In order to study the time-frequency characteristics of blasting vibration signals, measured in milliseconds, we carried out site blasting vibration tests at an open pit of the Jinduicheng Mine. Based on recorded fiel...In order to study the time-frequency characteristics of blasting vibration signals, measured in milliseconds, we carried out site blasting vibration tests at an open pit of the Jinduicheng Mine. Based on recorded field data and applying a combination of RSPWVD and wavelet, we analyzed the time-fre- quency characteristics of recorded field data, summarized the time-frequency characteristics of blasting vibration signals in different frequency bands and present detailed information of blasting vibration sig- nals in milliseconds of high time-frequency resolutions. Because RSPWVD can be seen as of definite physical significance to signal energy distribution in time and frequency domains, we studied the energy distribution of blasting vibration signals for various milliseconds intervals from a perspective of energy distribution. The results indicate that the effect of milliseconds intervals on time-frequency characteris- tics of blasting vibration signals is significant; the length of delay time directly affects the energy distri- bution of blasting vibration signals as well as the duration of energy in ffeauencv bands.展开更多
Through analyzing the near-field hydrophone records of the airgun experiment in the Jiemian reservoir,Fujian,we study the time-frequency characteristic of airgun source wavelet and the influence of gun depth and firin...Through analyzing the near-field hydrophone records of the airgun experiment in the Jiemian reservoir,Fujian,we study the time-frequency characteristic of airgun source wavelet and the influence of gun depth and firing pressure,and explain the process of bubble oscillation based on the Johnson( 1994) bubble model. The data analysis shows that:( 1) Airgun wavelet is composed of primary pulse and bubble pulse. The primary pulse,which is of large amplitude,short duration and wide frequency band,is usually used in shallow exploration. The bubble pulse,which is concentrated in the low-frequency range,is usually used in deep exploration with deep vertical penetration and far horizontal propagation.( 2) The variation of primary pulse amplitude with gun depth is very small,bubble pulse amplitude and the dominant frequency increase,and peak-bubble ratio and bubble period decrease. When the gun depth is 10 m,primary pulse amplitude and peakbubble ratio are maximum,which is suitable for shallow exploration; when gun depth is25 m,bubble pulse amplitude is large, and peak-bubble ratio is minimum, which is suitable for deep exploration.( 3) The primary pulse amplitude,bubble pulse amplitude,peak-bubble ratio,and bubble period increase and the dominant frequency decreases with increased firing pressure.展开更多
In this study, several advanced analysis methods are applied to understand the relationships between the Nino-3.4 sea surface temperatures (SST) and the SSTs related to the tropical Indian Ocean Dipole (IOD). By a...In this study, several advanced analysis methods are applied to understand the relationships between the Nino-3.4 sea surface temperatures (SST) and the SSTs related to the tropical Indian Ocean Dipole (IOD). By analyzing a long data record, the authors focus on the time-frequency characteristics of these relationships, and of the structure of IOD. They also focus on the seasonal dependence of those characteristics in both time and frequency domains. Among the Nino-3.4 SST, IOD, and SSTs over the tropical western Indian Ocean (WIO) and eastern Indian Ocean (EIO), the WIO SST has the strongest annual and semiannual oscillations. While the Nino-3.4 SST has large inter-annual variability that is only second to its annual variability, the IOD is characterized by the largest semiannual oscillation, which is even stronger than its annual oscillation. The IOD is strongly and stably related to the EIO SST in a wide range of frequency bands and in all seasons. However, it is less significantly related to the WIO SST in the boreal winter and spring. There exists a generally weak and unstable relationship between the WIO and EIO SSTs, especially in the biennial and higher frequency bands. The relationship is especially weak in summer and fall, when IOD is apparent, but appears highly positive in winter and spring, when the IOD is unimportantly weak and even disappears. This feature reflects a caution in the definition and application of IOD. The Nino-3.4 SST has a strong positive relationship with the WIO SST in all seasons, mainly in the biennial and longer frequency bands. However, it shows no significant relationship with the EIO SST in summer and fall, and with IOD in winter and spring.展开更多
In this paper, propagated δ pulses through different distance of plasma are calculated,and their time-frequency characteristics are studied using CWD (Choi-William distribution). It is found that several horizontal s...In this paper, propagated δ pulses through different distance of plasma are calculated,and their time-frequency characteristics are studied using CWD (Choi-William distribution). It is found that several horizontal spectra appear at early arrival time like discrete spectrum, at last time a hyperbolic curve lies in the time-frequency spectrum which corresponds to the frequency-group delay curve of plasma. To understand the time-frequency the property of a signal is helpful for obtaining the plasma parameters.展开更多
The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sus...The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sustained combustion,which can easily lead to serious electrical fire accidents.To address this issue,this paper establishes a fault arc prototype experimental platform,selects multiple commonly used loads for fault arc experiments,and collects data in both normal and fault states.By analyzing waveform characteristics and selecting fault discrimination feature indicators,corresponding feature values are extracted for qualitative analysis to explore changes in timefrequency characteristics of current before and after faults.Multiple features are then selected to form a multidimensional feature vector space to effectively reduce arc misjudgments and construct a fault discrimination feature database.Based on this,a fault arc hazard prediction model is built using random forests.The model’s multiple hyperparameters are simultaneously optimized through grid search,aiming tominimize node information entropy and complete model training,thereby enhancing model robustness and generalization ability.Through experimental verification,the proposed method accurately predicts and classifies fault arcs of different load types,with an average accuracy at least 1%higher than that of the commonly used fault predictionmethods compared in the paper.展开更多
To prepare a conductive polymer actuator with decent performance,a self-built experimental platform for the preparation of polypyrrole film is employed.One of the essential goals is to examine the mechanical character...To prepare a conductive polymer actuator with decent performance,a self-built experimental platform for the preparation of polypyrrole film is employed.One of the essential goals is to examine the mechanical characteristics of the actuator in the presence of various combinations of process parameters,combined with the orthogonal test method of"four factors and three levels".The bending and sensing characteristics of actuators of various sizes are methodically examined using a self-made bending polypyrrole actuator.The functional relationship between the bending displacement and the output voltage signal is established by studying the characteristics of the actuator sensor subjected to various degrees of bending.The experimental results reveal that the bending displacement of the actuator tip almost exhibits a linear variation as a function of length and width.When the voltage reaches 0.8 V,the bending speed of the actuator tends to be stable.Finally,the mechanical properties of the self-assembled polypyrrole actuator are verified by the design and fabrication of the microgripper.展开更多
The mechanism of the human auditory system in detecting sound signals with complex time frequency charcteristics in a white noise background was reviewed and discussed.The efficiency of such auditory detection was ass...The mechanism of the human auditory system in detecting sound signals with complex time frequency charcteristics in a white noise background was reviewed and discussed.The efficiency of such auditory detection was assessed by comparing it with that of parallel visual detection of the output of an analogous model displayed on the oscilloscope screen. The results suggest that the detection model of the human auditory system is quite similar to a tone correlator when the time frequency characteristics of the signal are known and to an energy detector when the signal is unknown. The relationship between the threshold signal to noise ratio and the signal duration is derived for different time frequency characteristics.展开更多
BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patie...BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patients with MCI is unclear.AIM To explore the near-infrared brain function characteristics of MCI with sleep disorders.METHODS A total of 120 patients with MCI(MCI group)and 50 healthy subjects(control group)were selected.All subjects underwent the functional near-infrared spec-troscopy test.Collect baseline data,Mini-Mental State Examination,Montreal Cognitive Assessment scale,fatigue severity scale(FSS)score,sleep parameter,and oxyhemoglobin(Oxy-Hb)concentration and peak time of functional near-infrared spectroscopy test during the task period.The relationship between Oxy-RESULTS Compared with the control group,the FSS score of the MCI group was higher(t=11.310),and the scores of Pittsburgh sleep quality index,sleep time,sleep efficiency,nocturnal sleep disturbance,and daytime dysfunction were higher(Z=-10.518,-10.368,-9.035,-10.661,-10.088).Subjective sleep quality and total sleep time scores were lower(Z=-11.592,-9.924).The sleep efficiency of the MCI group was lower,and the awakening frequency,rem sleep latency period,total sleep time,and oxygen desaturation index were higher(t=5.969,5.829,2.887,3.003,5.937).The Oxy-Hb concentration at T0,T1,and T2 in the MCI group was lower(t=14.940,11.280,5.721),and the peak time was higher(t=18.800,13.350,9.827).In MCI patients,the concentration of Oxy-Hb during T0 was negatively correlated with the scores of Pittsburgh sleep quality index,sleep time,total sleep time,and sleep efficiency(r=-0.611,-0.388,-0.563,-0.356).It was positively correlated with sleep efficiency and total sleep time(r=0.754,0.650),and negatively correlated with oxygen desaturation index(r=-0.561)and FSS score(r=-0.526).All comparisons were P<0.05.CONCLUSION Patients with MCI and sleep disorders have lower near-infrared brain function than normal people,which is related to sleep quality.Clinically,a comprehensive assessment of the near-infrared brain function of patients should be carried out to guide targeted treatment and improve curative effect.展开更多
In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natura...In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natural disaster risk area,requiring continuous research related to the stability of the area.To obtain the soil-water characteristic curve,undisturbed samples of residual and sedimentary soil were collected,followed by suction testing using the filter paper method.Considering the bimodal characteristic presented by the soil,LABFIT software was employed for curve fitting using the generic formulation“Harris+C”.The results of the tests indicated that the phenomenon of hysteresis had a greater influence in situations with higher suction levels.When comparing the residual moisture values of the macropores between residual soil and sedimentary soil,the former exhibited the lower value.This suggests that the residual soil has a coarser grain size and larger pores,which facilitates the release of water retained in the soil’s macropores.展开更多
Aerodynamic and dynamic interference from trains is a key issue of concern for the safety of road vehicles travelling on single-level rail-cum road bridges.Based on the wind-road vehicle-train-bridge(WRTB)coupled vibr...Aerodynamic and dynamic interference from trains is a key issue of concern for the safety of road vehicles travelling on single-level rail-cum road bridges.Based on the wind-road vehicle-train-bridge(WRTB)coupled vibration system developed herein,this study examines the dynamic characteristics when road vehicles meet trains in this situation.The influence of load combination,vehicle type and vehicle location is analyzed.A method to obtain the aerodynamic load of road vehicles encountering the train at an arbitrary wind speed is proposed.The results show that due to the windproof facilities and the large line distance between the railway and highway,the aerodynamic and dynamic influence of trains on road vehicles is slight,and the vibration of road vehicles depends on the road roughness.Among the road vehicles discussed,the bus is the easiest to rollover,and the truck-trailer is the easiest to sideslip.Compared with the aerodynamic impact of trains,the crosswind has a more significant influence on road vehicles.The first peak/valley value of aerodynamic loads determines the maximum dynamic response,and the quick method is optimized based on this conclusion.Test cases show that the optimized method can produce conservative results and can be used for relevant research or engineering applications.展开更多
Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have t...Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. A simulation experimental has been used to analyze the feasibility of the new method, with changing the pulse width of the transmitted signal, the relative amplitude and the time delay parameter. And simulation results show that the new method can not only separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects.展开更多
Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated.The high energy of the pulsed laser with a la...Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated.The high energy of the pulsed laser with a large irradiation spot simultaneously generated ultrasonic longitudinal and shear waves at the epicenter under the slight ablation regime.An optimized denoising technique based on wavelet thresholding and variational mode decomposition was applied to reduce noise in shear waves with a low signal-to-noise ratio.An approach for characterizing grain size was proposed using spectral central frequency ratio(SCFR)based on time-frequency analysis.The results demonstrate that the generation regime of ultrasonic waves is not solely determined by the laser power density;even at high power densities,a high energy with a large spot can generate an ultrasonic waveform dominated by the thermoelastic effect.This is ascribed to the intensification of the thermoelastic effect with the proportional increase in laser irradiation spot area for a given laser power density.Furthermore,both longitudinal and shear wave SCFRs are linearly related to grain size in polycrystalline materials;however,the shear wave SCFR is more sensitive to finer-grained materials.This study holds great significance for evaluating metal material properties using laser ultrasound.展开更多
Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes.Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and de...Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes.Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and degradation.A large number of studies have shown that autophagy is closely related to the digestion,secretion,and regeneration of gastrointestinal(GI)cells.However,the role of autophagy in GI diseases remains controversial.This article focuses on the morphological and biochemical characteristics of autophagy in GI diseases,in order to provide new ideas for their diagnosis and treatment.展开更多
Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landsli...Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas.展开更多
BACKGROUND Acute non-variceal upper gastrointestinal bleeding(ANVUGIB)constitutes a prevalent emergency within Gastroenterology,encompassing 80%-90%of all gastrointestinal hemorrhage incidents.This condition is distin...BACKGROUND Acute non-variceal upper gastrointestinal bleeding(ANVUGIB)constitutes a prevalent emergency within Gastroenterology,encompassing 80%-90%of all gastrointestinal hemorrhage incidents.This condition is distinguished by its abrupt onset,swift progression,and notably elevated mortality rate.AIM To gather clinical data from patients with ANVUGIB at our hospital in order to elucidate the clinical characteristics specific to our institution and analyze the therapeutic effectiveness of endoscopic hemostasis.METHODS We retrospectively retrieved the records of 532 patients diagnosed with ANVUGIB by endoscopy at our hospital between March 2021 and March 2023,utilizing our medical record system.Data pertaining to general patient information,etiological factors,disease outcomes,and other relevant variables were meticulously collected and analyzed.RESULTS Among the 532 patients diagnosed with ANVUGIB,the male-to-female ratio was 2.91:1,with a higher prevalence among males.Notably,43.6%of patients presented with black stool as their primary complaint,while 27.4%had hematemesis as their initial symptom.Upon admission,17%of patients exhibited both hematemesis and black stool,while most ANVUGIB patients primarily complained of overt gastrointestinal bleeding.Urgent routine blood examinations at admission revealed that 75.8%of patients had anemia,with 63.4%experiencing moderate to severe anemia,and 1.5%having extremely severe anemia(hemoglobin<30 g/L).With regard to etiology,53.2%of patients experienced bleeding without a definitive trigger,24.2%had a history of using gastric mucosa-irritating medications,24.2%developed bleeding after alcohol consumption,2.8%attributed it to improper diet,1.7%to emotional excitement,and 2.3%to fatigue preceding the bleeding episode.Drug-induced ANVUGIB was more prevalent in the elderly than middle-aged and young individuals,while bleeding due to alcohol consumption showed the opposite trend.Additionally,diet-related bleeding was more common among the young age group compared to the middle-aged group.Gastrointestinal endoscopy identified peptic ulcers as the most frequent cause of ANVUGIB(73.3%),followed by gastrointestinal malignancies(10.9%),acute gastric mucous lesions(9.8%),and androgenic upper gastrointestinal bleeding(1.5%)among inpatients with ANVUGIB.Of the 532 patients with gastrointestinal bleeding,68 underwent endoscopic hemostasis,resulting in an endoscopic treatment rate of 12.8%,with a high immediate hemostasis success rate of 94.1%.展开更多
Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinit...Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield.展开更多
Shaped charge warhead is important for enhancing the damage performance of underwater weapons.This paper used finite element analysis software and based on JPC water penetration experiments to examine the influence of...Shaped charge warhead is important for enhancing the damage performance of underwater weapons.This paper used finite element analysis software and based on JPC water penetration experiments to examine the influence of liner parameters(wall thickness,material),charge aspect ratio,and stand-off distance on the movement characteristics of JPC in water.The findings reveal that the head diameter of the JPC increases and experiences significant erosion after entering the water,the effective length of the JPC in water undergoes two distinct phases:a growth phase and a decrease phase,with the velocity of the JPC decaying exponentially.Increasing the liner thickness,stand-off distance and the charge aspect ratio can improve the erosion resistance and the velocity retention capacity of the JPC.The optimal ranges for liner thickness and stand-off distance are 0.0363D_(k) to 0.0545D_(k)(D_(k) is the charge diameter),the stand-off distance should be within 1.0D_(k).After the charge aspect ratio higher than 1.25,the charge structure exerts minimal influence the movement characteristics of the JPC in water.Material density plays a crucial role in the velocity decay pattern of the JPC during penetration.JPC with higher densities exhibit superior velocity retention capabilities in water,with the velocity decay pattern converging if the densities are similar.Consequently,copper,tantalum and tungsten liners are deemed appropriate for underwater shaped charge warhead.Finally,the results will provide an important reference for the design of underwater shaped charge warhead.展开更多
To investigate the influence mechanism of geostress on rockburst characteristics,three groups of gneiss rockburst experiments were conducted under different initial geostress conditions.A high-speed photography system...To investigate the influence mechanism of geostress on rockburst characteristics,three groups of gneiss rockburst experiments were conducted under different initial geostress conditions.A high-speed photography system and acoustic emission(AE)monitoring system were used to monitor the entire rockburst process in real time.The experimental results show that when the initial burial depth increases from 928 m to 1320 m,the proportion of large fracture scale in rockburst increases by 154.54%,and the AE energy increases by 565.63%,reflecting that the degree and severity of rockburst increase with the increase of burial depth.And then,two mechanisms are proposed to explain this effect,including(i)the increase of initial geostress improves the energy storage capacity of gneiss,and then,the excess energy which can be converted into kinetic energy of debris ejection increases,consequently,a more pronounced violent ejection phenomenon is observed at rockburst;(ii)the increase of initial geostress causes more sufficient plate cracks of gneiss after unloading ofσh,which provides a basis for more severe ejection of rockburst.What’s more,a precursor with clear physical meaning for rockburst is proposed under the framework of dynamic response process of crack evolution.Finally,potential value in long term rockburst warning of the precursor obtained in this study is shown via the comparison of conventional precursor.展开更多
The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics ...The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures.展开更多
The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the d...The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development.展开更多
基金supported by the Fundamental Research Funds for Central Universities (No.2010-Ia-060)
文摘In order to study the time-frequency characteristics of blasting vibration signals, measured in milliseconds, we carried out site blasting vibration tests at an open pit of the Jinduicheng Mine. Based on recorded field data and applying a combination of RSPWVD and wavelet, we analyzed the time-fre- quency characteristics of recorded field data, summarized the time-frequency characteristics of blasting vibration signals in different frequency bands and present detailed information of blasting vibration sig- nals in milliseconds of high time-frequency resolutions. Because RSPWVD can be seen as of definite physical significance to signal energy distribution in time and frequency domains, we studied the energy distribution of blasting vibration signals for various milliseconds intervals from a perspective of energy distribution. The results indicate that the effect of milliseconds intervals on time-frequency characteris- tics of blasting vibration signals is significant; the length of delay time directly affects the energy distri- bution of blasting vibration signals as well as the duration of energy in ffeauencv bands.
基金jointly sponsored the Special Fund for Earthquake Scientific Research of China Earthquake Administration(2015419015)the National Natural Sciences Foundation of China(41474071)
文摘Through analyzing the near-field hydrophone records of the airgun experiment in the Jiemian reservoir,Fujian,we study the time-frequency characteristic of airgun source wavelet and the influence of gun depth and firing pressure,and explain the process of bubble oscillation based on the Johnson( 1994) bubble model. The data analysis shows that:( 1) Airgun wavelet is composed of primary pulse and bubble pulse. The primary pulse,which is of large amplitude,short duration and wide frequency band,is usually used in shallow exploration. The bubble pulse,which is concentrated in the low-frequency range,is usually used in deep exploration with deep vertical penetration and far horizontal propagation.( 2) The variation of primary pulse amplitude with gun depth is very small,bubble pulse amplitude and the dominant frequency increase,and peak-bubble ratio and bubble period decrease. When the gun depth is 10 m,primary pulse amplitude and peakbubble ratio are maximum,which is suitable for shallow exploration; when gun depth is25 m,bubble pulse amplitude is large, and peak-bubble ratio is minimum, which is suitable for deep exploration.( 3) The primary pulse amplitude,bubble pulse amplitude,peak-bubble ratio,and bubble period increase and the dominant frequency decreases with increased firing pressure.
文摘In this study, several advanced analysis methods are applied to understand the relationships between the Nino-3.4 sea surface temperatures (SST) and the SSTs related to the tropical Indian Ocean Dipole (IOD). By analyzing a long data record, the authors focus on the time-frequency characteristics of these relationships, and of the structure of IOD. They also focus on the seasonal dependence of those characteristics in both time and frequency domains. Among the Nino-3.4 SST, IOD, and SSTs over the tropical western Indian Ocean (WIO) and eastern Indian Ocean (EIO), the WIO SST has the strongest annual and semiannual oscillations. While the Nino-3.4 SST has large inter-annual variability that is only second to its annual variability, the IOD is characterized by the largest semiannual oscillation, which is even stronger than its annual oscillation. The IOD is strongly and stably related to the EIO SST in a wide range of frequency bands and in all seasons. However, it is less significantly related to the WIO SST in the boreal winter and spring. There exists a generally weak and unstable relationship between the WIO and EIO SSTs, especially in the biennial and higher frequency bands. The relationship is especially weak in summer and fall, when IOD is apparent, but appears highly positive in winter and spring, when the IOD is unimportantly weak and even disappears. This feature reflects a caution in the definition and application of IOD. The Nino-3.4 SST has a strong positive relationship with the WIO SST in all seasons, mainly in the biennial and longer frequency bands. However, it shows no significant relationship with the EIO SST in summer and fall, and with IOD in winter and spring.
文摘In this paper, propagated δ pulses through different distance of plasma are calculated,and their time-frequency characteristics are studied using CWD (Choi-William distribution). It is found that several horizontal spectra appear at early arrival time like discrete spectrum, at last time a hyperbolic curve lies in the time-frequency spectrum which corresponds to the frequency-group delay curve of plasma. To understand the time-frequency the property of a signal is helpful for obtaining the plasma parameters.
基金This work was funded by Beijing Key Laboratory of Distribution Transformer Energy-Saving Technology(China Electric Power Research Institute).
文摘The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sustained combustion,which can easily lead to serious electrical fire accidents.To address this issue,this paper establishes a fault arc prototype experimental platform,selects multiple commonly used loads for fault arc experiments,and collects data in both normal and fault states.By analyzing waveform characteristics and selecting fault discrimination feature indicators,corresponding feature values are extracted for qualitative analysis to explore changes in timefrequency characteristics of current before and after faults.Multiple features are then selected to form a multidimensional feature vector space to effectively reduce arc misjudgments and construct a fault discrimination feature database.Based on this,a fault arc hazard prediction model is built using random forests.The model’s multiple hyperparameters are simultaneously optimized through grid search,aiming tominimize node information entropy and complete model training,thereby enhancing model robustness and generalization ability.Through experimental verification,the proposed method accurately predicts and classifies fault arcs of different load types,with an average accuracy at least 1%higher than that of the commonly used fault predictionmethods compared in the paper.
基金Funded by the National Natural Science Foundation of Hunan Province,Chinal(No.2021JJ60012)。
文摘To prepare a conductive polymer actuator with decent performance,a self-built experimental platform for the preparation of polypyrrole film is employed.One of the essential goals is to examine the mechanical characteristics of the actuator in the presence of various combinations of process parameters,combined with the orthogonal test method of"four factors and three levels".The bending and sensing characteristics of actuators of various sizes are methodically examined using a self-made bending polypyrrole actuator.The functional relationship between the bending displacement and the output voltage signal is established by studying the characteristics of the actuator sensor subjected to various degrees of bending.The experimental results reveal that the bending displacement of the actuator tip almost exhibits a linear variation as a function of length and width.When the voltage reaches 0.8 V,the bending speed of the actuator tends to be stable.Finally,the mechanical properties of the self-assembled polypyrrole actuator are verified by the design and fabrication of the microgripper.
文摘The mechanism of the human auditory system in detecting sound signals with complex time frequency charcteristics in a white noise background was reviewed and discussed.The efficiency of such auditory detection was assessed by comparing it with that of parallel visual detection of the output of an analogous model displayed on the oscilloscope screen. The results suggest that the detection model of the human auditory system is quite similar to a tone correlator when the time frequency characteristics of the signal are known and to an energy detector when the signal is unknown. The relationship between the threshold signal to noise ratio and the signal duration is derived for different time frequency characteristics.
文摘BACKGROUND Mild cognitive impairment(MCI)has a high risk of progression to Alzheimer’s disease.The disease is often accompanied by sleep disorders,and whether sleep disorders have an effect on brain function in patients with MCI is unclear.AIM To explore the near-infrared brain function characteristics of MCI with sleep disorders.METHODS A total of 120 patients with MCI(MCI group)and 50 healthy subjects(control group)were selected.All subjects underwent the functional near-infrared spec-troscopy test.Collect baseline data,Mini-Mental State Examination,Montreal Cognitive Assessment scale,fatigue severity scale(FSS)score,sleep parameter,and oxyhemoglobin(Oxy-Hb)concentration and peak time of functional near-infrared spectroscopy test during the task period.The relationship between Oxy-RESULTS Compared with the control group,the FSS score of the MCI group was higher(t=11.310),and the scores of Pittsburgh sleep quality index,sleep time,sleep efficiency,nocturnal sleep disturbance,and daytime dysfunction were higher(Z=-10.518,-10.368,-9.035,-10.661,-10.088).Subjective sleep quality and total sleep time scores were lower(Z=-11.592,-9.924).The sleep efficiency of the MCI group was lower,and the awakening frequency,rem sleep latency period,total sleep time,and oxygen desaturation index were higher(t=5.969,5.829,2.887,3.003,5.937).The Oxy-Hb concentration at T0,T1,and T2 in the MCI group was lower(t=14.940,11.280,5.721),and the peak time was higher(t=18.800,13.350,9.827).In MCI patients,the concentration of Oxy-Hb during T0 was negatively correlated with the scores of Pittsburgh sleep quality index,sleep time,total sleep time,and sleep efficiency(r=-0.611,-0.388,-0.563,-0.356).It was positively correlated with sleep efficiency and total sleep time(r=0.754,0.650),and negatively correlated with oxygen desaturation index(r=-0.561)and FSS score(r=-0.526).All comparisons were P<0.05.CONCLUSION Patients with MCI and sleep disorders have lower near-infrared brain function than normal people,which is related to sleep quality.Clinically,a comprehensive assessment of the near-infrared brain function of patients should be carried out to guide targeted treatment and improve curative effect.
文摘In this paper,we present a modeling of the soil-water characteristic curve for residual and sedimentary soils of Bom Brinquedo Hill’s,located in Antonina,Brazil.This mountain range region is characterized as a natural disaster risk area,requiring continuous research related to the stability of the area.To obtain the soil-water characteristic curve,undisturbed samples of residual and sedimentary soil were collected,followed by suction testing using the filter paper method.Considering the bimodal characteristic presented by the soil,LABFIT software was employed for curve fitting using the generic formulation“Harris+C”.The results of the tests indicated that the phenomenon of hysteresis had a greater influence in situations with higher suction levels.When comparing the residual moisture values of the macropores between residual soil and sedimentary soil,the former exhibited the lower value.This suggests that the residual soil has a coarser grain size and larger pores,which facilitates the release of water retained in the soil’s macropores.
基金The Research Project of Southwest Municipal Design&Research Institute of China under Grant No.2023KY-KT-02-I。
文摘Aerodynamic and dynamic interference from trains is a key issue of concern for the safety of road vehicles travelling on single-level rail-cum road bridges.Based on the wind-road vehicle-train-bridge(WRTB)coupled vibration system developed herein,this study examines the dynamic characteristics when road vehicles meet trains in this situation.The influence of load combination,vehicle type and vehicle location is analyzed.A method to obtain the aerodynamic load of road vehicles encountering the train at an arbitrary wind speed is proposed.The results show that due to the windproof facilities and the large line distance between the railway and highway,the aerodynamic and dynamic influence of trains on road vehicles is slight,and the vibration of road vehicles depends on the road roughness.Among the road vehicles discussed,the bus is the easiest to rollover,and the truck-trailer is the easiest to sideslip.Compared with the aerodynamic impact of trains,the crosswind has a more significant influence on road vehicles.The first peak/valley value of aerodynamic loads determines the maximum dynamic response,and the quick method is optimized based on this conclusion.Test cases show that the optimized method can produce conservative results and can be used for relevant research or engineering applications.
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 51279033, and Heilongjiang Natural Science Foundation of China under Grant No. F201346
文摘Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. A simulation experimental has been used to analyze the feasibility of the new method, with changing the pulse width of the transmitted signal, the relative amplitude and the time delay parameter. And simulation results show that the new method can not only separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects.
基金supported in part by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2023ME073)the National Natural Science Foundation of China (Grant No.51805304)+1 种基金the Education Department of Shandong Province,China (Grant No.2022KJ130)Qilu University of Technology (Shandong Academy of Sciences),China (Grant Nos.2023PY009,2021JC02008 and 2022GH005)。
文摘Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated.The high energy of the pulsed laser with a large irradiation spot simultaneously generated ultrasonic longitudinal and shear waves at the epicenter under the slight ablation regime.An optimized denoising technique based on wavelet thresholding and variational mode decomposition was applied to reduce noise in shear waves with a low signal-to-noise ratio.An approach for characterizing grain size was proposed using spectral central frequency ratio(SCFR)based on time-frequency analysis.The results demonstrate that the generation regime of ultrasonic waves is not solely determined by the laser power density;even at high power densities,a high energy with a large spot can generate an ultrasonic waveform dominated by the thermoelastic effect.This is ascribed to the intensification of the thermoelastic effect with the proportional increase in laser irradiation spot area for a given laser power density.Furthermore,both longitudinal and shear wave SCFRs are linearly related to grain size in polycrystalline materials;however,the shear wave SCFR is more sensitive to finer-grained materials.This study holds great significance for evaluating metal material properties using laser ultrasound.
基金Supported by the National Natural Science Foundation of China,No.81900533Science and Technology Project of Henan Science and Technology Department,No.232102520032。
文摘Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes.Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and degradation.A large number of studies have shown that autophagy is closely related to the digestion,secretion,and regeneration of gastrointestinal(GI)cells.However,the role of autophagy in GI diseases remains controversial.This article focuses on the morphological and biochemical characteristics of autophagy in GI diseases,in order to provide new ideas for their diagnosis and treatment.
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021QD032)。
文摘Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas.
基金Supported by Xi’an Health Commission Residential Training Base Construction Project,No.2023zp09.
文摘BACKGROUND Acute non-variceal upper gastrointestinal bleeding(ANVUGIB)constitutes a prevalent emergency within Gastroenterology,encompassing 80%-90%of all gastrointestinal hemorrhage incidents.This condition is distinguished by its abrupt onset,swift progression,and notably elevated mortality rate.AIM To gather clinical data from patients with ANVUGIB at our hospital in order to elucidate the clinical characteristics specific to our institution and analyze the therapeutic effectiveness of endoscopic hemostasis.METHODS We retrospectively retrieved the records of 532 patients diagnosed with ANVUGIB by endoscopy at our hospital between March 2021 and March 2023,utilizing our medical record system.Data pertaining to general patient information,etiological factors,disease outcomes,and other relevant variables were meticulously collected and analyzed.RESULTS Among the 532 patients diagnosed with ANVUGIB,the male-to-female ratio was 2.91:1,with a higher prevalence among males.Notably,43.6%of patients presented with black stool as their primary complaint,while 27.4%had hematemesis as their initial symptom.Upon admission,17%of patients exhibited both hematemesis and black stool,while most ANVUGIB patients primarily complained of overt gastrointestinal bleeding.Urgent routine blood examinations at admission revealed that 75.8%of patients had anemia,with 63.4%experiencing moderate to severe anemia,and 1.5%having extremely severe anemia(hemoglobin<30 g/L).With regard to etiology,53.2%of patients experienced bleeding without a definitive trigger,24.2%had a history of using gastric mucosa-irritating medications,24.2%developed bleeding after alcohol consumption,2.8%attributed it to improper diet,1.7%to emotional excitement,and 2.3%to fatigue preceding the bleeding episode.Drug-induced ANVUGIB was more prevalent in the elderly than middle-aged and young individuals,while bleeding due to alcohol consumption showed the opposite trend.Additionally,diet-related bleeding was more common among the young age group compared to the middle-aged group.Gastrointestinal endoscopy identified peptic ulcers as the most frequent cause of ANVUGIB(73.3%),followed by gastrointestinal malignancies(10.9%),acute gastric mucous lesions(9.8%),and androgenic upper gastrointestinal bleeding(1.5%)among inpatients with ANVUGIB.Of the 532 patients with gastrointestinal bleeding,68 underwent endoscopic hemostasis,resulting in an endoscopic treatment rate of 12.8%,with a high immediate hemostasis success rate of 94.1%.
基金financed by the National Key Research and Development Program,China(Grant Nos.2022YFE0113400 and 2022YFD1500402)National Natural Science Foundation of China(Grant No.32001466)+3 种基金Scientific and Technological Innovation Fund of Carbon Emissions Peak and Neutrality of Jiangsu Provincial Department of Science and Technology,China(Grant Nos.BE2022304 and BE2022305)Joints Funds of the National Natural Science Foundation of China(Grant No.U20A2022)Postdoctoral Research Foundation of China(Grant No.2020M671628)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield.
基金supported by the National Natural Science Foundation of China(Grant No.11672278)。
文摘Shaped charge warhead is important for enhancing the damage performance of underwater weapons.This paper used finite element analysis software and based on JPC water penetration experiments to examine the influence of liner parameters(wall thickness,material),charge aspect ratio,and stand-off distance on the movement characteristics of JPC in water.The findings reveal that the head diameter of the JPC increases and experiences significant erosion after entering the water,the effective length of the JPC in water undergoes two distinct phases:a growth phase and a decrease phase,with the velocity of the JPC decaying exponentially.Increasing the liner thickness,stand-off distance and the charge aspect ratio can improve the erosion resistance and the velocity retention capacity of the JPC.The optimal ranges for liner thickness and stand-off distance are 0.0363D_(k) to 0.0545D_(k)(D_(k) is the charge diameter),the stand-off distance should be within 1.0D_(k).After the charge aspect ratio higher than 1.25,the charge structure exerts minimal influence the movement characteristics of the JPC in water.Material density plays a crucial role in the velocity decay pattern of the JPC during penetration.JPC with higher densities exhibit superior velocity retention capabilities in water,with the velocity decay pattern converging if the densities are similar.Consequently,copper,tantalum and tungsten liners are deemed appropriate for underwater shaped charge warhead.Finally,the results will provide an important reference for the design of underwater shaped charge warhead.
基金support from the National Natural Science Foundation of China(No.41941018,No.52074299)the Fundamental Research Funds for the Central Universities(No.2023JCCXSB02)the China Geological Survey Project(DD20221816,DD20211376)are gratefully acknowledged.
文摘To investigate the influence mechanism of geostress on rockburst characteristics,three groups of gneiss rockburst experiments were conducted under different initial geostress conditions.A high-speed photography system and acoustic emission(AE)monitoring system were used to monitor the entire rockburst process in real time.The experimental results show that when the initial burial depth increases from 928 m to 1320 m,the proportion of large fracture scale in rockburst increases by 154.54%,and the AE energy increases by 565.63%,reflecting that the degree and severity of rockburst increase with the increase of burial depth.And then,two mechanisms are proposed to explain this effect,including(i)the increase of initial geostress improves the energy storage capacity of gneiss,and then,the excess energy which can be converted into kinetic energy of debris ejection increases,consequently,a more pronounced violent ejection phenomenon is observed at rockburst;(ii)the increase of initial geostress causes more sufficient plate cracks of gneiss after unloading ofσh,which provides a basis for more severe ejection of rockburst.What’s more,a precursor with clear physical meaning for rockburst is proposed under the framework of dynamic response process of crack evolution.Finally,potential value in long term rockburst warning of the precursor obtained in this study is shown via the comparison of conventional precursor.
基金supported by the National Natural Science Foundation of China(Nos.52204092 and 52274203).
文摘The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures.
基金supported by the Qingdao Natural Science Foundation(No.23-2-1-54-zyyd-jch)the National Natural Science Foundation of China(Nos.42076217,41976074)+1 种基金the Laoshan Laboratory(No.LSKJ202203506)the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education,Tongji University(No.KLE-TJGE-G2202).
文摘The safe and efficient development of natural gas hydrate requires a deep understanding of the deformation behaviors of reservoirs.In this study,a series of triaxial shearing tests are carried out to investigate the deformation properties of hydrate-bearing sediments.Variations of volumetric and lateral strains versus hydrate saturation are analyzed comprehensively.Results indicate that the sediments with high hydrate saturation show dilative behaviors,which lead to strain-softening characteristics during shearing.The volumetric strain curves have a tendency to transform gradually from dilatation to compression with the increase in effective confining pressure.An easy prediction model is proposed to describe the relationship between volumetric and axial strains.The model coefficientβis the key dominating factor for the shape of volumetric strain curves and can be determined by the hydrate saturation and stress state.Moreover,a modified model is established for the calculation of lateral strain.The corresponding determination method is provided for the easy estimation of model coefficients for medium sand sediments containing hydrate.This study provides a theoretical and experimental reference for deformation estimation in natural gas hydrate development.