期刊文献+
共找到1,207篇文章
< 1 2 61 >
每页显示 20 50 100
Data-driven polarimetric imaging: a review 被引量:2
1
作者 Kui Yang Fei Liu +8 位作者 Shiyang Liang Meng Xiang Pingli Han Jinpeng Liu Xue Dong Yi Wei Bingjian Wang Koichi Shimizu Xiaopeng Shao 《Opto-Electronic Science》 2024年第2期1-44,共44页
This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techni... This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techniques demonstrate their broad applications and interest.Polarization information is increasingly incorporated into convolutional neural networks(CNN)as a supplemental feature of objects to improve performance in computer vision task applications.Polarimetric imaging and deep learning can extract abundant information to address various challenges.Therefore,this article briefly reviews recent developments in data-driven polarimetric imaging,including polarimetric descattering,3D imaging,reflection removal,target detection,and biomedical imaging.Furthermore,we synthetically analyze the input,datasets,and loss functions and list the existing datasets and loss functions with an evaluation of their advantages and disadvantages.We also highlight the significance of data-driven polarimetric imaging in future research and development. 展开更多
关键词 deep learning polarimetric imaging image processing
下载PDF
Study on Quantitative Precipitation Estimation by Polarimetric Radar Using Deep Learning
2
作者 Jiang HUANGFU Zhiqun HU +2 位作者 Jiafeng ZHENG Lirong WANG Yongjie ZHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1147-1160,共14页
Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a mult... Accurate radar quantitative precipitation estimation(QPE)plays an essential role in disaster prevention and mitigation.In this paper,two deep learning-based QPE networks including a single-parameter network and a multi-parameter network are designed.Meanwhile,a self-defined loss function(SLF)is proposed during modeling.The dataset includes Shijiazhuang S-band dual polarimetric radar(CINRAD/SAD)data and rain gauge data within the radar’s 100-km detection range during the flood season of 2021 in North China.Considering that the specific propagation phase shift(KDP)has a roughly linear relationship with the precipitation intensity,KDP is set to 0.5°km^(-1 )as a threshold value to divide all the rain data(AR)into a heavy rain(HR)and light rain(LR)dataset.Subsequently,12 deep learning-based QPE models are trained according to the input radar parameters,the precipitation datasets,and whether an SLF was adopted,respectively.The results suggest that the effects of QPE after distinguishing rainfall intensity are better than those without distinguishing,and the effects of using SLF are better than those that used MSE as a loss function.A Z-R relationship and a ZH-KDP-R synthesis method are compared with deep learning-based QPE.The mean relative errors(MRE)of AR models using SLF are improved by 61.90%,51.21%,and 56.34%compared with the Z-R relational method,and by 38.63%,42.55%,and 47.49%compared with the synthesis method.Finally,the models are further evaluated in three precipitation processes,which manifest that the deep learning-based models have significant advantages over the traditional empirical formula methods. 展开更多
关键词 polarimetric radar quantitative precipitation estimation deep learning single-parameter network multi-parameter network
下载PDF
Persymmetric adaptive polarimetric detection of subspace range-spread targets in compound Gaussian sea clutter
3
作者 XU Shuwen HAO Yifan +1 位作者 WANG Zhuo XUE Jian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期31-42,共12页
This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian mod... This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters. 展开更多
关键词 sea clutter adaptive polarimetric detection compound Gaussian model subspace range-spread target persymmetric structure
下载PDF
A monolithic integrated medium wave Mercury Cadmium Telluride polarimetric focal plane array
4
作者 CHEN Ze-Ji HUANG You-Wen +4 位作者 PU En-Xiang XIAO Hui-Shan XU Shi-Chun QIN Qiang KONG Jin-Cheng 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第4期479-489,共11页
A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure opt... A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure optimization and crosstalk suppression.A monolithic fabrication process with low damage was explored,which was verified to be compatible well with HgCdTe devices.After monolithic integration of MPA,NETD<9.5 mK was still maintained.Furthermore,to figure out the underlying mechanism that dominat⁃ed the extinction ratio(ER),specialized MPA layouts were designed,and the crosstalk was experimentally vali⁃dated as the major source that impacted ER.By expanding opaque regions at pixel edges to 4μm,crosstalk rates from adjacent pixels could be effectively reduced to approximately 2%,and promising ERs ranging from 17.32 to 27.41 were implemented. 展开更多
关键词 infrared physics infrared polarimetric focal plane array monolithic integration Mercury Cadmium Telluride extinction ratio
下载PDF
Microphysical Characteristics of Extreme-Rainfall Convection over the Pearl River Delta Region, South China from Polarimetric Radar Data during the Pre-summer Rainy Season 被引量:1
5
作者 Hao HUANG Kun ZHAO +1 位作者 Johnny CLCHAN Dongming HU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第5期874-886,共13页
During the pre-summer rainy season,heavy rainfall occurs frequently in South China.Based on polarimetric radar observations,the microphysical characteristics and processes of convective features associated with extrem... During the pre-summer rainy season,heavy rainfall occurs frequently in South China.Based on polarimetric radar observations,the microphysical characteristics and processes of convective features associated with extreme rainfall rates(ERCFs)are examined.In the regions with high ERCF occurrence frequency,sub-regional differences are found in the lightning flash rate(LFR)distributions.In the region with higher LFRs,the ERCFs have larger volumes of high reflectivity factor above the freezing level,corresponding to more active riming processes.In addition,these ERCFs are more organized and display larger spatial coverage,which may be related to the stronger low-level wind shear and higher terrain in the region.In the region with lower LFRs,the ERCFs have lower echo tops and lower-echo centroids.However,no clear differences of the most unstable convective available potential energy(MUCAPE)exist in the ERCFs in the regions with different LFR characteristics.Regardless of the LFRs,raindrop collisional coalescence is the main process for the growth of raindrops in the ERCFs.In the ERCFs within the region with lower LFRs,the main mechanism for the rapid increase of liquid water content with decreasing altitude below 4 km is through the warm-rain processes converting cloud drops to raindrops.However,in those with higher LFRs,the liquid water content generally decreases with decreasing altitude. 展开更多
关键词 MICROPHYSICS extreme rainfall rate polarimetric radar lightning flash rate
下载PDF
Application of X-band Polarimetric Phased-array Radars in Quantitative Precipitation Estimation 被引量:1
6
作者 张羽 刘显通 +3 位作者 陈炳洪 冯嘉宝 曾琳 田聪聪 《Journal of Tropical Meteorology》 SCIE 2023年第1期142-152,共11页
The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approach... The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approaches,namely,R(ZH),R(ZH,ZDR) and R(KDP),are developed for horizontal reflectivity,differential reflectivity and specific phase shift rate,respectively.The estimation parameters are determined by fitting the relationships to the observed radar variables using the T-matrix method.The QPE relationships were examined using the data of four heavy precipitation events in southern China.The examination shows that the R(ZH) approach performs better for the precipitation rate less than 5 mm h-1, and R(KDP) is better for the rate higher than 5 mm h-1, while R(ZH,ZDR) has the worst performance.An adaptive approach is developed by taking the advantages of both R(ZH) and R(KDP) approaches to improve the QPE accuracy. 展开更多
关键词 X-band polarimetric phased-array radar raindrop spectrum quantitative precipitation estimation
下载PDF
Shallow sea topography detection using fully Polarimetric Gaofen-3 SAR data based on swell patterns
7
作者 Longyu Huang Chenqing Fan +2 位作者 Junmin Meng Jungang Yang Jie Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第2期150-162,共13页
Compared to single-polarization synthetic aperture radar(SAR)data,fully polarimetric SAR data can provide more detailed information of the sea surface,which is important for applications such as shallow sea topography... Compared to single-polarization synthetic aperture radar(SAR)data,fully polarimetric SAR data can provide more detailed information of the sea surface,which is important for applications such as shallow sea topography detection.The Gaofen-3 satellite provides abundant polarimetric SAR data for ocean research.In this paper,a shallow sea topography detection method was proposed based on fully polarimetric Gaofen-3 SAR data.This method considers swell patterns and only requires SAR data and little prior knowledge of the water depth to detect shallow sea topography.Wave tracking was performed based on preprocessed fully polarimetric SAR data,and the water depth was then calculated considering the wave parameters and the linear dispersion relationships.In this paper,four study areas were selected for experiments,and the experimental results indicated that the polarimetric scattering parameterαhad higher detection accuracy than quad-polarization images.The mean relative errors were 14.52%,10.30%,12.56%,and 12.90%,respectively,in the four study areas.In addition,this paper also analyzed the detection ability of this model for different topographies,and the experiments revealed that the topography could be well recognized when the topography gradient is small,the topography gradient direction is close to the wave propagation direction,and the isobath line is regular. 展开更多
关键词 fully polarimetric SAR shallow sea topography Gaofen-3 swell patterns
下载PDF
A Quality Assurance Procedure and Evaluation of Rainfall Estimates for C-Band Polarimetric Radar 被引量:8
8
作者 HU Zhiqun LIU Liping WANG Lirong 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第1期144-156,共13页
A mobile C-band dual polarimetric weather radar J type (PCDJ), which adopts simultaneous transmission and simultaneous reception (STSR) of horizontally and vertically polarized signals, was first developed in Chin... A mobile C-band dual polarimetric weather radar J type (PCDJ), which adopts simultaneous transmission and simultaneous reception (STSR) of horizontally and vertically polarized signals, was first developed in China in 2008. It was deployed in the radar observation plan in the South China Heavy Rainfall Experiment (SCHeREX) in the summer of 2008 and 2009, as well as in Tropical Western Pacific Ocean Observation Experiments and Research on the Predictability of High Impact Weather Events from 2008 to 2010 in China (TWPOR). Using the observation data collected in these experiments, the radar systematic error and its sources were analyzed in depth. Meanwhile an algorithm that can smooth differential propagation phase (~Dp) for estimating the high-resolution specific differential phase (KDP) was developed. After attenuation correction of reflectivity in horizontal polarization (ZH) and differential reflectivity (ZDR) of PCDJ radar by means of KDP, the data quality was improved significantly. Using quality-controlled radar data, quantitative rainfall estimation was performed, and the resutls were compared with rain-gauge measurements. A synthetic ZH /KDp-based method was analyzed. The results the traditional ZH-based method when the rain suggest that the synthetic method has the advantage over rate is 〉5 mm h^-1. The more intensive the rain rates, the higher accuracy of the estimation. 展开更多
关键词 quality assurance rainfall estimates C-band polarimetric radar
下载PDF
Solution for polarimetric radar cross section measurement and calibration 被引量:7
9
作者 Peikang Huang Chao Ning +2 位作者 Xiaojian Xu Hua Yan Zhaoguo Hou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第2期211-216,共6页
The exact radar cross-section (RCS) measurement is difficult when the scattering of targets is low. Ful polarimetric cali-bration is one technique that offers the potential for improving the accuracy of RCS measurem... The exact radar cross-section (RCS) measurement is difficult when the scattering of targets is low. Ful polarimetric cali-bration is one technique that offers the potential for improving the accuracy of RCS measurements. There are numerous polarimetric calibration algorithms. Some complex expressions in these algo-rithms cannot be easily used in an engineering practice. A radar polarimetric coefficients matrix (RPCM) with a simpler expression is presented for the monostatic radar polarization scattering matrix (PSM) measurement. Using a rhombic dihedral corner reflector and a metal ic sphere, the RPCM can be obtained by solving a set of equations, which can be used to find the true PSM for any target. An example for the PSM of a metal ic dish shows that the proposed method obviously improves the accuracy of cross-polarized RCS measurements. 展开更多
关键词 radar cross section (RCS) polarization scattering ma-trix (PSM) polarimetric calibration polarimetry.
下载PDF
Coastal wind field retrieval from polarimetric synthetic aperture radar 被引量:3
10
作者 ZHANG Yi JIANG Xingwei +2 位作者 SONG Qingtao LIN Mingsen XIE Xuetong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第5期54-61,共8页
Coastal winds are strongly influenced by topology and discontinuity between land and sea surfaces. Wind assessment from remote sensing in such a complex area remains a challenge. Space-borne scatterometer does not pro... Coastal winds are strongly influenced by topology and discontinuity between land and sea surfaces. Wind assessment from remote sensing in such a complex area remains a challenge. Space-borne scatterometer does not provide any information about the coastal wind field, as the coarse spatial resolution hampers the radar backscattering. Synthetic aperture radar (SAR) with a high spatial resolution and all-weather observation abilities has become one of the most important tools for ocean wind retrieval, especially in the coastal area. Conventional methods of wind field retrieval from SAR, however, require wind direction as initial information, such as the wind direction from numerical weather prediction models (NWP), which may not match the time of SAR image acquiring. Fortunately, the polarimetric observations of SAR enable independent wind retrieval from SAR images alone. In order to accurately measure coastal wind fields, this paper proposes a new method of using co-polarization backscattering coefficients from polarimetric SAR observations up to polarimetric correlation backscattering coefficients, which are acquired from the conjugate product of co-polarization backscatter and cross-polarization backscatter. Co-polarization backscattering coefficients and polarimetric correlation backscattering coefficients are obtained form Radarsat-2 single-look complex (SLC) data.The maximum likelihood estimation is used to gain the initial results followed by the coarse spatial filtering and fine spatial filtering. Wind direction accuracy of the final inversion results is 10.67 with a wind speed accuracy of 0.32 m/s. Unlike previous methods, the methods described in this article utilize the SAR data itself to obtain the wind vectors and do not need external wind directional information. High spatial resolution and high accuracy are the most important features of the method described herein since the use of full polarimetric observations contains more information about the space measured.This article is a useful addition to the work of independent SAR wind retrieval. The experimental results herein show that it is feasible to employ the co-polarimetric backscattering coefficients and the polarimetric correlation backscattering coefficients for coastal wind field retrieval. 展开更多
关键词 polarimetric synthetic aperture radar coastalwind field polarimetric correlation backscattering coefficients
下载PDF
Information compression and speckle reduction for multifrequency polarimetric SAR images based on kernel PCA 被引量:4
11
作者 Li Ying Lei Xiaogang Bai Bendu Zhang Yanning 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期493-498,共6页
Multifrequency polarimetric SAR imagery provides a very convenient approach for signal processing and acquisition of radar image. However, the amount of information is scattered in several images, and redundancies exi... Multifrequency polarimetric SAR imagery provides a very convenient approach for signal processing and acquisition of radar image. However, the amount of information is scattered in several images, and redundancies exist between different bands and polarizations. Similar to signal-polarimetric SAR image, multifrequency polarimetric SAR image is corrupted with speckle noise at the same time. A method of information compression and speckle reduction for multifrequency polarimetric SAR imagery is presented based on kernel principal component analysis (KPCA). KPCA is a nonlinear generalization of the linear principal component analysis using the kernel trick. The NASA/JPL polarimetric SAR imagery of P, L, and C bands quadpolarizations is used for illustration. The experimental results show that KPCA has better capability in information compression and speckle reduction as compared with linear PCA. 展开更多
关键词 kernel PCA multifrequency polarimetric SAR imagery information compression despeckling.
下载PDF
Polarimetric whitening filter for POLSAR image based on subspace decomposition 被引量:2
12
作者 Yang Jian Deng Qiming Huangfu Yue Zhang Weijie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第6期1121-1126,共6页
Speckle filtering is an indispensable pre-processing step for applications of polarimetric synthetic aperture radar (POLSAR), such as terrain classification, target detection, etc. As one of the most typical methods... Speckle filtering is an indispensable pre-processing step for applications of polarimetric synthetic aperture radar (POLSAR), such as terrain classification, target detection, etc. As one of the most typical methods, the polarimetric whitening filter (PWF) can be used to produce a minimum-speckle image by combining the complex elements of the scattering matrix, but polarimetric information is lost after the filtering process. A polarimetric filter based on subspaze decomposition which was proposed by Cu et al specializes in retrieving principle scattering characteristics, but the corresponding mean value of an image after filtering is not kept well. A new filter is proposed for improving the disadvantage based on subspace decomposition. Under the constraint that a weighted combination of the polarimetric SAR images equals to the output of the PWF, the Euclidean distance between an unfiltered parameter vector and a signal space vector is minimized so that noises can be reduced. It is also shown that the proposed method is equivalent to the subspace filter in the case of no constraint. Experimental results with the NASA/JPL airborne polarimetric SAR data demonstrate the effectiveness of the proposed method. 展开更多
关键词 speckle filtering synthetic aperture radar polarimetric polarimetric whitening filter subspace decomposition
下载PDF
Targets detecting in the ocean using the cross-polarized channels of fully polarimetric SAR data 被引量:3
13
作者 WANG Yunhua LIU Xiaoyan +1 位作者 LI Huimin ZHANG Yanmin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第1期85-93,共9页
Azimuth ambiguities (ghost targets) discrimination is of great interest with the development of a synthet- ic aperture radar (SAR). And the azimuth ambiguities are often mistaken as actual targets and cause false ... Azimuth ambiguities (ghost targets) discrimination is of great interest with the development of a synthet- ic aperture radar (SAR). And the azimuth ambiguities are often mistaken as actual targets and cause false alarms. For actual targets, HV channel signals acquired by a fully polarimetric SAR are approximately equal to a VH channel in magnitude and phase, i.e., the reciprocity theorem applies, but shifted in phase about ±π for the first-order azimuth ambiguities. Exploiting this physical behavior, the real part of the product of the two cross-polarized channels, i.e. (SHVSVH), hereafter called A12r, is employed as a new parameter for a target detection at sea. Compared with other parameters, the contrast of A12r image between a target and the surrounding sea surface will be obviously increased when A12r image is processed by mean filtering algo- rithm. Here, in order to detect target with constant false-alarm rates (CFARs), an analytical expression for the probability density function (pdf) ofA12r is derived based on the complexWishart-distribution. Because a value of A12r is greater/less than 0 for real target/its azimuth ambiguities, the first-order azimuth ambiguities can be completely removed by this A12r-based CFAR technology. Experiments accomplished over C-band RADARSAT-2 fully polarimetric imageries confirm the validity. 展开更多
关键词 azimuth ambiguities polarimetric SAR CFAR detection algorithm
下载PDF
The polarimetric features of oil spills in full polarimetric synthetic aperture radar images 被引量:3
14
作者 ZHENG Honglei ZHANG Yanmin +2 位作者 WANG Yunhua ZHANG Xi MENG Junmin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第5期105-114,共10页
Compared with single-polarized synthetic aperture radar (SAR) images, full polarimetric SAIl images contain not only geometrical and backward scattering characteristics, but also the polarization features of the sca... Compared with single-polarized synthetic aperture radar (SAR) images, full polarimetric SAIl images contain not only geometrical and backward scattering characteristics, but also the polarization features of the scattering targets. Therefore, the polarimetric SAR has more advantages for oil spill detection on the sea surface. As a crucial step in the oil spill detection, a feature extraction directly influences the accuracy of oil spill discrimination. The polarimetric features of sea oil spills, such as polarimetric entropy, average scatter angle, in the full polarimetric SAR images are analyzed firstly. And a new polarimetric parameter P which reflects the proportion between Bragg and specular scattering signals is proposed. In order to investigate the capability of the polarimetric features for observing an oil spill, systematic comparisons and analyses of the multipolarization features are provided on the basis of the full polarimetric SAR images acquired by SIR-C/X-SAR and Radarsat-2. The experiment results show that in C-band SAR images the oil spills can be detected more easily than in L-band SAR images under low to moderate wind speed conditions. Moreover, it also finds that the new polarimetric parameter is sensitive to the sea surface scattering mechanisms. And the experiment results demonstrate that the new polarimetric parameter and pedestal height perform better than other polarimetric parameters for the oil spill detection in the C-band SAR images. 展开更多
关键词 full polarimetric synthetic aperture radar oil spill detection mulfipolarization features
下载PDF
Dry/wet snow mapping based on the synergistic use of dual polarimetric SAR and multispectral data 被引量:2
15
作者 Divyesh VARADE Onkar DIKSHIT Surendar MANICKAM 《Journal of Mountain Science》 SCIE CSCD 2019年第6期1435-1451,共17页
We propose a multi-sensor multi-spectral and bi-temporal dual-polarimetric Synthetic Aperture Radar(SAR) data integration scheme for dry/wet snow mapping using Sentinel-2 and Sentinel-1 data which are freely available... We propose a multi-sensor multi-spectral and bi-temporal dual-polarimetric Synthetic Aperture Radar(SAR) data integration scheme for dry/wet snow mapping using Sentinel-2 and Sentinel-1 data which are freely available to the research community. The integration is carried out by incorporating the information retrieved from ratio images of the conventional method for wet snow mapping and the multispectral data in two different frameworks. Firstly, a simple differencing scheme is employed for dry/wet snow mapping, where the snow cover area is derived using the Normalized Differenced Snow Index(NDSI). In the second framework, the ratio images are stacked with the multispectral bands and this stack is used for supervised and unsupervised classification using support vector machines for dry/wet snow mapping. We also investigate the potential of a state of the art backscatter model for the identification of dry/wet snow using Sentinel-1 data. The results are validated using a reference map derived from RADARSAT-2 full polarimetric SAR data. A good agreement was observed between the results and the reference data with an overall accuracy greater than 0.78 for the different blending techniques examined. For all the proposed frameworks, the wet snow was better identified. The coefficient of determination between the snow wetness derived from the backscatter model and the reference based on RADARSAT-2 data was observed to be 0.58 with a significantly higher root mean square error of 1.03 % by volume. 展开更多
关键词 SNOW MAPPING Ratio method Normalized Differenced SNOW Index Classification polarimetric synthetic-aperture radar
下载PDF
The Performance of Dual-Frequency Polarimetric Scatterometer in Sea Surface Wind Retrieval 被引量:1
16
作者 LIU Shubo WEI Enbo +2 位作者 JIN Xu LV Ailing DANG Hongxing 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第5期1051-1060,共10页
The wind retrieval performance of HY-2 A scanning scatterometer operating at Ku-band in HH and VV polarizations has been well evaluated in the wind speed range of 0–25 m s^-1.In order to obtain more accurate ocean wi... The wind retrieval performance of HY-2 A scanning scatterometer operating at Ku-band in HH and VV polarizations has been well evaluated in the wind speed range of 0–25 m s^-1.In order to obtain more accurate ocean wind field,a potential extension of dual-frequency(C-band and Ku-band)polarimetric measurements is investigated for both low and very high wind speeds,from 5 to 45 m s^-1.Based on the geophysical model functions of C-band and Ku-band,the simulation results show that the polarimetric measurements of Ku-band can improve the wind vector retrieval over the entire scatterometer swath,especially in nadir area,with the wind direction root-mean-square error(RMSE)less than 12?in the wind speed range of 5–25 m s^-1.Furthermore,the results also show that C-band cross-polarization plays a very important role in improving the wind speed retrieval,with the wind speed retrieval accuracy better than 2 m s^-1 for all wind conditions(0–45 m s^-1).For extreme winds,the C-band HH backscatter coefficients modeled by CMOD5.N(H)and the ocean co-polarization ratio model at large incidence are used to retrieve sea surface wind vector.This result reveals that there is a big decrease of wind direction retrieval RMSE for extreme wind fields,and the retrieved result of C-band HH polarization is nearly the same as that of C-band VV polarization for low-to-high wind speed(5–25 m s^-1).Thus,to improve the wind retrieval for all wind conditions,the dual-frequency polarimetric scatterometer with C-band and Ku-band horizontal polarization in inner beam,and C-band horizontal and Ku-band vertical polarization in outer beam,can be used to measure ocean winds.This study will contribute to the wind retrieval with merged satellites data and the future spaceborne scatterometer. 展开更多
关键词 DUAL-FREQUENCY polarimetric SCATTEROMETER WIND VECTOR RETRIEVAL
下载PDF
Evaluation of Unified Model Microphysics in High-resolution NWP Simulations Using Polarimetric Radar Observations 被引量:1
17
作者 Marcus JOHNSON Youngsun JUNG +4 位作者 Daniel DAWSON Timothy SUPINIE Ming XUE Jongsook PARK Yong-Hee LEE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第7期771-784,共14页
The UK Met Office Unified Model(UM) is employed by many weather forecasting agencies around the globe. This model is designed to run across spatial and time scales and known to produce skillful predictions for large... The UK Met Office Unified Model(UM) is employed by many weather forecasting agencies around the globe. This model is designed to run across spatial and time scales and known to produce skillful predictions for large-scale weather systems. However, the model has only recently begun running operationally at horizontal grid spacings of ~1.5 km [e.g.,at the UK Met Office and the Korea Meteorological Administration(KMA)]. As its microphysics scheme was originally designed and tuned for large-scale precipitation systems, we investigate the performance of UM microphysics to determine potential inherent biases or weaknesses. Two rainfall cases from the KMA forecasting system are considered in this study: a Changma(quasi-stationary) front, and Typhoon Sanba(2012). The UM output is compared to polarimetric radar observations in terms of simulated polarimetric radar variables. Results show that the UM generally underpredicts median reflectivity in stratiform rain, producing high reflectivity cores and precipitation gaps between them. This is partially due to the diagnostic rain intercept parameter formulation used in the one-moment microphysics scheme. Model drop size is generally both underand overpredicted compared to observations. UM frozen hydrometeors favor generic ice(crystals and snow) rather than graupel, which is reasonable for Changma and typhoon cases. The model performed best with the typhoon case in terms of simulated precipitation coverage. 展开更多
关键词 Unified Model MICROPHYSICS polarimetric radar radar simulator numerical weather prediction
下载PDF
Detection of weak ship signals with the optimization of polarimetric contrast enhancement 被引量:6
18
作者 李海艳 He Yijun 《High Technology Letters》 EI CAS 2008年第1期85-91,共7页
An optimization of polarimetric contrast enhancement method is proposed to detect ships with lowship-to-clutter power ratio.The received power is calculated with Kennaugh matrix and an iterative algo-rithm is adopted ... An optimization of polarimetric contrast enhancement method is proposed to detect ships with lowship-to-clutter power ratio.The received power is calculated with Kennaugh matrix and an iterative algo-rithm is adopted to get the optimal polarimetric states.The optimization method depresses the power of o-cean clutter and increases the power of ship signal.With the double effects,the contrast of ship to oceanis dramatically increased.Thus small ship or weak signals of low ship-to-ocean power ratio can easily bedetected.Ship signals can be distinguished from speckle noise using the different variation trend after op-timization,and thus the threshold problem can be avoided.Moreover,the analyses of different ship'sKennaugh matrices give two implications.One is that the results are affected little by choosing differentKennaugh matrices of ships with strong intensity from Synthetic Aperture Radar(SAR)images.The otheris that ship's Kennaugh matrix chosen from real SAR images is more favorable than that of ideal scatter-ing.Finally,the optimization results are confirmed by polarimetric scattering angle and co-polarizationphase difference. 展开更多
关键词 polarimetric SAR ship detection OPTIMIZATION ocean remote sensing
下载PDF
Precipitation Microphysical Processes in the Inner Rainband of Tropical Cyclone Kajiki (2019) over the South China Sea Revealed by Polarimetric Radar 被引量:5
19
作者 Hepeng ZHENG Yun ZHANG +2 位作者 Lifeng ZHANG Hengchi LEI Zuhang WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第1期65-80,共16页
Polarimetric radar and 2D video disdrometer observations provide new insights into the precipitation microphysical processes and characteristics in the inner rainband of tropical cyclone(TC)Kajiki(2019)in the South Ch... Polarimetric radar and 2D video disdrometer observations provide new insights into the precipitation microphysical processes and characteristics in the inner rainband of tropical cyclone(TC)Kajiki(2019)in the South China Sea for the first time.The precipitation of Kajiki is dominated by high concentrations and small(<3 mm)raindrops,which contribute more than 98%to the total precipitation.The average mass-weighted mean diameter and logarithmic normalized intercept are 1.49 mm and 4.47,respectively,indicating a larger mean diameter and a lower concentration compared to the TCs making landfall in eastern China.The ice processes of the inner rainband are dramatically different among different stages.The riming process is dominant during the mature stage,while during the decay stage the aggregation process is dominant.The vertical profiles of the polarimetric radar variables together with ice and liquid water contents in the convective region indicate that the formation of precipitation is dominated by warm-rain processes.Large raindrops collect cloud droplets and other raindrops,causing reflectivity,differential reflectivity,and specific differential phase to increase with decreasing height.That is,accretion and coalescence play a critical role in the formation of heavy rainfall.The melting of different particles generated by the ice process has a great influence on the initial raindrop size distribution(DSD)to further affect the warm-rain processes.The DSD above heavy rain with the effect of graupel has a wider spectral width than the region without the effect of graupel. 展开更多
关键词 South China Sea cloud precipitation microphysics polarimetric radar tropical cyclone rainband
下载PDF
Novel polarimetric SAR speckle filtering algorithm based on mean shift 被引量:1
20
作者 Bo Pang Shiqi Xing +1 位作者 Yongzhen Li Xuesong Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期222-233,共12页
For better interpretation of synthetic aperture radar(SAR) images,the speckle filtering is an important issue.In the area of speckle filtering,the proper averaging of samples with similar scattering characteristics ... For better interpretation of synthetic aperture radar(SAR) images,the speckle filtering is an important issue.In the area of speckle filtering,the proper averaging of samples with similar scattering characteristics is of great importance.However,existing filtering algorithms are either lack of a similarity judgment of scattering characteristics or using only intensity information for similarity judgment.A novel polarimetric SAR(PolSAR) speckle filtering algorithm based on the mean shift theory is proposed.As polarimetric covariance matrices or coherency matrices form Riemannian manifold,the pixels with similar scattering characteristics gather closely and those with different scattering characteristics separate in this hyperspace.By using the range-spatial joint mean shift theory in Riemannian manifold,the pixels chosen for averaging are ensured to be close not only in scattering characteristics but also in the spatial domain.German Aerospace Center(DLR) L-Band Experiment SAR(E-SAR) data and East China Research Institute of Electronic Engineering(ECRIEE) PolSAR data are used to demonstrate the efficiency of the proposed algorithm.The filtering results of two commonly used speckle filtering algorithms,refined Lee filtering algorithm and intensity driven adaptive neighborhood(IDAN) filtering algorithm,are also presented for the comparison purpose.Experiment results show that the proposed speckle filtering algorithm achieves a good performance in terms of speckle filtering,edge protection as well as polarimetric characteristics preservation. 展开更多
关键词 SPECKLE FILTERING mean shift polarimetric synthetic aperture radar(PolSAR).
下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部