期刊文献+
共找到133篇文章
< 1 2 7 >
每页显示 20 50 100
An adaptive finite-difference method for seismic traveltime modeling based on 3D eikonal equation
1
作者 Bao-Ping Qiao Qing-Qing Li +2 位作者 Wei-Guang He Dan Zhao Qu-Bo Wu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期195-205,共11页
3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic m... 3D eikonal equation is a partial differential equation for the calculation of first-arrival traveltimes and has been widely applied in many scopes such as ray tracing,source localization,reflection migration,seismic monitoring and tomographic imaging.In recent years,many advanced methods have been developed to solve the 3D eikonal equation in heterogeneous media.However,there are still challenges for the stable and accurate calculation of first-arrival traveltimes in 3D strongly inhomogeneous media.In this paper,we propose an adaptive finite-difference(AFD)method to numerically solve the 3D eikonal equation.The novel method makes full use of the advantages of different local operators characterizing different seismic wave types to calculate factors and traveltimes,and then the most accurate factor and traveltime are adaptively selected for the convergent updating based on the Fermat principle.Combined with global fast sweeping describing seismic waves propagating along eight directions in 3D media,our novel method can achieve the robust calculation of first-arrival traveltimes with high precision at grid points either near source point or far away from source point even in a velocity model with large and sharp contrasts.Several numerical examples show the good performance of the AFD method,which will be beneficial to many scientific applications. 展开更多
关键词 3D eikonal equation Accurate traveltimes Global fast sweeping 3D inhomogeneous media Adaptive finite-difference method
下载PDF
Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method 被引量:1
2
作者 马秀荣 徐林 +1 位作者 常世元 张双根 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第4期190-197,共8页
This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the... This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference timedomain method.We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm^(3+):YAG when the attenuation of the input pulse is taken into account.Meanwhile,we find the expression 0.09 exp(α'L),which is previously employed to describe the relationship between echo's efficiency and thickness,should be modified as 1.3 · 0.09 exp(2.4 ·α'L) with the propagation of echo considered. 展开更多
关键词 three-pulse photon echo Maxwell-Bloch equations finite-difference time-domain method
下载PDF
Uniform stable conformal convolutional perfectly matched layer for enlarged cell technique conformal finite-difference time-domain method 被引量:1
3
作者 王玥 王建国 陈再高 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期128-136,共9页
Based on conformal construction of physical model in a three-dimensional Cartesian grid,an integral-based conformal convolutional perfectly matched layer(CPML) is given for solving the truncation problem of the open... Based on conformal construction of physical model in a three-dimensional Cartesian grid,an integral-based conformal convolutional perfectly matched layer(CPML) is given for solving the truncation problem of the open port when the enlarged cell technique conformal finite-difference time-domain(ECT-CFDTD) method is used to simulate the wave propagation inside a perfect electric conductor(PEC) waveguide.The algorithm has the same numerical stability as the ECT-CFDTD method.For the long-time propagation problems of an evanescent wave in a waveguide,several numerical simulations are performed to analyze the reflection error by sweeping the constitutive parameters of the integral-based conformal CPML.Our numerical results show that the integral-based conformal CPML can be used to efficiently truncate the open port of the waveguide. 展开更多
关键词 enlarged cell technique CONFORMAL finite-difference time-domain convolutional perfectlymatched layer
下载PDF
Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method 被引量:1
4
作者 窦虎 马红梅 孙玉宝 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期117-121,共5页
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ... The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change. 展开更多
关键词 finite-difference time-domain method blue phase liquid crystal display in-plane switching convergence effect
下载PDF
USE OF FINITE-DIFFERENCE TIME-DOMAIN METHOD FOR CALCULATING EM ABSORPTION IN LOSSY DIELECTRIC SCATTERER
5
作者 王长清 陈金元 《Journal of Electronics(China)》 1991年第4期357-362,共6页
The problem for calculating EM energy absorption by lossy dielectric scatterer ir-radiated by plane wave are discussed.The factors affecting the accuracy of computation arediscussed.The calculated results of EM energy... The problem for calculating EM energy absorption by lossy dielectric scatterer ir-radiated by plane wave are discussed.The factors affecting the accuracy of computation arediscussed.The calculated results of EM energy absorption and its distribution in homogeneousand layered homogenous lossy dielectric spheres are presented,and a comparison of these resultswith analytical solution is given.The calculation is carried out for dielectric cylinder on conduct-ing ground as well,and the results are compared with the image theory.All the computationsshew that the finite-difference time-domain method can give satisfactory results. 展开更多
关键词 LOSSY DIELECTRIC SCATTERER Electromagnetic ABSORPTION finite-difference timedomain method
下载PDF
An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme
6
作者 魏晓琨 邵维 +2 位作者 石胜兵 张勇 王秉中 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期74-82,共9页
An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D tra... An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method. 展开更多
关键词 conformal scheme locally one-dimensional(LOD) finite-difference time-domain(FDTD) method numerical dispersion unconditional stab
下载PDF
Finite-difference time-domain modeling of curved material interfaces by using boundary condition equations method
7
作者 卢佳 周怀春 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期198-206,共9页
To deal with the staircase approximation problem in the standard finite-difference time-domain(FDTD) simulation,the two-dimensional boundary condition equations(BCE) method is proposed in this paper.In the BCE met... To deal with the staircase approximation problem in the standard finite-difference time-domain(FDTD) simulation,the two-dimensional boundary condition equations(BCE) method is proposed in this paper.In the BCE method,the standard FDTD algorithm can be used as usual,and the curved surface is treated by adding the boundary condition equations.Thus,while maintaining the simplicity and computational efficiency of the standard FDTD algorithm,the BCE method can solve the staircase approximation problem.The BCE method is validated by analyzing near field and far field scattering properties of the PEC and dielectric cylinders.The results show that the BCE method can maintain a second-order accuracy by eliminating the staircase approximation errors.Moreover,the results of the BCE method show good accuracy for cylinder scattering cases with different permittivities. 展开更多
关键词 finite-difference time-domain curved surface staircase error boundary condition equation
下载PDF
A wavelet finite-difference method for numerical simulation of wave propagation in fluid-saturated porous media 被引量:1
8
作者 贺英 韩波 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第11期1495-1504,共10页
In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibi... In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media. 展开更多
关键词 porous media wavelet multiresolution method numerical simulation fluid-saturated finite-difference method
下载PDF
Dynamic Coupling Analysis of Semisubmersible Platform Float-over Method for Docking Case
9
作者 DING Hongyan QIN Licheng +2 位作者 ZHANG Puyang SONG Zhengrong XIE Weiwei 《Journal of Ocean University of China》 CAS CSCD 2024年第2期345-357,共13页
In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible plat... In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible platform was performed.Relevant hydrodynamic parameters were obtained using the retardation function method of three-dimensional frequency-domain potential flow theory.The results of the hydrodynamic analysis were highly consistent with the test findings,verifying the accuracy of the multifloating hydrodynamic coupling analysis,and key hydrodynamic parameters were solved for different water depths and the coupling effect.According to the obtained results,the hydrodynamic influence was the largest in shallow waters when the coupling effect was considered.Furthermore,the coupled motion equation combined with viscous damping,fender system,and mooring system was established,and the hydrodynamics,floating body motion,and dynamic response of the fender system were analyzed.Motion analysis revealed good agreement among the surge,sway,and yaw motions of the two floating bodies.However,when the wave period reached 10 s,the motion of the two floating bodies showed severe shock,and a relative motion was also observed.Therefore,excessive constraints should be added between the two floating bodies during construction to ensure construction safety.The numerical analysis and model test results of the semisubmersible platform and HYSY 229 barge at a water depth of 42 m and sea conditions of 0°,45°,and 90° were in good agreement,and the error was less than 5%.The maximum movement of the HYSY 229 barge reached 2.61 m in the sway direction,whereas that of the semisubmersible platform was 2.11 m.During construction,excessive constraints should be added between the two floating bodies to limit their relative movement and ensure construction safety. 展开更多
关键词 float-over method semisubmersible platform coupling hydrodynamic fender system time-domain analysis
下载PDF
Time-Domain Analysis of Body Freedom Flutter Based on 6DOF Equation
10
作者 Zhehan Ji Tongqing Guo +2 位作者 Di Zhou Zhiliang Lu Binbin Lyu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期489-508,共20页
The reduced weight and improved efficiency of modern aeronautical structures result in a decreasing separation of frequency ranges of rigid and elastic modes.Particularly,a high-aspect-ratio flexible flying wing is pr... The reduced weight and improved efficiency of modern aeronautical structures result in a decreasing separation of frequency ranges of rigid and elastic modes.Particularly,a high-aspect-ratio flexible flying wing is prone to body freedomflutter(BFF),which is a result of coupling of the rigid body short-periodmodewith 1st wing bendingmode.Accurate prediction of the BFF characteristics is helpful to reflect the attitude changes of the vehicle intuitively and design the active flutter suppression control law.Instead of using the rigid body mode,this work simulates the rigid bodymotion of the model by using the six-degree-of-freedom(6DOF)equation.A dynamicmesh generation strategy particularly suitable for BFF simulation of free flying aircraft is developed.An accurate Computational Fluid Dynamics/Computational Structural Dynamics/six-degree-of-freedom equation(CFD/CSD/6DOF)-based BFF prediction method is proposed.Firstly,the time-domain CFD/CSD method is used to calculate the static equilibrium state of the model.Based on this state,the CFD/CSD/6DOF equation is solved in time domain to evaluate the structural response of themodel.Then combinedwith the variable stiffnessmethod,the critical flutter point of the model is obtained.This method is applied to the BFF calculation of a flyingwing model.The calculation results of the BFF characteristics of the model agree well with those fromthe modalmethod andNastran software.Finally,the method is used to analyze the influence factors of BFF.The analysis results show that the flutter speed can be improved by either releasing plunge constraint or moving the center ofmass forward or increasing the pitch inertia. 展开更多
关键词 Body freedom flutter time-domain CFD/CSD/6DOF method dynamic mesh generation strategy aeroelasticity
下载PDF
A spherical higher-order finite-difference time-domain algorithm with perfectly matched layer
11
作者 刘亚文 陈亦望 +1 位作者 张品 刘宗信 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期166-176,共11页
A higher-order finite-difference time-domain(HO-FDTD) in the spherical coordinate is presented in this paper. The stability and dispersion properties of the proposed scheme are investigated and an air-filled spheric... A higher-order finite-difference time-domain(HO-FDTD) in the spherical coordinate is presented in this paper. The stability and dispersion properties of the proposed scheme are investigated and an air-filled spherical resonator is modeled in order to demonstrate the advantage of this scheme over the finite-difference time-domain(FDTD) and the multiresolution time-domain(MRTD) schemes with respect to memory requirements and CPU time. Moreover, the Berenger's perfectly matched layer(PML) is derived for the spherical HO-FDTD grids, and the numerical results validate the efficiency of the PML. 展开更多
关键词 higher-order finite-difference time-domain spherical coordinates STABILITY numerical dispersion perfectly matched layer
下载PDF
Perfect plane-wave source for a high-order symplectic finite-difference time-domain scheme
12
作者 王辉 黄志祥 +1 位作者 吴先良 任信钢 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第11期365-370,共6页
The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order sy... The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order symplectic finite- difference time-domain (SFDTD) scheme for the first time. By splitting the fields on one-dimensional grid and using the nature of numerical plane-wave in finite-difference time-domain (FDTD), the identical dispersion relation can be obtained and proved between the one-dimensional and three-dimensional grids. An efficient plane-wave source is simulated on one-dimensional grid and a perfect match can be achieved for a plane-wave propagating at any angle forming an integer grid cell ratio. Numerical simulations show that the method is valid for SFDTD and the residual field in SF region is shrinked down to -300 dB. 展开更多
关键词 splitting plane-wave finite-difference time-domain high-order symplectic finite-differencetime-domain scheme plane-wave source
下载PDF
Numerical Solution of a Problem of Thermal Stresses of a Magnetothermoelastic Cylinder with Rotation by Finite-Difference Method
13
作者 F.S.Bayones A.M.Abd-Alla A.M.Farhan 《Computers, Materials & Continua》 SCIE EI 2021年第9期3339-3352,共14页
The present article deals with the investigation thermal stress of a magnetothermoelastic cylinder subjected to rotation,open or closed circuit,thermal and mechanical boundary conditions.The outer and inner surfaces o... The present article deals with the investigation thermal stress of a magnetothermoelastic cylinder subjected to rotation,open or closed circuit,thermal and mechanical boundary conditions.The outer and inner surfaces of the cylinder are subjected to both mechanical and thermal boundary conditions.A The transient coupled thermoelasticity in an infinite cylinder with its base abruptly exposed to a heat flux of a decaying exponential function of time is devised solve by the finite-difference method.The fundamental equations’system is solved by utilizing an implicit finite-difference method.This current method is a second-order accurate in time and space;it is also unconditionally stable.To illustrate the present model’s efficiency,we consider a suitable material and acquire the numerical solution of temperature,displacement components,and the components of stresses with time t and through the radial of an infinite cylinder.The results indicate that the effect of coupled thermoelasticity,magnetic field,and rotation on the temperature,stresses,and displacement is quite pronounced.In order to illustrate and verify the analytical developments,the numerical solution of partial differential equations,stress components,displacement components and temperature is carried out and computer simulated results are presented graphically.This study is helpful in the development of piezoelectric devices. 展开更多
关键词 THERMOELASTICITY thermal stress finite-difference method non-homogeneous material ROTATION magnetic field
下载PDF
P-and S-wavefield simulations using both the firstand second-order separated wave equations through a high-order staggered grid finite-difference method
14
作者 Chao-ying Bai Xin Wang Cai-xia Wang 《Earthquake Science》 2013年第2期83-98,共16页
In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this... In seismic exploration, it is common practice to separate the P-wavefield from the S-wavefield by the elastic wavefield decomposition technique, for imaging purposes. However, it is sometimes difficult to achieve this, especially when the velocity field is complex. A useful approach in multi-component analysis and modeling is to directly solve the elastic wave equations for the pure P- or S-wavefields, referred as the separate elastic wave equa- tions. In this study, we compare two kinds of such wave equations: the first-order (velocity-stress) and the second- order (displacement-stress) separate elastic wave equa- tions, with the first-order (velocity-stress) and the second- order (displacement-stress) full (or mixed) elastic wave equations using a high-order staggered grid finite-differ- ence method. Comparisons are given of wavefield snap- shots, common-source gather seismic sections, and individual synthetic seismogram. The simulation tests show that equivalent results can be obtained, regardless of whether the first-order or second-order separate elastic wave equations are used for obtaining the pure P- or S-wavefield. The stacked pure P- and S-wavefields are equal to the mixed wave fields calculated using the corre- sponding first-order or second-order full elastic wave equations. These mixed equations are computationallyslightly less expensive than solving the separate equations. The attraction of the separate equations is that they achieve separated P- and S-wavefields which can be used to test the efficacy of wave decomposition procedures in multi-com- ponent processing. The second-order separate elastic wave equations are a good choice because they offer information on the pure P-wave or S-wave displacements. 展开更多
关键词 finite-difference method Staggeredgrid First-order separate elastic wave equation Second-order separate elastic wave equation Multiple arrival tracking
下载PDF
A 1D time-domain method for in-plane wave motions in a layered half-space 被引量:9
15
作者 Jingbo Liu Yan Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第6期673-680,共8页
A 1D finite element method in time domain is developed in this paper and applied to calculate in-plane wave motions of free field exited by SV or P wave oblique incidence in an elastic layered half-space. First, the l... A 1D finite element method in time domain is developed in this paper and applied to calculate in-plane wave motions of free field exited by SV or P wave oblique incidence in an elastic layered half-space. First, the layered half-space is discretized on the basis of the propagation characteristic of elastic wave according to the Snell law. Then, the finite element method with lumped mass and the central difference method are incorporated to establish 2D wave motion equations, which can be transformed into 1D equations by discretization principle and explicit finite element method. By solving the 1D equations, the displacements of nodes in any vertical line can be obtained, and the wave motions in layered half-space are finally determined based on the characteristic of traveling wave. Both the theoretical analysis and the numerical results demonstrate that the proposed method has high accuracy and good stability. 展开更多
关键词 In-plane wave Oblique incidence time-domain method Snell law
下载PDF
Second-Order Wave Diffraction Around 3-D Bodies by A Time-Domain Method 被引量:6
16
作者 BAI Wei(柏威) +1 位作者 TENG Bin(滕斌) 《China Ocean Engineering》 SCIE EI 2001年第1期73-84,共12页
A time-domain method is applied to simulate nonlinear wave diffraction around a surface piercing 3-D arbitrary body. The method involves the application of Taylor series expansions and the use of perturbation procedur... A time-domain method is applied to simulate nonlinear wave diffraction around a surface piercing 3-D arbitrary body. The method involves the application of Taylor series expansions and the use of perturbation procedure to establish the corresponding boundary value problems with respect to a time-independent fluid domain. A boundary element method based on B-spline expansion is used to calculate the wave field at each time step, and the free surface boundary condition is satisfied to the second order of wave steepness by a numerical integration in time. An artificial damping layer is adopted on the free surface for the removal of wave reflection from the outer boundary. As an illustration, the method is used to compute the second-order wave forces and run-up on a surface-piercing circular cylinder. The present method is found to be accurate, computationally efficient, and numerically stable. 展开更多
关键词 time-domain method boundary element method wave forces
下载PDF
Terahertz Time-Domain Spectroscopy method for optical parameter extraction of plastic materials 被引量:2
17
作者 ZHANG Dandan REN Jiaojiao +1 位作者 LI Lijuan CAO Guohua 《太赫兹科学与电子信息学报》 2017年第6期916-920,共5页
A method for extracting optical parameters of plastics materials based on terahertz time domain spectroscopy is presented. The transmission-type Terahertz Time-Domain Spectroscopy(THz TDS) system is adopted to detect ... A method for extracting optical parameters of plastics materials based on terahertz time domain spectroscopy is presented. The transmission-type Terahertz Time-Domain Spectroscopy(THz TDS) system is adopted to detect the refractive index and extinction coefficient on different plastic materials. Then the corresponding spectral information is obtained by Fourier transform of the terahertz time domain waveform of the sampling points, including the corresponding amplitude and phase information of the waveform. The optical parameter extraction model is built. By using the simplex optimization method, the curves of the refractive index and extinction coefficient for the plastic material are obtained. The experimental samples are made of different plastic parallel plate materials. The experimental results show that the optimization of optical parameters can improve their extraction accuracy, and the error of refractive index is ±0.005. Extraction technology with the simplex optimization method of optical parameter based on THz TDS can help to extract the optical parameters of engineering plastics. It is of great significance for the research of terahertz nondestructive testing. 展开更多
关键词 PLASTIC MATERIALS SPECTROSCOPY method time-domain
下载PDF
Stochastic transient analysis of thermal stresses in solids by explicit time-domain method 被引量:1
18
作者 Houzuo Guo Cheng Su Jianhua Xian 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第5期293-296,I0004,共5页
Stochastic heat conduction and thermal stress analysis of structures has received considerable attention in recent years.The propagation of uncertain thermal environments will lead to stochastic variations in temperat... Stochastic heat conduction and thermal stress analysis of structures has received considerable attention in recent years.The propagation of uncertain thermal environments will lead to stochastic variations in temperature fields and thermal stresses.Therefore,it is reasonable to consider the variability of thermal environments while conducting thermal analysis.However,for ambient thermal excitations,only stationary random processes have been investigated thus far.In this study,the highly efficient explicit time-domain method(ETDM)is proposed for the analysis of non-stationary stochastic transient heat conduction and thermal stress problems.The explicit time-domain expressions of thermal responses are first constructed for a thermoelastic body.Then the statistical moments of thermal displacements and stresses can be directly obtained based on the explicit expressions of thermal responses.A numerical example involving non-stationary stochastic internal heat generation rate is investigated.The accuracy and efficiency of the proposed method are validated by comparison with the Monte-Carlo simulation. 展开更多
关键词 STOCHASTIC NON-STATIONARY HEAT conduction Thermal stress EXPLICIT time-domain method
下载PDF
An Improved Time-Domain Inverse Technique for Localization and Quantifcation of Rotating Sound Sources
19
作者 Xiaozheng Zhang Yinlong Li +3 位作者 Yongbin Zhang Chuanxing Bi Jinghao Li Liang Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第5期304-314,共11页
The time-domain inverse technique based on the time-domain rotating equivalent source method has been proposed to localize and quantify rotating sound sources. However, this technique encounters two problems to be add... The time-domain inverse technique based on the time-domain rotating equivalent source method has been proposed to localize and quantify rotating sound sources. However, this technique encounters two problems to be addressed: one is the time-consuming process of solving the transcendental equation at each time step, and the other is the difculty of controlling the instability problem due to the time-varying transfer matrix. In view of that, an improved technique is proposed in this paper to resolve these two problems. In the improved technique, a de-Dopplerization method in the time-domain rotating reference frame is frst applied to eliminate the Doppler efect caused by the source rotation in the measured pressure signals, and then the restored pressure signals without the Doppler efect are used as the inputs of the time-domain stationary equivalent source method to locate and quantify sound sources. Compared with the original technique, the improved technique can avoid solving the transcendental equation at each time step, and facilitate the treatment of the instability problem because the transfer matrix does not change with time. Numerical simulation and experimental results show that the improved technique can eliminate the Doppler efect efectively, and then localize and quantify the rotating nonstationary or broadband sources accurately. The results also demonstrate that the improved technique can guarantee a more stable reconstruction and compute more efciently than the original one. 展开更多
关键词 Rotating sound sources De-Dopplerization time-domain equivalent source method
下载PDF
Construction of Conservative Numerical Fluxes for the Entropy Split Method
20
作者 Björn Sjögreen H.C.Yee 《Communications on Applied Mathematics and Computation》 2023年第2期653-678,共26页
The entropy split method is based on the physical entropies of the thermally perfect gas Euler equations.The Euler flux derivatives are approximated as a sum of a conservative portion and a non-conservative portion in... The entropy split method is based on the physical entropies of the thermally perfect gas Euler equations.The Euler flux derivatives are approximated as a sum of a conservative portion and a non-conservative portion in conjunction with summation-by-parts(SBP)difference boundary closure of(Gerritsen and Olsson in J Comput Phys 129:245-262,1996;Olsson and Oliger in RIACS Tech Rep 94.01,1994;Yee et al.in J Comp Phys 162:33-81,2000).Sj?green and Yee(J Sci Comput)recently proved that the entropy split method is entropy conservative and stable.Stand-ard high-order spatial central differencing as well as high order central spatial dispersion relation preserving(DRP)spatial differencing is part of the entropy stable split methodol-ogy framework.The current work is our first attempt to derive a high order conservative numerical flux for the non-conservative portion of the entropy splitting of the Euler flux derivatives.Due to the construction,this conservative numerical flux requires higher oper-ations count and is less stable than the original semi-conservative split method.However,the Tadmor entropy conservative(EC)method(Tadmor in Acta Numerica 12:451-512,2003)of the same order requires more operations count than the new construction.Since the entropy split method is a semi-conservative skew-symmetric splitting of the Euler flux derivative,a modified nonlinear filter approach of(Yee et al.in J Comput Phys 150:199-238,1999,J Comp Phys 162:3381,2000;Yee and Sj?green in J Comput Phys 225:910934,2007,High Order Filter Methods for Wide Range of Compressible flow Speeds.Proceedings of the ICOSAHOM09,June 22-26,Trondheim,Norway,2009)is proposed in conjunction with the entropy split method as the base method for problems containing shock waves.Long-time integration of 2D and 3D test cases is included to show the com-parison of these new approaches. 展开更多
关键词 finite-difference method Entropy conservation Entropy splitting Shock capturing
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部