improved prediction precision is obtained.展开更多
Luan River is the main water source in Beijing-Tianjin-Hebei region,northern China,where the groundwater system is vulnerable and pollution issue is serious.It is significant for regional groundwater resources protect...Luan River is the main water source in Beijing-Tianjin-Hebei region,northern China,where the groundwater system is vulnerable and pollution issue is serious.It is significant for regional groundwater resources protection to identify the hydrogeochemistry evolution and affecting factors along flow direction occurred in the upper reaches,especially the surface water-groundwater(SWGW)conversion relationship.In this study,recharge,conversion and geochemistry evolution of SW and GW were elucidated based on physical-hydrochemical indicators and stable isotopes in 36 GW samples and 20 SW samples,which were collected in July 2019 and July 2020.The factor analysis was further utilized to determine the main factors responsible for regional hydrogeochemical evolution.Results indicate that GW recharged SW in plateau area,and SW and GW recharged each other in typical Alpine valley area.The hydrochemical types are HCO3-Ca·Mg and HCO3-Ca,and the hydrochemical evolution is dominated by weathering of silicate and carbonate minerals.The cation exchange adsorption has minor impact on groundwater hydrochemistry.The rise of SO42-and NO3-contents in groundwater is related to industrial and agricultural activities.The main controlling factors of SW hydrochemical components included recharge from groundwater,industrial and mining activities,explaining 90.04%of data variance.However,water-rock interaction,agricultural and domestic sewage are responsible for GW quality,accounting for 83.38%.展开更多
Conversion relationships between the river and groundwater in the Yellow River drainage area are studied in this paper based on the geologic and physiognomy conditions and the data of the groundwater regime, isotope, ...Conversion relationships between the river and groundwater in the Yellow River drainage area are studied in this paper based on the geologic and physiognomy conditions and the data of the groundwater regime, isotope, groundwater flow field and field survey. Then eight recharge and discharge modes on the relationships are put forward and the hydraulic characteristics of the modes are analysed, which provides a scientific basis for quantitatively simulating and assessing the conversion relationships, maintenance mechanism of the Yellow River and the regeneration ability of the groundwater in the area.展开更多
基金Project 2007CB209400 supported by the National Basic Research Program of China
文摘Accuracy of time-depth conversion in data processing of transient electromagnetic prospecting always affects the accu- rate positioning of water bodies in coal mines. In order to improve the accuracy of time-depth conversion, we established a mathe- matical model of time-depth conversion for a transient electromagnetic method based on the theory of "double smoke ring effect" of full space transient electromagnetic field transmission. Using a 3-layer as well as a 4-layer geo-electric model for roadway floors, we performed the time-depth conversion of theoretical curves of apparent resistance varying over time. In these curves, the depth corresponding to extreme value points is nearly the same as the depth of a geo-electric model. The position of water body deter- mined by our time-depth conversion method agrees well with the result of borehole drilling, indicating that the established time-depth conversion model can clearly improve the accuracy of spatial positioning of water bodies in coal mines.
基金support from the U.S.Department of the Army and U.S.Army Future Commandsupport from the U.S.Army Research Laboratory Senior Research Fellowship Program。
文摘The oxygen evolution reaction(OER)is the essential module in energy conversion and storage devices such as electrolyzer,rechargeable metal–air batteries and regenerative fuel cells.The adsorption energy scaling relations between the reaction intermediates,however,impose a large intrinsic overpotential and sluggish reaction kinetics on OER catalysts.Developing advanced electrocatalysts with high activity and stability based on non-noble metal materials is still a grand challenge.Central to the rational design of novel and high-efficiency catalysts is the development and understanding of quantitative structure–activity relationships,which correlate the catalytic activities with structural and electronic descriptors.This paper comprehensively reviews the benchmark descriptors for OER electrolysis,aiming to give an in-depth understanding on the origins of the electrocatalytic activity of the OER and further contribute to building the theory of electrocatalysis.Meanwhile,the cutting-edge research frontiers for proposing new OER paradigms and crucial strategies to circumvent the scaling relationship are also summarized.Challenges,opportunities and perspectives are discussed,intending to shed some light on the rational design concepts and advance the development of more efficient catalysts for enhancing OER performance.
基金The National Twelfth Five Major Projects Subject--the deepwater area of northern South China Sea,rich hydrocarbon generation potential sag evaluation under contract No.2011ZX05025-002
文摘There are rich natural gas resources in the northwestern South China Sea deepwater areas, with poor degree of exploration. Because of the unique tectonic, sedimentary background of the region, velocity model building and time-depth conversion have been an important and difficult problem for a long time. Recent researches in this direction have revealed three major problems for deepwater areas, i.e., the way to determine error correction for drilling velocity, the optimization of velocity modeling, and the understanding and analysis of velocity variations in the slope areas. The present contribution proposes technical solutions to the problems:(1) velocity correction version can be established by analyzing the geology, reservoir, water depths and velocity spectrum characteristics;(2) a unified method can be adopted to analyze the velocity variation patterns in drilled pale structural positions;and (3) across-layer velocity is analyzed to establish the velocity model individually for each of the layers. Such a solution is applicable, as shown in an example from the northwestern South China Sea deepwater areas, in which an improved prediction precision is obtained.
基金funded by the Ecological Civilization Demonstration Area Comprehensive Geological Survey Project“Hydrogeological Survey of Chengde Area”(No.DD20200522)the National Natural Science Foundation of China(Nos.41521001 and 42177078)the“111”Program of China(No.B18049).
文摘Luan River is the main water source in Beijing-Tianjin-Hebei region,northern China,where the groundwater system is vulnerable and pollution issue is serious.It is significant for regional groundwater resources protection to identify the hydrogeochemistry evolution and affecting factors along flow direction occurred in the upper reaches,especially the surface water-groundwater(SWGW)conversion relationship.In this study,recharge,conversion and geochemistry evolution of SW and GW were elucidated based on physical-hydrochemical indicators and stable isotopes in 36 GW samples and 20 SW samples,which were collected in July 2019 and July 2020.The factor analysis was further utilized to determine the main factors responsible for regional hydrogeochemical evolution.Results indicate that GW recharged SW in plateau area,and SW and GW recharged each other in typical Alpine valley area.The hydrochemical types are HCO3-Ca·Mg and HCO3-Ca,and the hydrochemical evolution is dominated by weathering of silicate and carbonate minerals.The cation exchange adsorption has minor impact on groundwater hydrochemistry.The rise of SO42-and NO3-contents in groundwater is related to industrial and agricultural activities.The main controlling factors of SW hydrochemical components included recharge from groundwater,industrial and mining activities,explaining 90.04%of data variance.However,water-rock interaction,agricultural and domestic sewage are responsible for GW quality,accounting for 83.38%.
文摘Conversion relationships between the river and groundwater in the Yellow River drainage area are studied in this paper based on the geologic and physiognomy conditions and the data of the groundwater regime, isotope, groundwater flow field and field survey. Then eight recharge and discharge modes on the relationships are put forward and the hydraulic characteristics of the modes are analysed, which provides a scientific basis for quantitatively simulating and assessing the conversion relationships, maintenance mechanism of the Yellow River and the regeneration ability of the groundwater in the area.