A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architectu...A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.展开更多
A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic response...A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.展开更多
We focus on a type of combined signals whose forms remain invariant under the autoregressive operators. To extract the true signal from the autoregressive noise, we develop a strategy to separate parameters and use a ...We focus on a type of combined signals whose forms remain invariant under the autoregressive operators. To extract the true signal from the autoregressive noise, we develop a strategy to separate parameters and use a two-step least squares approach to estimate the autoregressive parameters directly and then further give the estimate of the signal parameters. This method overcomes the difficulty that the autoregressive noise remains unknown in other methods. It can effectively separate the noise and extract the true signal. The algorithm is linear. The solution of the problem is computationally cheap and practical with high accuracy.展开更多
Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation...Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.展开更多
In this paper,we focus on inferring graph Laplacian matrix from the spatiotemporal signal which is defined as“time-vertex signal”.To realize this,we first represent the signals on a joint graph which is the Cartesia...In this paper,we focus on inferring graph Laplacian matrix from the spatiotemporal signal which is defined as“time-vertex signal”.To realize this,we first represent the signals on a joint graph which is the Cartesian product graph of the time-and vertex-graphs.By assuming the signals follow a Gaussian prior distribution on the joint graph,a meaningful representation that promotes the smoothness property of the joint graph signal is derived.Furthermore,by decoupling the joint graph,the graph learning framework is formulated as a joint optimization problem which includes signal denoising,timeand vertex-graphs learning together.Specifically,two algorithms are proposed to solve the optimization problem,where the discrete second-order difference operator with reversed sign(DSODO)in the time domain is used as the time-graph Laplacian operator to recover the signal and infer a vertex-graph in the first algorithm,and the time-graph,as well as the vertex-graph,is estimated by the other algorithm.Experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively infer meaningful time-and vertex-graphs from noisy and incomplete data.展开更多
Based on Immune Programming(IP), a novel Radial Basis Function (RBF) networkdesigning method is proposed. Through extracting the preliminary knowledge about the widthof the basis function as the vaccine to form the im...Based on Immune Programming(IP), a novel Radial Basis Function (RBF) networkdesigning method is proposed. Through extracting the preliminary knowledge about the widthof the basis function as the vaccine to form the immune operator, the algorithm reduces thesearching space of canonical algorithm and improves the convergence speed. The application ofthe RBF network trained with the algorithm in the modulation-style recognition of radar signalsdemonstrates that the network has a fast convergence speed with good performances.展开更多
This paper investigates the generalized Parseval’s theorem of fractional Fourier transform (FRFT) for concentrated data. Also, in the framework of multiple FRFT domains, Parseval’s theorem reduces to an inequality w...This paper investigates the generalized Parseval’s theorem of fractional Fourier transform (FRFT) for concentrated data. Also, in the framework of multiple FRFT domains, Parseval’s theorem reduces to an inequality with lower and upper bounds associated with FRFT parameters, named as generalized Parseval’s theorem by us. These results theoretically provide potential valuable applications in filtering, and examples of filtering for LFM signals in FRFT domains are demonstrated to support the derived conclusions.展开更多
Second-order multisynchrosqueezing transform(SMSST),an effective tool for the analysis of nonstationary signals,can significantly improve the time-frequency resolution of a nonstationary signal.Though the noise energy...Second-order multisynchrosqueezing transform(SMSST),an effective tool for the analysis of nonstationary signals,can significantly improve the time-frequency resolution of a nonstationary signal.Though the noise energy in the signal can also be enhanced in the transform which can largely affect the characteristic frequency component identification for an accurate fault diagnostic.An improved algorithm termed as an improved second-order multisynchrosqueezing transform(ISMSST)is then proposed in this study to alleviate the problem of noise interference in the analysis of nonstationary signals.In the study,the time-frequency(TF)distribution of a nonstationary signal is calculated first using SMSST,and then aδfunction is constructed based on a newly proposed time-frequency operator(TFO)which is then substituted back into SMSST to produce a noisefree time frequency result.The effectiveness of the technique is validated by comparing the TF results obtained using the proposed algorithm and those using other TFA techniques in the analysis of a simulated signal and an experimental data.The result shows that the current technique can render the most accurate TFA result within the TFA techniques employed in this study.展开更多
Terahertz time-domain spectroscopy(THz-TDS)system,as a new means of spectral analysis and detection,plays an increasingly pivotal role in basic scientific research.However,owing to the long scanning time of the tradit...Terahertz time-domain spectroscopy(THz-TDS)system,as a new means of spectral analysis and detection,plays an increasingly pivotal role in basic scientific research.However,owing to the long scanning time of the traditional THz-TDS system and the complex control of the asynchronous optical scanning(ASOPS)system,which requires frequent calibration,we combine traditional THz-TDS and ASOPS systems to form a composite system and propose an all-fiber trigger signal generation method based on the time overlapping interference signal generated by the collinear motion of two laser pulses.Finally,the time-domain and frequency-domain spectra are obtained by using two independent systems in the integrated systems.It is found that the full width at half maximum(FWHM)of the time-domain spectra and the spectral width of the frequency-domain spectra are almost the same,but the sampling speed of the ASOPS system is significantly faster than that of the traditional THz-TDS system,which conduces to the study of the transient characteristics of substances.展开更多
The anomaly detection of the brake operating unit (BOU) in thebrake systems on metro vehicle is critical for the safety and reliability ofthe trains. On the other hand, current periodic inspection and maintenanceare u...The anomaly detection of the brake operating unit (BOU) in thebrake systems on metro vehicle is critical for the safety and reliability ofthe trains. On the other hand, current periodic inspection and maintenanceare unable to detect anomalies in an early stage. Also, building an accurateand stable system for detecting anomalies is extremely difficult. Therefore,we present an efficient model that use an ensemble of recurrent autoencodersto accurately detect the BOU abnormalities of metro trains. This is the firstproposal to employ an ensemble deep learning technique to detect BOUabnormalities in metro train braking systems. One of the anomalous caseson metro vehicles is the case when the air cylinder (AC) pressures are less thanthe brake cylinder (BC) pressures in certain parts where the brake pressuresincrease before coming to a halt. Hence, in this work, we first extract the dataof BC and AC pressures. Then, the extracted data of BC and AC pressuresare divided into multiple subsequences that are used as an input for bothbi-directional long short-term memory (biLSTM) and bi-directional gatedrecurrent unit (biGRU) autoencoders. The biLSTM and biGRU autoencodersare trained using training dataset that only contains normal subsequences. Fordetecting abnormalities from test dataset which consists of abnormal subsequences, the mean absolute errors (MAEs) between original subsequences andreconstructed subsequences from both biLSTM and biGRU autoencoders arecalculated. As an ensemble step, the total error is calculated by averaging twoMAEs from biLSTM and biGRU autoencoders. The subsequence with totalerror greater than a pre-defined threshold value is considered an abnormality.We carried out the experiments using the BOU dataset on metro vehiclesin South Korea. Experimental results demonstrate that the ensemble modelshows better performance than other autoencoder-based models, which showsthe effectiveness of our ensemble model for detecting BOU anomalies onmetro trains.展开更多
With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway ...With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway while maintaining the required safety margins. In this framework, the tracking target point of the following train is moving forward with its leading train. This paper focuses on the energy saving tracking control of two successive trains in MBS. Nonlinear programming method is used to optimize the energy-saving speed trajectory of the following train. The real-time location of the leading train could be integrated into the optimization process. Due to simplicity, it can be used for online implementation. The feasibility and effectiveness are verified through simulation. The results show that the new method is efficient on energy saving even when disturbances present.展开更多
In Section 4I.02 of the newly published Manual on Uniform Traffic Control Devices(MUTCD),standards were specified for the placement of signal heads for traffic control signals at freeway entrance ramps,or ramp meters....In Section 4I.02 of the newly published Manual on Uniform Traffic Control Devices(MUTCD),standards were specified for the placement of signal heads for traffic control signals at freeway entrance ramps,or ramp meters.For simultaneous operations,i.e.when ramp control signals are operated such that green signal indications are always displayed simultaneously to all of the lanes on the ramp,a minimum of two signal faces per ramp shall face entering traffic.For staggered operations,i.e.the ramp control signal are operated such that green signal indications are not always displayed simultaneously to all of the lanes on the ramp,one signal face shall be provided over the approximate center of each separately-controlled lane.Based on a nation-wide survey,it was realized that the two standards did not fully reflect the state-of-the-practice with respect to ramp metering operations.Due to the lack of significant conflicting movements at ramp meters,for any on-ramp lane,a minimum of one overhead mounted,or one upper and one lower roadside-mounted signal face is sufficient to control the metering operations.The minimum necessary number of signal faces changes according to the total number of lanes,how the signal faces are mounted(overhead or roadside mounting),and how the meters are operated(simultaneous or staggered).Suggestions are made to revise the two standards to better reflect the current nation-wide practices,and better consider the specific operational needs for ramp meters.展开更多
基金Sponsored by the National Natural Science Foundation of China (60843005)the Basic Research Foundation of Beijing Institute of Technology(20070142018)
文摘A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.
基金Supported by the National Natural Science Foundation of China(51079027)
文摘A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.
文摘We focus on a type of combined signals whose forms remain invariant under the autoregressive operators. To extract the true signal from the autoregressive noise, we develop a strategy to separate parameters and use a two-step least squares approach to estimate the autoregressive parameters directly and then further give the estimate of the signal parameters. This method overcomes the difficulty that the autoregressive noise remains unknown in other methods. It can effectively separate the noise and extract the true signal. The algorithm is linear. The solution of the problem is computationally cheap and practical with high accuracy.
文摘Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains.
基金supported by the National Natural Science Foundation of China(Grant No.61966007)Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(No.CRKL180106,No.CRKL180201)+1 种基金Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing,Guilin University of Electronic Technology(No.GXKL06180107,No.GXKL06190117)Guangxi Colleges and Universities Key Laboratory of Satellite Navigation and Position Sensing.
文摘In this paper,we focus on inferring graph Laplacian matrix from the spatiotemporal signal which is defined as“time-vertex signal”.To realize this,we first represent the signals on a joint graph which is the Cartesian product graph of the time-and vertex-graphs.By assuming the signals follow a Gaussian prior distribution on the joint graph,a meaningful representation that promotes the smoothness property of the joint graph signal is derived.Furthermore,by decoupling the joint graph,the graph learning framework is formulated as a joint optimization problem which includes signal denoising,timeand vertex-graphs learning together.Specifically,two algorithms are proposed to solve the optimization problem,where the discrete second-order difference operator with reversed sign(DSODO)in the time domain is used as the time-graph Laplacian operator to recover the signal and infer a vertex-graph in the first algorithm,and the time-graph,as well as the vertex-graph,is estimated by the other algorithm.Experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively infer meaningful time-and vertex-graphs from noisy and incomplete data.
文摘Based on Immune Programming(IP), a novel Radial Basis Function (RBF) networkdesigning method is proposed. Through extracting the preliminary knowledge about the widthof the basis function as the vaccine to form the immune operator, the algorithm reduces thesearching space of canonical algorithm and improves the convergence speed. The application ofthe RBF network trained with the algorithm in the modulation-style recognition of radar signalsdemonstrates that the network has a fast convergence speed with good performances.
文摘This paper investigates the generalized Parseval’s theorem of fractional Fourier transform (FRFT) for concentrated data. Also, in the framework of multiple FRFT domains, Parseval’s theorem reduces to an inequality with lower and upper bounds associated with FRFT parameters, named as generalized Parseval’s theorem by us. These results theoretically provide potential valuable applications in filtering, and examples of filtering for LFM signals in FRFT domains are demonstrated to support the derived conclusions.
文摘Second-order multisynchrosqueezing transform(SMSST),an effective tool for the analysis of nonstationary signals,can significantly improve the time-frequency resolution of a nonstationary signal.Though the noise energy in the signal can also be enhanced in the transform which can largely affect the characteristic frequency component identification for an accurate fault diagnostic.An improved algorithm termed as an improved second-order multisynchrosqueezing transform(ISMSST)is then proposed in this study to alleviate the problem of noise interference in the analysis of nonstationary signals.In the study,the time-frequency(TF)distribution of a nonstationary signal is calculated first using SMSST,and then aδfunction is constructed based on a newly proposed time-frequency operator(TFO)which is then substituted back into SMSST to produce a noisefree time frequency result.The effectiveness of the technique is validated by comparing the TF results obtained using the proposed algorithm and those using other TFA techniques in the analysis of a simulated signal and an experimental data.The result shows that the current technique can render the most accurate TFA result within the TFA techniques employed in this study.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB3200100)the National Natural Science Foundation of China(Grant No.61575131)。
文摘Terahertz time-domain spectroscopy(THz-TDS)system,as a new means of spectral analysis and detection,plays an increasingly pivotal role in basic scientific research.However,owing to the long scanning time of the traditional THz-TDS system and the complex control of the asynchronous optical scanning(ASOPS)system,which requires frequent calibration,we combine traditional THz-TDS and ASOPS systems to form a composite system and propose an all-fiber trigger signal generation method based on the time overlapping interference signal generated by the collinear motion of two laser pulses.Finally,the time-domain and frequency-domain spectra are obtained by using two independent systems in the integrated systems.It is found that the full width at half maximum(FWHM)of the time-domain spectra and the spectral width of the frequency-domain spectra are almost the same,but the sampling speed of the ASOPS system is significantly faster than that of the traditional THz-TDS system,which conduces to the study of the transient characteristics of substances.
基金This research is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure and Transport(Grant21QPWO-B152223-03).
文摘The anomaly detection of the brake operating unit (BOU) in thebrake systems on metro vehicle is critical for the safety and reliability ofthe trains. On the other hand, current periodic inspection and maintenanceare unable to detect anomalies in an early stage. Also, building an accurateand stable system for detecting anomalies is extremely difficult. Therefore,we present an efficient model that use an ensemble of recurrent autoencodersto accurately detect the BOU abnormalities of metro trains. This is the firstproposal to employ an ensemble deep learning technique to detect BOUabnormalities in metro train braking systems. One of the anomalous caseson metro vehicles is the case when the air cylinder (AC) pressures are less thanthe brake cylinder (BC) pressures in certain parts where the brake pressuresincrease before coming to a halt. Hence, in this work, we first extract the dataof BC and AC pressures. Then, the extracted data of BC and AC pressuresare divided into multiple subsequences that are used as an input for bothbi-directional long short-term memory (biLSTM) and bi-directional gatedrecurrent unit (biGRU) autoencoders. The biLSTM and biGRU autoencodersare trained using training dataset that only contains normal subsequences. Fordetecting abnormalities from test dataset which consists of abnormal subsequences, the mean absolute errors (MAEs) between original subsequences andreconstructed subsequences from both biLSTM and biGRU autoencoders arecalculated. As an ensemble step, the total error is calculated by averaging twoMAEs from biLSTM and biGRU autoencoders. The subsequence with totalerror greater than a pre-defined threshold value is considered an abnormality.We carried out the experiments using the BOU dataset on metro vehiclesin South Korea. Experimental results demonstrate that the ensemble modelshows better performance than other autoencoder-based models, which showsthe effectiveness of our ensemble model for detecting BOU anomalies onmetro trains.
文摘With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway while maintaining the required safety margins. In this framework, the tracking target point of the following train is moving forward with its leading train. This paper focuses on the energy saving tracking control of two successive trains in MBS. Nonlinear programming method is used to optimize the energy-saving speed trajectory of the following train. The real-time location of the leading train could be integrated into the optimization process. Due to simplicity, it can be used for online implementation. The feasibility and effectiveness are verified through simulation. The results show that the new method is efficient on energy saving even when disturbances present.
文摘In Section 4I.02 of the newly published Manual on Uniform Traffic Control Devices(MUTCD),standards were specified for the placement of signal heads for traffic control signals at freeway entrance ramps,or ramp meters.For simultaneous operations,i.e.when ramp control signals are operated such that green signal indications are always displayed simultaneously to all of the lanes on the ramp,a minimum of two signal faces per ramp shall face entering traffic.For staggered operations,i.e.the ramp control signal are operated such that green signal indications are not always displayed simultaneously to all of the lanes on the ramp,one signal face shall be provided over the approximate center of each separately-controlled lane.Based on a nation-wide survey,it was realized that the two standards did not fully reflect the state-of-the-practice with respect to ramp metering operations.Due to the lack of significant conflicting movements at ramp meters,for any on-ramp lane,a minimum of one overhead mounted,or one upper and one lower roadside-mounted signal face is sufficient to control the metering operations.The minimum necessary number of signal faces changes according to the total number of lanes,how the signal faces are mounted(overhead or roadside mounting),and how the meters are operated(simultaneous or staggered).Suggestions are made to revise the two standards to better reflect the current nation-wide practices,and better consider the specific operational needs for ramp meters.