期刊文献+
共找到41,101篇文章
< 1 2 250 >
每页显示 20 50 100
Optimal Time-Frequency Atom Search Based on Adaptive Genetic Algorithm 被引量:1
1
作者 郭俊锋 李言俊 张科 《Defence Technology(防务技术)》 SCIE EI CAS 2008年第1期30-35,共6页
Adaptive signal decomposition is an important signal processing method.The chirp-based signal representation,for example,the Gaussian chirplet decomposition,has been an active research topic in the field of signal pro... Adaptive signal decomposition is an important signal processing method.The chirp-based signal representation,for example,the Gaussian chirplet decomposition,has been an active research topic in the field of signal processing.A main challenge of the Gaussian chirplet decomposition is the numerical implementation of the matching pursuit,which is an adaptive signal decomposition scheme,and the challenge remains an open research topic.In this paper,a new optimal time-frequency atom search method based on the adaptive genetic algorithm is proposed,aiming to the low precision problem of the traditional methods.Firstly,a discrete formula of finite length time-frequency atom sequence is derived.Secondly,an algorithm based on the adaptive genetic algorithm is described in detail.Finally,a simulation is carried out,and the result displays its validity and stability. 展开更多
关键词 信息处理 有限长度频率 遗传算法 适合性
下载PDF
A reliability-oriented genetic algorithm-levenberg marquardt model for leak risk assessment based on time-frequency features
2
作者 Ying-Ying Wang Hai-Bo Sun +4 位作者 Jin Yang Shi-De Wu Wen-Ming Wang Yu-Qi Li Ze-Qing Lin 《Petroleum Science》 SCIE EI CSCD 2023年第5期3194-3209,共16页
Since leaks in high-pressure pipelines transporting crude oil can cause severe economic losses,a reliable leak risk assessment can assist in developing an effective pipeline maintenance plan and avoiding unexpected in... Since leaks in high-pressure pipelines transporting crude oil can cause severe economic losses,a reliable leak risk assessment can assist in developing an effective pipeline maintenance plan and avoiding unexpected incidents.The fast and accurate leak detection methods are essential for maintaining pipeline safety in pipeline reliability engineering.Current oil pipeline leakage signals are insufficient for feature extraction,while the training time for traditional leakage prediction models is too long.A new leak detection method is proposed based on time-frequency features and the Genetic Algorithm-Levenberg Marquardt(GA-LM)classification model for predicting the leakage status of oil pipelines.The signal that has been processed is transformed to the time and frequency domain,allowing full expression of the original signal.The traditional Back Propagation(BP)neural network is optimized by the Genetic Algorithm(GA)and Levenberg Marquardt(LM)algorithms.The results show that the recognition effect of a combined feature parameter is superior to that of a single feature parameter.The Accuracy,Precision,Recall,and F1score of the GA-LM model is 95%,93.5%,96.7%,and 95.1%,respectively,which proves that the GA-LM model has a good predictive effect and excellent stability for positive and negative samples.The proposed GA-LM model can obviously reduce training time and improve recognition efficiency.In addition,considering that a large number of samples are required for model training,a wavelet threshold method is proposed to generate sample data with higher reliability.The research results can provide an effective theoretical and technical reference for the leakage risk assessment of the actual oil pipelines. 展开更多
关键词 Leak risk assessment Oil pipeline GA-LM model Data derivation time-frequency features
下载PDF
Research on Low Voltage Series Arc Fault Prediction Method Based on Multidimensional Time-Frequency Domain Characteristics
3
作者 Feiyan Zhou HuiYin +4 位作者 Chen Luo Haixin Tong KunYu Zewen Li Xiangjun Zeng 《Energy Engineering》 EI 2023年第9期1979-1990,共12页
The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sus... The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sustained combustion,which can easily lead to serious electrical fire accidents.To address this issue,this paper establishes a fault arc prototype experimental platform,selects multiple commonly used loads for fault arc experiments,and collects data in both normal and fault states.By analyzing waveform characteristics and selecting fault discrimination feature indicators,corresponding feature values are extracted for qualitative analysis to explore changes in timefrequency characteristics of current before and after faults.Multiple features are then selected to form a multidimensional feature vector space to effectively reduce arc misjudgments and construct a fault discrimination feature database.Based on this,a fault arc hazard prediction model is built using random forests.The model’s multiple hyperparameters are simultaneously optimized through grid search,aiming tominimize node information entropy and complete model training,thereby enhancing model robustness and generalization ability.Through experimental verification,the proposed method accurately predicts and classifies fault arcs of different load types,with an average accuracy at least 1%higher than that of the commonly used fault predictionmethods compared in the paper. 展开更多
关键词 Low voltage distribution systems series fault arcing grid search time-frequency characteristics
下载PDF
Metal-organic framework-based single-atom electro-/ photocatalysts: Synthesis, energy applications, and opportunities
4
作者 Munir Ahmad Jiahui Chen +10 位作者 Jianwen Liu Yan Zhang Zhongxin Song Shahzad Afzal Waseem Raza Liaqat Zeb Andleeb Mehmood Arshad Hussain Jiujun Zhang Xian-Zhu Fu Jing-Li Luo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期1-43,共43页
Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further de... Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further development.In the last few years,metal–organic frameworks(MOFs)have received significant consideration as ideal candidates for synthesizing SACs due to their tailorable chemistry,tunable morphologies,high porosity,and chemical/thermal stability.From this perspective,this review thoroughly summarizes the previously reported methods and possible future approaches for constructing MOF-based(MOF-derived-supported and MOF-supported)SACs.Then,MOF-based SAC's identification techniques are briefly assessed to understand their coordination environments,local electronic structures,spatial distributions,and catalytic/electrochemical reaction mechanisms.This review systematically highlights several photocatalytic and electrocatalytic applications of MOF-based SACs for energy conversion and storage,including hydrogen evolution reactions,oxygen evolution reactions,O_(2)/CO_(2)/N_(2) reduction reactions,fuel cells,and rechargeable batteries.Some light is also shed on the future development of this highly exciting field by highlighting the advantages and limitations of MOF-based SACs. 展开更多
关键词 carbon energy generation MOF-derived-supported MOF-supported single atoms
下载PDF
Single-atom Pt on carbon nanotubes for selective electrocatalysis
5
作者 Samuel S.Hardisty Xiaoqian Lin +1 位作者 Anthony R.J.Kucernak David Zitoun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期63-71,共9页
Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reactio... Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reaction(HOR).Herein,we describe the synthesis of a Pt single electrocatalyst inside single-walled carbon nanotubes(SWCNTs)via a redox reaction.Characterizations via electron microscopy,X-ray photoelectron microscopy,and X-ray absorption spectroscopy show the single-atom nature of the Pt.The electrochemical behavior of the sample to hydrogen and oxygen was investigated using the advanced floating electrode technique,which minimizes mass transport limitations and gives a thorough insight into the activity of the electrocatalyst.The single-atom samples showed higher HOR activity than state-of-the-art 30%Pt/C while almost no oxygen reduction reaction activity in the proton exchange membrane fuel cell operating range.The selective activity toward HOR arose as the main fingerprint of the catalyst confinement in the SWCNTs. 展开更多
关键词 CONFINEMENT ELECTROCATALYSIS hydrogen PLATINUM single atom catalysts
下载PDF
Efficient loading of cesium atoms in a magnetic levitated dimple trap
6
作者 张国庆 冯国胜 +2 位作者 李玉清 武寄洲 马杰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期324-328,共5页
We report a detailed study of magnetically levitated loading of ultracold ^(133)Cs atoms in a dimple trap.The atomic sample was produced in a combined red-detuned optical dipole trap and dimple trap formed by two smal... We report a detailed study of magnetically levitated loading of ultracold ^(133)Cs atoms in a dimple trap.The atomic sample was produced in a combined red-detuned optical dipole trap and dimple trap formed by two small waist beams crossing a horizontal plane.The magnetic levitation for the ^(133)Cs atoms forms an effective potential for a large number of atoms in a high spatial density.Dependence of the number of atoms loaded and trapped in the dimple trap on the magnetic field gradient and bias field is in good agreement with the theoretical analysis.This method has been widely used to obtain the Bose–Einstein condensation atoms for many atomic species. 展开更多
关键词 ultracold atom magnetic levitation dimple trap
下载PDF
Atom substitution of the solid-state electrolyte Li_(10)GeP_(2)S_(12)for stabilized all-solid-state lithium metal batteries
7
作者 Zijing Wan Xiaozhen Chen +3 位作者 Ziqi Zhou Xiaoliang Zhong Xiaobing Luo Dongwei Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期28-38,I0002,共12页
Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical applicati... Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes. 展开更多
关键词 atom substitution Solid-state electrolyte Machine learning Stabilized interface
下载PDF
Dependence of Rydberg-atom-based sensor performance on different Rydberg atom populations in one atomic-vapor cell
8
作者 武博 姚佳伟 +2 位作者 吴逢川 安强 付云起 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期365-370,共6页
The atomic-vapor cell is a vital component for Rydberg atomic microwave sensors,and impacts on overall capability of Rydberg sensors.However,the conventional analysis approach on effect of vapor-cell length contains t... The atomic-vapor cell is a vital component for Rydberg atomic microwave sensors,and impacts on overall capability of Rydberg sensors.However,the conventional analysis approach on effect of vapor-cell length contains two implicit assumptions,that is,the same atomic population density and buffer gas pressure,which make it unable to accurately capture actual response about effect of Rydberg-atom-based sensor performance on different Rydberg atom populations.Here,utilizing a stepped cesium atomic-vapor cell with five different dimensions at the same atomic population density and buffer gas pressure,the height and full width at half maximum of electromagnetically induced transparency(EIT)signal,and the sensitivity of the atomic superheterodyne sensor are comprehensively investigated under conditions of the same Rabi frequencies(saturated laser power).It is identified that EIT signal height is proportional to the cell length,full width at half maximum and sensitivity grow with the increment of cell length to a certain extent.Employing the coherent integration signal theory and atomic linear expansion coefficient method,theoretical analysis of the EIT height and sensitivity are further investigated.The results could shed new light on understanding and design of ultrahigh-sensitivity Rydberg atomic microwave sensors and find promising applications in quantum measurement,communication,and imaging. 展开更多
关键词 Rydberg atom population Rydberg-atom-based receiver stepped atomic-vapor cell
下载PDF
Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
9
作者 马琳 杨晓东 +2 位作者 杨锋 周鑫嘉 武振伟 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期58-64,共7页
The early stage evolution of local atomic structures in a multicomponent metallic glass during its crystallization process has been investigated via molecular dynamics simulation.It is found that the initial thermal s... The early stage evolution of local atomic structures in a multicomponent metallic glass during its crystallization process has been investigated via molecular dynamics simulation.It is found that the initial thermal stability and earliest stage evolution of the local atomic clusters show no strong correlation with their initial short-range orders,and this leads to an observation of a novel symmetry convergence phenomenon,which can be understood as an atomic structure manifestation of the ergodicity.Furthermore,in our system we have quantitatively proved that the crucial factor for the thermal stability against crystallization exhibited by the metallic glass is not the total amount of icosahedral clusters,but the degree of global connectivity among them. 展开更多
关键词 metallic glass CRYSTALLIZATION molecular dynamics simulation local atomic clusters
下载PDF
Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications
10
作者 Zhaosu Liu Si Yin Tee +1 位作者 Guijian Guan Ming‑Yong Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期248-284,共37页
Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav... Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field. 展开更多
关键词 Transition metal dichalcogenides atomic substitution Tailored structure Tunable bandgap Enhanced applications
下载PDF
Atomically Dispersed Ruthenium Catalysts with Open Hollow Structure for Lithium-Oxygen Batteries
11
作者 Xin Chen Yu Zhang +5 位作者 Chang Chen Huinan Li Yuran Lin Ke Yu Caiyun Nan Chen Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期154-164,共11页
Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult... Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery. 展开更多
关键词 atomically dispersed Open hollow structure Discharge product LITHIUM Oxygen battery
下载PDF
Coordination of distinctive pesticide adjuvants and atomization nozzles on droplet spectrum evolution for spatial drift reduction
12
作者 Shidong Xue Jingkun Han +3 位作者 Xi Xi Zhong Lan Rongfu Wen Xuehu Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期250-262,共13页
Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants a... Pesticide adjuvants,as crop protection products,have been widely used to reduce drift loss and improve utilization efficiency by regulating droplet spectrum.However,the coordinated regulation mechanisms of adjuvants and nozzles on droplet spectrum remain unclear.Here,we established the relationship between droplet spectrum evolution and liquid atomization by investigating the typical characteristics of droplet diameter distribution near the nozzle.Based on this,the regulation mechanisms of distinctive pesticide adjuvants on droplet spectrum were clarified,and the corresponding drift reduction performances were quantitively evaluated by wind tunnel experiments.It shows that the droplet diameter firstly shifts to the smaller due to the liquid sheet breakup and then prefers to increase caused by droplet interactions.Reducing the surface tension of sprayed liquid facilitates the uniform liquid breakup and increasing the viscosity inhibits the liquid deformation,which prolong the atomization process and effectively improve the droplet spectrum.As a result,the drift losses of flat-fan and hollow cone nozzles are reduced by about 50%after adding organosilicon and vegetable oil adjuvants.By contrast,the air induction nozzle shows a superior anti-drift ability,regardless of distinctive adjuvants.Our findings provide insights into rational adjuvant design and nozzle selection in the field application. 展开更多
关键词 Pesticide drift Spray droplets Particle size distribution Spray atomization Transport processes ADJUVANTS
下载PDF
Atomically dispersed Fe sites on hierarchically porous carbon nanoplates for oxygen reduction reaction
13
作者 Ruixue Zheng Qinglei Meng +9 位作者 Hao Zhang Teng Li Di Yang Li Zhang Xiaolong Jia Changpeng Liu Jianbing Zhu Xiaozheng Duan Meiling Xiao Wei Xing 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期7-15,I0002,共10页
Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air bat... Developing cost-effective,robust and stable non-precious metal catalysts for oxygen reduction reaction(ORR) is of paramount importance for electrochemical energy conversion devices such as fuel cells and metal-air batteries.Although Fe-N-C single atom catalysts(SACs) have been hailed as the most promising candidate due to the optimal binding strength of ORR intermediates on the Fe-N_(4) sites,they suffer from serious mass transport limitations as microporous templates/substrates,i.e.,zeolitic imidazolate frameworks(ZIFs),are usually employed to host the active sites.Motivated by this challenge,we herein develop a hydrogen-bonded organic framework(HOF)-assisted pyrolysis strategy to construct hierarchical micro/mesoporous carbon nanoplates for the deposition of atomically dispersed Fe-N_(4) sites.Such a design is accomplished by employing HOF nanoplates assembled from 2-aminoterephthalic acid(NH_(2)-BDC) and p-phenylenediamine(PDA) as both soft templates and C,N precursors.Benefitting from the structural merits inherited from HOF templates,the optimized catalyst(denoted as Fe-N-C SAC-950) displays outstanding ORR activity with a high half-wave potential of 0.895 V(vs.reversible hydrogen electrode(RHE)) and a small overpotential of 356 mV at 10 mA cm^(-2) for the oxygen evolution reaction(OER).More excitingly,its application potential is further verified by delivering superb rechargeability and cycling stability with a nearly unfading charge-discharge gap of 0.72 V after 160 h.Molecular dynamics(MD) simulations reveal that micro/mesoporous structure is conducive to the rapid mass transfer of O_(2),thus enhancing the ORR performance.In situ Raman results further indicate that the conversion of O_(2) to~*O_(2)-the rate-determining step(RDS) for Fe-N-C SAC-950.This work will provide a versatile strategy to construct single atom catalysts with desirable catalytic properties. 展开更多
关键词 Fe single atom catalysts Oxygen reduction reaction Mesoporous structure Active sites Zinc-air battery
下载PDF
Atomically dispersed Ni electrocatalyst for superior urea-assisted water splitting
14
作者 Fang Luo Shuyuan Pan +3 位作者 Yuhua Xie Chen Li Yingjie Yu Zehui Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期1-6,I0002,共7页
Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formatio... Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formation of nickel single atoms(Ni-SAs) as exceptional bifunctional electrocatalyst toward UOR and hydrogen evolution reaction(HER) in urea-assisted water splitting.In UOR catalysis,Ni-SAs perform a superior catalytic performance than Ni-NP/NC and Pt/C ascribing to the formation of HOO-Ni-N_(4) structure evidenced by in-situ Raman spectroscopy,corresponding to a boosted mass activity by 175-fold at 1.4 V vs.RHE than Ni-NP/NC.Furthermore,Ni-SAs requires only 450 mV overpotential to obtain HER current density of 500 mA cm^(-2).136 mA cm^(-2) is achieved in urea-assisted water splitting at1.7 V for Ni-SAs,boosted by 5.7 times than Pt/C-IrO_(2) driven water splitting. 展开更多
关键词 Urea oxidation reaction Hydrogen evolution reaction Nickel single atoms Water splitting
下载PDF
Simulation of space heavy-ion induced primary knock-on atoms in bipolar devices
15
作者 张彬 姜昊 +5 位作者 徐晓东 应涛 刘中利 李伟奇 杨剑群 李兴冀 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期573-580,共8页
Bipolar junction transistors(BJTs) are often used in spacecraft due to their excellent working characteristics. However,the complex space radiation environment induces primary knock-on atoms(PKAs) in BJTs through coll... Bipolar junction transistors(BJTs) are often used in spacecraft due to their excellent working characteristics. However,the complex space radiation environment induces primary knock-on atoms(PKAs) in BJTs through collisions, resulting in hard-to-recover displacement damage and affecting the performance of electronic components. In this paper, the properties of PKAs induced by typical space heavy ions(C, N, O, Fe) in BJTs are investigated using Monte Carlo simulations. The simulated results show that the energy spectrum of ion-induced PKAs is primarily concentrated in the low-energy range(17eV–100eV) and displays similar features across all tested ions. The PKAs induced by the collision of energetic ions have large forward scattering angles, mainly around 88°. Moreover, the distribution of PKAs within a transistor as a function of depth displays a peak characteristic, and the peak position is linearly proportional to the incident energy at a certain energy range. These simulation outcomes serve as crucial theoretical support for long-term semiconductor material defect evolution and ground testing of semiconductor devices. 展开更多
关键词 Monte Carlo simulation primary knock-on atom(PKA) space-heavy ion radiation damage
下载PDF
Scanning transmission electron microscopy and atom probe tomography analysis of non-stoichiometry long-period-stacking-ordered structures in Mg-Ni-Y/Sm alloys
16
作者 Yimeng Chen Manuel Legrée +1 位作者 Jean-Louis Bobet Alexander Kvit 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期954-965,共12页
The long-period-stacking-ordered(LPSO)structure affects the mechanical,corrosion and hydrolysis properties of Mg alloys.The current work employs high angle annular dark field-scanning transmission electron microscopy(... The long-period-stacking-ordered(LPSO)structure affects the mechanical,corrosion and hydrolysis properties of Mg alloys.The current work employs high angle annular dark field-scanning transmission electron microscopy(HAADF-STEM)and atom probe tomography(APT)to investigate the structural and local chemical information of LPSO phases formed in Mg-Ni-Y/Sm ternary alloys after extended isothermal annealing.Depending on the alloying elements and their concentrations,Mg-Ni-Y/Sm develops a two-phase LPSO+α-Mg structure in which the LPSO phase contains defects,hybrid LPSO structure,and Mg insertions.HAADF-STEM and APT indicate non-stoichiometric LPSO with incomplete Ni_(6)(Y/Sm)_(8) clusters.In addition,the APT quantitatively determines the local composition of LPSO and confirms the presence of Ni within the Mg bonding layers.These results provide insight into a better understanding of the structure and hydrolysis properties of LPSO-Mg alloys. 展开更多
关键词 Magnesium alloys Long-range ordering atom probe tomography(APT) STEM HAADF Hydrolysis properties.
下载PDF
Strong synergy between physical and chemical properties:Insight into optimization of atomically dispersed oxygen reduction catalysts
17
作者 Yifan Zhang Linsheng Liu +4 位作者 Yuxuan Li Xueqin Mu Shichun Mu Suli Liu Zhihui Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期36-49,共14页
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz... Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered. 展开更多
关键词 atomically dispersed catalysts Coordination environment Electronic orbitals Inter-site distance effect Oxygen reduction reaction
下载PDF
Investigations on High-Speed Flash Boiling Atomization of Fuel Based on Numerical Simulations
18
作者 Wei Zhong Zhenfang Xin +1 位作者 Lihua Wang Haiping Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1427-1453,共27页
Flash boiling atomization(FBA)is a promising approach for enhancing spray atomization,which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pr... Flash boiling atomization(FBA)is a promising approach for enhancing spray atomization,which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pressure.However,when the outlet speed of the nozzle exceeds 400 m/s,investigating high-speed flash boiling atomization(HFBA)becomes quite challenging.This difficulty arises fromthe involvement ofmany complex physical processes and the requirement for a very fine mesh in numerical simulations.In this study,an HFBA model for gasoline direct injection(GDI)is established.This model incorporates primary and secondary atomization,as well as vaporization and boilingmodels,to describe the development process of the flash boiling spray.Compared to lowspeed FBA,these physical processes significantly impact HFBA.In this model,the Eulerian description is utilized for modeling the gas,and the Lagrangian description is applied to model the droplets,which effectively captures the movement of the droplets and avoids excessive mesh in the Eulerian coordinates.Under various conditions,numerical solutions of the Sauter mean diameter(SMD)for GDI show good agreement with experimental data,validating the proposed model’s performance.Simulations based on this HFBA model investigate the influences of fuel injection temperature and ambient pressure on the atomization process.Numerical analyses of the velocity field,temperature field,vapor mass fraction distribution,particle size distribution,and spray penetration length under different superheat degrees reveal that high injection temperature or low ambient pressure significantly affects the formation of small and dispersed droplet distribution.This effect is conducive to the refinement of spray particles and enhances atomization. 展开更多
关键词 High-speed flash boiling atomization numerical simulations Eulerian description Lagrangian description gasoline direct injection
下载PDF
Electrochemical and colorimetric dual-signal detection of Staphylococcus aureus enterotoxin B based on AuPt bimetallic nanoparticles loaded Fe-N-C single atom nanocomposite
19
作者 Huan Liang Hongcheng Liu +6 位作者 Haojian Lin Guobao Ning Xiaokang Lu Siying Ma Fei Liu Hui Zhao Canpeng Li 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2025-2035,共11页
Sensitive detection of Staphylococcus aureus enterotoxin B(SEB)is of importance for preventing food poisoning from threatening human health.In this work,an electrochemical and colorimetric dual-signal detection assay ... Sensitive detection of Staphylococcus aureus enterotoxin B(SEB)is of importance for preventing food poisoning from threatening human health.In this work,an electrochemical and colorimetric dual-signal detection assay of SEB was developed.The probe(Ab2/AuPt@Fe-N-C)was bound to SEB captured by Ab1,where the Ab2/AuPt@Fe-N-C triggered methylene blue degradation and resulted in the decrease of electrochemical signal.Furthermore,the probe catalyzed the oxidation of 3,3’,5,5’-tetramethyl biphenyl to generate a colorimetric absorbance at 652 nm.Once the target was captured and formed a sandwich-like complex,the color changed from colorless to blue.SEB detection by colorimetric and electrochemical methods showed a linear relationship in the concentration ranges of 0.0002-10.0000 and 0.0005-10.0000 ng/mL,with limits of detection of 0.0667 and 0.1670 pg/mL,respectively.The dual-signal biosensor was successfully used to detect SEB in milk and water samples,which has great potential in toxin detection in food and the environment. 展开更多
关键词 Staphylococcus aureus enterotoxin Electrochemical immunosensor Colorimetric assay MOF@borophene composite Dual-functional Fe-N-C signal atom catalyst
下载PDF
Atomic Dispersed Hetero‑Pairs for Enhanced Electrocatalytic CO_(2)Reduction
20
作者 Zhaoyong Jin Meiqi Yang +13 位作者 Yilong Dong Xingcheng Ma Ying Wang Jiandong Wu Jinchang Fan Dewen Wang Rongshen Xi Xiao Zhao Tianyi Xu Jingxiang Zhao Lei Zhang David J.Singh Weitao Zheng Xiaoqiang Cui 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期55-67,共13页
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,in... Electrochemical carbon dioxide reduction reaction(CO_(2)RR)involves a variety of intermediates with highly correlated reaction and ad-desorption energies,hindering optimization of the catalytic activity.For example,increasing the binding of the*COOH to the active site will generally increase the*CO desorption energy.Breaking this relationship may be expected to dramatically improve the intrinsic activity of CO_(2)RR,but remains an unsolved challenge.Herein,we addressed this conundrum by constructing a unique atomic dispersed hetero-pair consisting of Mo-Fe di-atoms anchored on N-doped carbon carrier.This system shows an unprecedented CO_(2)RR intrinsic activity with TOF of 3336 h−1,high selectivity toward CO production,Faradaic efficiency of 95.96%at−0.60 V and excellent stability.Theoretical calculations show that the Mo-Fe diatomic sites increased the*COOH intermediate adsorption energy by bridging adsorption of*COOH intermediates.At the same time,d-d orbital coupling in the Mo-Fe di-atom results in electron delocalization and facilitates desorption of*CO intermediates.Thus,the undesirable correlation between these steps is broken.This work provides a promising approach,specifically the use of di-atoms,for breaking unfavorable relationships based on understanding of the catalytic mechanisms at the atomic scale. 展开更多
关键词 CO_(2)reduction reaction atomic dispersed catalyst Hetero-diatomic pair Ad-desorption energy Linear scaling relation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部