Seawater intrusion caused by groundwater over-exploitation from coastal aquifers poses a severe problem in many regions. Formulation of proper pumping strategy using a simulation model can assure sustainable supply of...Seawater intrusion caused by groundwater over-exploitation from coastal aquifers poses a severe problem in many regions. Formulation of proper pumping strategy using a simulation model can assure sustainable supply of fresh water from the coastal aquifers. The focus of the present study is on the development of a numerical model based on Meshfree (MFree) method to study the seawater intrusion problem. For the simulation of seawater intrusion problem, widely used models are based on Finite Difference (FDM) and Finite Element (FEM) Methods, which demand well defined grids/meshes and considerable pre-processing efforts. Here, MFree Point Collocation Method (PCM) based on the Radial Basis Function (RBF) is proposed for the simulation. Diffusive interface approach with density-dependent dispersion and solution of flow and solute transport is adopted. These equations are solved using PCM with appropriate boundary conditions. The developed model has been verified with Henry’s problem, and found to be satisfactory. Further the model has been applied to another established problem and an attempt is made to examine the influence of important system parameters including pumping and recharge on the seawater intrusion. The PCM based MFree model is found computationally efficient as preprocessing is avoided when compared to other numerical methods.展开更多
The aim of this paper is to obtain the numerical solutions of generalized space-fractional Burgers' equations with initial-boundary conditions by the Jacobi spectral collocation method using the shifted Jacobi-Gau...The aim of this paper is to obtain the numerical solutions of generalized space-fractional Burgers' equations with initial-boundary conditions by the Jacobi spectral collocation method using the shifted Jacobi-Gauss-Lobatto collocation points. By means of the simplifed Jacobi operational matrix, we produce the diferentiation matrix and transfer the space-fractional Burgers' equation into a system of ordinary diferential equations that can be solved by the fourth-order Runge-Kutta method. The numerical simulations indicate that the Jacobi spectral collocation method is highly accurate and fast convergent for the generalized space-fractional Burgers' equation.展开更多
A meshfree method based on reproducing kernel approximation and point collocation is presented for analysis of metal ring compression. The point collocation method is a true meshfree method without the employment of a...A meshfree method based on reproducing kernel approximation and point collocation is presented for analysis of metal ring compression. The point collocation method is a true meshfree method without the employment of a background mesh. It is shown that, in a point collocation approach, the remesh problem because of the mesh distortion in FEM (finite element method) and the low efficiency in Galerkin-based meshfree method are avoided. The corrected kernel functions are introduced to the stabilization of free-surface boundary conditions. The solution of symmetric ring compression problem is compared with a conventional finite element solution, and reasonable results have been obtained.展开更多
In this paper, Radial point collocation method (RPCM), a kind of meshfree method, is applied to solve convectiondiffusion problem. The main feature of this approach is to use the interpolation schemes in local suppo...In this paper, Radial point collocation method (RPCM), a kind of meshfree method, is applied to solve convectiondiffusion problem. The main feature of this approach is to use the interpolation schemes in local supported domains based on radial basis functions. As a result, this method is local and hence the system matrix is banded which is very attractive for practical engineering problems. In the numerical examination, RPCM is applied to solve non-linear convection-diffusion 2D Burgers equations. The results obtained by RPCM demonstrate the accuracy and efficiency of the proposed method for solving transient fluid dynamic problems. A fictitious point scheme is adopted to improve the solution accuracy while Neumann boundary conditions exist. The meshfree feature of the nresent method is verv attractive in solving comnutational fluid nroblems.展开更多
This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend...This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.展开更多
In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, w...In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, we have proved that the solution of the quadratic spline collocation for the nonlinear problem can be written as a series expansions in integer powers of the mesh-size parameter. This gives us a construction method for using Richardson’s extrapolation. When we have a set of approximate solution with different mesh-size parameter a solution with high accuracy can he obtained by Richardson’s extrapolation.展开更多
Combining the strengths of Lagrangian and Eulerian descriptions,the coupled Lagrangian–Eulerian methods play an increasingly important role in various subjects.This work reviews their development and application in o...Combining the strengths of Lagrangian and Eulerian descriptions,the coupled Lagrangian–Eulerian methods play an increasingly important role in various subjects.This work reviews their development and application in ocean engineering.Initially,we briefly outline the advantages and disadvantages of the Lagrangian and Eulerian descriptions and the main characteristics of the coupled Lagrangian–Eulerian approach.Then,following the developmental trajectory of these methods,the fundamental formulations and the frameworks of various approaches,including the arbitrary Lagrangian–Eulerian finite element method,the particle-in-cell method,the material point method,and the recently developed Lagrangian–Eulerian stabilized collocation method,are detailedly reviewed.In addition,the article reviews the research progress of these methods with applications in ocean hydrodynamics,focusing on free surface flows,numerical wave generation,wave overturning and breaking,interactions between waves and coastal structures,fluid–rigid body interactions,fluid–elastic body interactions,multiphase flow problems and visualization of ocean flows,etc.Furthermore,the latest research advancements in the numerical stability,accuracy,efficiency,and consistency of the coupled Lagrangian–Eulerian particle methods are reviewed;these advancements enable efficient and highly accurate simulation of complicated multiphysics problems in ocean and coastal engineering.By building on these works,the current challenges and future directions of the hybrid Lagrangian–Eulerian particle methods are summarized.展开更多
In this paper, we propose to replace the Chebyshev series used in pseudospectral methods with the equivalent Chebyshev economized power series that can be evaluated more rapidly. We keep the rest of the implementation...In this paper, we propose to replace the Chebyshev series used in pseudospectral methods with the equivalent Chebyshev economized power series that can be evaluated more rapidly. We keep the rest of the implementation the same as the spectral method so that there is no new mathematical principle involved. We show by numerical examples that the new approach works well and there is indeed no significant loss of solution accuracy. The advantages of using power series also include simplicity in its formulation and implementation such that it could be used for complex systems. We investigate the important issue of collocation point selection. Our numerical results indicate that there is a clear accuracy advantage of using collocation points corresponding to roots of the Chebyshev polynomial.展开更多
This paper presents a hybrid Trefftz (HT) boundary element method (BEM) by using two indirect techniques for mode III fracture problems. Two Trefftz complete functions of Laplace equation for normal elements and a...This paper presents a hybrid Trefftz (HT) boundary element method (BEM) by using two indirect techniques for mode III fracture problems. Two Trefftz complete functions of Laplace equation for normal elements and a special purpose Trefftz function for crack elements are proposed in deriving the Galerkin and the collocation techniques of HT BEM. Then two auxiliary functions are introduced to improve the accuracy of the displacement field near the crack tips, and stress intensity factor (SIF) is evaluated by local crack elements as well. Furthermore, numerical examples are given, including comparisons of the present results with the analytical solution and the other numerical methods, to demonstrate the efficiency for different boundary conditions and to illustrate the convergence influenced by several parameters. It shows that HT BEM by usingthe Galerkin and the collocation techniques is effective for mode III fracture problems.展开更多
Isogeometric analysis(IGA)is introduced to establish the direct link between computer-aided design and analysis.It is commonly implemented by Galerkin formulations(isogeometric Galerkin,IGA-G)through the use of nonuni...Isogeometric analysis(IGA)is introduced to establish the direct link between computer-aided design and analysis.It is commonly implemented by Galerkin formulations(isogeometric Galerkin,IGA-G)through the use of nonuniform rational B-splines(NURBS)basis functions for geometric design and analysis.Another promising approach,isogeometric collocation(IGA-C),working directly with the strong form of the partial differential equation(PDE)over the physical domain defined by NURBS geometry,calculates the derivatives of the numerical solution at the chosen collocation points.In a typical IGA,the knot vector of the NURBS numerical solution is only determined by the physical domain.A new perspective on the IGAmethod is proposed in this study to improve the accuracy and convergence of the solution.Solving the PDE with IGA can be regarded as fitting the load function defined on the NURBS geometry(right-hand side)with derivatives of the NURBS numerical solution(left-hand side).Moreover,the design of the knot vector has a close relationship to theNURBS functions to be fitted in the area of data fitting in geometric design.Therefore,the detected feature points of the load function are integrated into the initial knot vector of the physical domainto construct thenewknot vector of thenumerical solution.Then,they are connected seamlessly with the IGA-C framework for its great potential combining the accuracy and smoothness merits with the computational efficiency,which we call isogeometric collocation by fitting load function(IGACL).In numerical experiments,we implement our method to solve 1D,2D,and 3D PDEs and demonstrate the improvement in accuracy by comparing it with the standard IGA-C method.We also verify the superiority in the accuracy of our knot selection scheme when employed in the IGA-G method,which we call isogeometric Galerkin by fitting load function(IGA-GL).展开更多
This paper presents an adaptive collocation method with weighted extended PHT-splines.The authors modify the classification rules for basis functions based on the relation between the basis vertices and the computatio...This paper presents an adaptive collocation method with weighted extended PHT-splines.The authors modify the classification rules for basis functions based on the relation between the basis vertices and the computational domain. The Gaussian points are chosen to be collocation points since PHT-splines are C1 continuous. The authors also provide relocation techniques to resolve the mismatch problem between the number of basis functions and the number of interpolation conditions. Compared to the traditional Greville collocation method, the new approach has improved accuracy with fewer oscillations. Several numerical examples are also provided to test our the proposed approach.展开更多
In this paper, an exponential method is presented for the approximate solutions of the HIV infection model of CD4+T. The method is based on exponential polynomi- als and collocation points. This model problem corresp...In this paper, an exponential method is presented for the approximate solutions of the HIV infection model of CD4+T. The method is based on exponential polynomi- als and collocation points. This model problem corresponds to a system of nonlinear ordinary differential equations. Matrix relations are constructed for the exponential functions. By aid of these matrix relations and the collocation points, the proposed technique transforms the model problem into a system of nonlinear algebraic equations. By solving the system of the algebraic equations, the unknown coefficients are com- puted and thus the approximate solutions are obtained. The applications of the method for the considered problem are given and the comparisons are made with the other methods.展开更多
文摘Seawater intrusion caused by groundwater over-exploitation from coastal aquifers poses a severe problem in many regions. Formulation of proper pumping strategy using a simulation model can assure sustainable supply of fresh water from the coastal aquifers. The focus of the present study is on the development of a numerical model based on Meshfree (MFree) method to study the seawater intrusion problem. For the simulation of seawater intrusion problem, widely used models are based on Finite Difference (FDM) and Finite Element (FEM) Methods, which demand well defined grids/meshes and considerable pre-processing efforts. Here, MFree Point Collocation Method (PCM) based on the Radial Basis Function (RBF) is proposed for the simulation. Diffusive interface approach with density-dependent dispersion and solution of flow and solute transport is adopted. These equations are solved using PCM with appropriate boundary conditions. The developed model has been verified with Henry’s problem, and found to be satisfactory. Further the model has been applied to another established problem and an attempt is made to examine the influence of important system parameters including pumping and recharge on the seawater intrusion. The PCM based MFree model is found computationally efficient as preprocessing is avoided when compared to other numerical methods.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.11701358,11774218)。
文摘The aim of this paper is to obtain the numerical solutions of generalized space-fractional Burgers' equations with initial-boundary conditions by the Jacobi spectral collocation method using the shifted Jacobi-Gauss-Lobatto collocation points. By means of the simplifed Jacobi operational matrix, we produce the diferentiation matrix and transfer the space-fractional Burgers' equation into a system of ordinary diferential equations that can be solved by the fourth-order Runge-Kutta method. The numerical simulations indicate that the Jacobi spectral collocation method is highly accurate and fast convergent for the generalized space-fractional Burgers' equation.
基金the National Natural Science Foundation of China (No. 50275059).
文摘A meshfree method based on reproducing kernel approximation and point collocation is presented for analysis of metal ring compression. The point collocation method is a true meshfree method without the employment of a background mesh. It is shown that, in a point collocation approach, the remesh problem because of the mesh distortion in FEM (finite element method) and the low efficiency in Galerkin-based meshfree method are avoided. The corrected kernel functions are introduced to the stabilization of free-surface boundary conditions. The solution of symmetric ring compression problem is compared with a conventional finite element solution, and reasonable results have been obtained.
基金Project (No. 10572128) supported by the National Natural ScienceFoundation of China
文摘In this paper, Radial point collocation method (RPCM), a kind of meshfree method, is applied to solve convectiondiffusion problem. The main feature of this approach is to use the interpolation schemes in local supported domains based on radial basis functions. As a result, this method is local and hence the system matrix is banded which is very attractive for practical engineering problems. In the numerical examination, RPCM is applied to solve non-linear convection-diffusion 2D Burgers equations. The results obtained by RPCM demonstrate the accuracy and efficiency of the proposed method for solving transient fluid dynamic problems. A fictitious point scheme is adopted to improve the solution accuracy while Neumann boundary conditions exist. The meshfree feature of the nresent method is verv attractive in solving comnutational fluid nroblems.
基金supported by a grant from the National Science and Technology Council of the Republic of China(Grant Number:MOST 112-2221-E-006-048-MY2).
文摘This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.
基金The Project was supported by National Natural Science Foundation of China
文摘In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, we have proved that the solution of the quadratic spline collocation for the nonlinear problem can be written as a series expansions in integer powers of the mesh-size parameter. This gives us a construction method for using Richardson’s extrapolation. When we have a set of approximate solution with different mesh-size parameter a solution with high accuracy can he obtained by Richardson’s extrapolation.
基金the support received from the Laoshan Laboratory(No.LSKJ202202000)the National Natural Science Foundation of China(Grant Nos.12032002,U22A20256,and 12302253)the Natural Science Foundation of Beijing(No.L212023)for partially funding this work.
文摘Combining the strengths of Lagrangian and Eulerian descriptions,the coupled Lagrangian–Eulerian methods play an increasingly important role in various subjects.This work reviews their development and application in ocean engineering.Initially,we briefly outline the advantages and disadvantages of the Lagrangian and Eulerian descriptions and the main characteristics of the coupled Lagrangian–Eulerian approach.Then,following the developmental trajectory of these methods,the fundamental formulations and the frameworks of various approaches,including the arbitrary Lagrangian–Eulerian finite element method,the particle-in-cell method,the material point method,and the recently developed Lagrangian–Eulerian stabilized collocation method,are detailedly reviewed.In addition,the article reviews the research progress of these methods with applications in ocean hydrodynamics,focusing on free surface flows,numerical wave generation,wave overturning and breaking,interactions between waves and coastal structures,fluid–rigid body interactions,fluid–elastic body interactions,multiphase flow problems and visualization of ocean flows,etc.Furthermore,the latest research advancements in the numerical stability,accuracy,efficiency,and consistency of the coupled Lagrangian–Eulerian particle methods are reviewed;these advancements enable efficient and highly accurate simulation of complicated multiphysics problems in ocean and coastal engineering.By building on these works,the current challenges and future directions of the hybrid Lagrangian–Eulerian particle methods are summarized.
文摘In this paper, we propose to replace the Chebyshev series used in pseudospectral methods with the equivalent Chebyshev economized power series that can be evaluated more rapidly. We keep the rest of the implementation the same as the spectral method so that there is no new mathematical principle involved. We show by numerical examples that the new approach works well and there is indeed no significant loss of solution accuracy. The advantages of using power series also include simplicity in its formulation and implementation such that it could be used for complex systems. We investigate the important issue of collocation point selection. Our numerical results indicate that there is a clear accuracy advantage of using collocation points corresponding to roots of the Chebyshev polynomial.
基金the National Natural Science Foundation of China(10472082).
文摘This paper presents a hybrid Trefftz (HT) boundary element method (BEM) by using two indirect techniques for mode III fracture problems. Two Trefftz complete functions of Laplace equation for normal elements and a special purpose Trefftz function for crack elements are proposed in deriving the Galerkin and the collocation techniques of HT BEM. Then two auxiliary functions are introduced to improve the accuracy of the displacement field near the crack tips, and stress intensity factor (SIF) is evaluated by local crack elements as well. Furthermore, numerical examples are given, including comparisons of the present results with the analytical solution and the other numerical methods, to demonstrate the efficiency for different boundary conditions and to illustrate the convergence influenced by several parameters. It shows that HT BEM by usingthe Galerkin and the collocation techniques is effective for mode III fracture problems.
基金supported by the National Natural Science Foundation of China under Grant Nos.61872316,62272406,61932018the National Key R&D Plan of China under Grant No.2020YFB1708900.
文摘Isogeometric analysis(IGA)is introduced to establish the direct link between computer-aided design and analysis.It is commonly implemented by Galerkin formulations(isogeometric Galerkin,IGA-G)through the use of nonuniform rational B-splines(NURBS)basis functions for geometric design and analysis.Another promising approach,isogeometric collocation(IGA-C),working directly with the strong form of the partial differential equation(PDE)over the physical domain defined by NURBS geometry,calculates the derivatives of the numerical solution at the chosen collocation points.In a typical IGA,the knot vector of the NURBS numerical solution is only determined by the physical domain.A new perspective on the IGAmethod is proposed in this study to improve the accuracy and convergence of the solution.Solving the PDE with IGA can be regarded as fitting the load function defined on the NURBS geometry(right-hand side)with derivatives of the NURBS numerical solution(left-hand side).Moreover,the design of the knot vector has a close relationship to theNURBS functions to be fitted in the area of data fitting in geometric design.Therefore,the detected feature points of the load function are integrated into the initial knot vector of the physical domainto construct thenewknot vector of thenumerical solution.Then,they are connected seamlessly with the IGA-C framework for its great potential combining the accuracy and smoothness merits with the computational efficiency,which we call isogeometric collocation by fitting load function(IGACL).In numerical experiments,we implement our method to solve 1D,2D,and 3D PDEs and demonstrate the improvement in accuracy by comparing it with the standard IGA-C method.We also verify the superiority in the accuracy of our knot selection scheme when employed in the IGA-G method,which we call isogeometric Galerkin by fitting load function(IGA-GL).
基金supported by the National Natural Science Fondation of China under Grant Nos.11601114,11771420,61772167。
文摘This paper presents an adaptive collocation method with weighted extended PHT-splines.The authors modify the classification rules for basis functions based on the relation between the basis vertices and the computational domain. The Gaussian points are chosen to be collocation points since PHT-splines are C1 continuous. The authors also provide relocation techniques to resolve the mismatch problem between the number of basis functions and the number of interpolation conditions. Compared to the traditional Greville collocation method, the new approach has improved accuracy with fewer oscillations. Several numerical examples are also provided to test our the proposed approach.
文摘In this paper, an exponential method is presented for the approximate solutions of the HIV infection model of CD4+T. The method is based on exponential polynomi- als and collocation points. This model problem corresponds to a system of nonlinear ordinary differential equations. Matrix relations are constructed for the exponential functions. By aid of these matrix relations and the collocation points, the proposed technique transforms the model problem into a system of nonlinear algebraic equations. By solving the system of the algebraic equations, the unknown coefficients are com- puted and thus the approximate solutions are obtained. The applications of the method for the considered problem are given and the comparisons are made with the other methods.