The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.展开更多
With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,de...With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,detecting vehicle floor welding points poses unique challenges,including high operational costs and limited portability in practical settings.To address these challenges,this paper innovatively integrates template matching and the Faster RCNN algorithm,presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly blends template matching with deep learning techniques.This algorithm meticulously weights and fuses the optimized features of both methodologies,enhancing the overall detection capabilities.Furthermore,it introduces an optimized multi-scale and multi-template matching approach,leveraging a diverse array of templates and image pyramid algorithms to bolster the accuracy and resilience of object detection.By integrating deep learning algorithms with this multi-scale and multi-template matching strategy,the cascaded target matching algorithm effectively accurately identifies solder joint types and positions.A comprehensive welding point dataset,labeled by experts specifically for vehicle detection,was constructed based on images from authentic industrial environments to validate the algorithm’s performance.Experiments demonstrate the algorithm’s compelling performance in industrial scenarios,outperforming the single-template matching algorithm by 21.3%,the multi-scale and multitemplate matching algorithm by 3.4%,the Faster RCNN algorithm by 19.7%,and the YOLOv9 algorithm by 17.3%in terms of solder joint detection accuracy.This optimized algorithm exhibits remarkable robustness and portability,ideally suited for detecting solder joints across diverse vehicle workpieces.Notably,this study’s dataset and feature fusion approach can be a valuable resource for other algorithms seeking to enhance their solder joint detection capabilities.This work thus not only presents a novel and effective solution for industrial solder joint detection but lays the groundwork for future advancements in this critical area.展开更多
The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the targe...The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.展开更多
To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and...To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and LiDAR point-cloud projection for water surface target detection.Firstly,the visual recognition component employs an improved YOLOv7 algorithmbased on a self-built dataset for the detection of water surface targets.This algorithm modifies the original YOLOv7 architecture to a Slim-Neck structure,addressing the problemof excessive redundant information during feature extraction in the original YOLOv7 network model.Simultaneously,this modification simplifies the computational burden of the detector,reduces inference time,and maintains accuracy.Secondly,to tackle the issue of sample imbalance in the self-built dataset,slide loss function is introduced.Finally,this paper replaces the original Complete Intersection over Union(CIoU)loss function with the Minimum Point Distance Intersection over Union(MPDIoU)loss function in the YOLOv7 algorithm,which accelerates model learning and enhances robustness.To mitigate the problem of missed recognitions caused by complex water surface conditions in purely visual algorithms,this paper further adopts the fusion of LiDAR and camera data,projecting the threedimensional point-cloud data from LiDAR onto a two-dimensional pixel plane.This significantly reduces the rate of missed detections for water surface targets.展开更多
Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).How...Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers.展开更多
Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyze...Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyzed. Experimental results show that for a spectrum of some density, the joint time-frequency gain-modification based speech enhancement algorithm achieves significant improvement in intelligibility. Additionally, the spectrum region where the estimated spectrum is smaller than the clean spectrum, is the most important region contributing to intelligibility improvement for the enhanced whisper. The spectrum region where the estimated spectrum is larger than twice the size of the clean spectrum is detrimental to speech intelligibility perception within the whisper context.展开更多
In this paper,we propose a joint channel estimation and symbol detection(JCESD)algorithm relying on message-passing algorithms(MPA)for orthogonal frequency division multiple access(OFDMA)systems.The channel estimation...In this paper,we propose a joint channel estimation and symbol detection(JCESD)algorithm relying on message-passing algorithms(MPA)for orthogonal frequency division multiple access(OFDMA)systems.The channel estimation and symbol detection leverage the framework of expectation propagation(EP)and belief propagation(BP)with the aid of Gaussian approximation,respectively.Furthermore,to reduce the computation complexity involved in channel estimation,the matrix inversion is transformed into a series of diagonal matrix inversions through the Sherman-Morrison formula.Simulation experiments show that the proposed algorithm can reduce the pilot overhead by about 50%,compared with the traditional linear minimum mean square error(LMMSE)algorithm,and can approach to the bit error rate(BER)performance bound of perfectly known channel state information within 0.1 dB.展开更多
This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed...This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.展开更多
This paper proposes a digital image processing-based detection algorithm for cross joint traces of coal roadway heading face.Initially,the acquired images were preprocessed,i.e.,adaptive correction was conducted for n...This paper proposes a digital image processing-based detection algorithm for cross joint traces of coal roadway heading face.Initially,the acquired images were preprocessed,i.e.,adaptive correction was conducted for non-uniform illumination images based on the 2D gamma function.The edge detection algorithm was then applied to extract the edges of the structural plane,followed by the filtration of the non-structural plane noises.Moreover,the Hough transform algorithm was applied to extract the linear edges;finally,the edges were locally connected in accordance with the angle and distance criteria.The experimental results show that this algorithm can be used to reduce the noise caused by non-uniform illumination and avoid the mutual interference of multi-scale edges,so as to effectively extract the traces of the cross joint.Furthermore,Q-system and rock mass rating(RMR),were applied to conduct a quantitative evaluation on the stand-up time of unsupported roof in the four test images.The Q-system quality scores are 26.7,43.3,3.1,and 6.7,and the RMR quality scores are 56.84,58.73,48.42,and 51.42,respectively.The stand-up time of unsupported roofs with a span of 4.6 m are 30,36,7.7 and 14 d,respectively.展开更多
In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)in...In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)into two dimensions,the fractional time-frequency spectrum feature of an image can be obtained.In the achievement process,we search for the optimal order and design the optimal window function to accomplish the two-dimensional optimal FrGT.Finally,the energy attenuation gradient(EAG)feature of the optimal time-frequency spectrum is extracted for high-frequency detection.The simulation results show the proposed algorithm has a good performance in SAR target detection and lays the foundation for recognition.展开更多
As an important application research topic of the intelligent aviation multi-station, collaborative detecting must overcome the problem of scouting measurement with status of 'fragmentation', and the NP-hardne...As an important application research topic of the intelligent aviation multi-station, collaborative detecting must overcome the problem of scouting measurement with status of 'fragmentation', and the NP-hardness problem of matching association between target and measurement in the process of scouting to data-link, which has complicated technical architecture of network construction. In this paper, taking advantage of cooperation mechanism on signal level in the aviation multi-station sympathetic network, a method of obtaining target time difference of arrival (TDOA) measurement using multi-station collaborative detecting based on time-frequency association is proposed. The method can not only achieve matching between target and its measurement, but also obtain TDOA measurement by further evolutionary transaction through refreshing sequential pulse time of arrival (TOA) measurement matrix for matching and correlating. Simulation results show that the accuracy of TDOA measurement has significant superiority over TOA, and detection probability of false TDOA measurement introduced by noise and fake measurement can be reduced effectively.展开更多
With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. Howev...With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. However, due to the complexity of SAR imaging mechanism, interpreting targets in SAR images is a tough problem. This paper presents a new aircraft interpretation method based on the joint time-frequency analysis and multi-dimensional contrasting of basic structures. Moreover, SAR data acquisition experiment is designed for interpreting the aircraft. Analyzing the experiment data with our method, the result shows that the proposed method largely makes use of the SAR data information. The reasonable results can provide some auxiliary support for the SAR images manual interpretation.展开更多
A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE...A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.展开更多
A kind of turbo joint detection scheme based on parallel interference cancellation (PIC) is studied; then, the eigenvalues of iteration matrix is deeply analyzed for studying the ping-pong effects in PIC JD and the ...A kind of turbo joint detection scheme based on parallel interference cancellation (PIC) is studied; then, the eigenvalues of iteration matrix is deeply analyzed for studying the ping-pong effects in PIC JD and the corresponding compensation approach is introduced. Finally, the proposed algorithm is validated through computer simulation in TDD CDMA uplink transmission. The result shows that the ping-pong effects are almost avoided completely in the presence of the compensation scheme, and system performance is greatly improved.展开更多
To achieve much efficient multimedia transmission over an error-prone wireless network, there are still some problem must to be solved, especially in energy limited wireless sensor network. In this paper, we propose a...To achieve much efficient multimedia transmission over an error-prone wireless network, there are still some problem must to be solved, especially in energy limited wireless sensor network. In this paper, we propose a joint detection based on Schur Algorithm for image wireless transmission over wireless sensor network. To eliminate error transmissions and save transmission energy, we combine Schur algorithm with joint dynamic detection for wireless transmission of JPEG 2000 encoded image which we proposed in [1]. Schur algorithm is used to computing the decomposition of system matrix to decrease the computational complexity. We de-scribe our transmission protocol, and report on its performance evaluation using a simulation testbed we have designed for this purpose. Our results clearly indicate that our method could approach efficient images transmission in wireless sensor network and the transmission errors are significantly reduced when compared to regular transmissions.展开更多
According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a hi...According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a high-frequency bright spot as the amplitude energy shifts. However, it is a low-frequency shadow for the Class III AVO reservoirs saturated with hydrocarbons. In this paper, we verified the high-frequency bright spot results of Chapman for the Class I AVO response using the frequency-dependent analysis of a physical model dataset. The physical model is designed as inter-bedded thin sand and shale based on real field geology parameters. We observed two datasets using fixed offset and 2D geometry with different fluid- saturated conditions. Spectral and time-frequency analyses methods are applied to the seismic datasets to describe the response characteristics for gas-, water-, and oil-saturation. The results of physical model dataset processing and analysis indicate that reflection wave tuning and fluid-related dispersion are the main seismic response characteristic mechanisms. Additionally, the gas saturation model can be distinguished from water and oil saturation for Class I AVO utilizing the frequency-dependent abnormal characteristic. The frequency-dependent characteristic analysis of the physical model dataset verified the different spectral response characteristics corresponding to the different fluid-saturated models. Therefore, by careful analysis of real field seismic data, we can obtain the abnormal spectral characteristics induced by the fluid variation and implement fluid detection using seismic data directly.展开更多
Visual localization and object detection both play important roles in various tasks.In many indoor application scenarios where some detected objects have fixed positions,the two techniques work closely together.Howeve...Visual localization and object detection both play important roles in various tasks.In many indoor application scenarios where some detected objects have fixed positions,the two techniques work closely together.However,few researchers consider these two tasks simultaneously,because of a lack of datasets and the little attention paid to such environments.In this paper,we explore multi-task network design and joint refinement of detection and localization.To address the dataset problem,we construct a medium indoor scene of an aviation exhibition hall through a semi-automatic process.The dataset provides localization and detection information,and is publicly available at https://drive.google.com/drive/folders/1U28zk0N4_I0db zkqyIAK1A15k9oUKOjI?usp=sharing for benchmarking localization and object detection tasks.Targeting this dataset,we have designed a multi-task network,JLDNet,based on YOLO v3,that outputs a target point cloud and object bounding boxes.For dynamic environments,the detection branch also promotes the perception of dynamics.JLDNet includes image feature learning,point feature learning,feature fusion,detection construction,and point cloud regression.Moreover,object-level bundle adjustment is used to further improve localization and detection accuracy.To test JLDNet and compare it to other methods,we have conducted experiments on 7 static scenes,our constructed dataset,and the dynamic TUM RGB-D and Bonn datasets.Our results show state-of-the-art accuracy for both tasks,and the benefit of jointly working on both tasks is demonstrated.展开更多
Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body imag...Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body image. Yet, occlusion and robustness are still open challenges. In this paper, we present an automatic, model-free feature point detection and action tracking method using a time-of-flight camera. Our method automatically detects feature points for movement abstraction. To overcome errors caused by miss-detection and occlusion, a refinement method is devised that uses the trajectory of the feature points to correct the erroneous detections. Experiments were conducted using videos acquired with a Microsoft Kinect camera and a publicly available video set and comparisons were conducted with the state-of-the-art methods. The results demonstrated that our proposed method delivered improved and reliable performance with an average accuracy in the range of 90 %.The trajectorybased refinement also demonstrated satisfactory effectiveness that recovers the detection with a success rate of 93.7 %. Our method processed a frame in an average time of 71.1 ms.展开更多
The quality of the exposed avionics solder joints has a significant impact on the stable operation of the inorbit spacecrafts.Nevertheless,the previously reported inspection methods for multi-scale solder joint defect...The quality of the exposed avionics solder joints has a significant impact on the stable operation of the inorbit spacecrafts.Nevertheless,the previously reported inspection methods for multi-scale solder joint defects generally suffer low accuracy and slow detection speed.Herein,a novel real-time detector VMMAO-YOLO is demonstrated based on variable multi-scale concurrency and multi-depth aggregation network(VMMANet)backbone and“one-stop”global information gather-distribute(OS-GD)module.Combined with infrared thermography technology,it can achieve fast and high-precision detection of both internal and external solder joint defects.Specifically,VMMANet is designed for efficient multi-scale feature extraction,which mainly comprises variable multi-scale feature concurrency(VMC)and multi-depth feature aggregation-alignment(MAA)modules.VMC can extract multi-scale features via multiple fix-sized and deformable convolutions,while MAA can aggregate and align multi-depth features on the same order for feature inference.This allows the low-level features with more spatial details to be transmitted in depth-wise,enabling the deeper network to selectively utilize the preceding inference information.The VMMANet replaces inefficient highdensity deep convolution by increasing the width of intermediate feature levels,leading to a salient decline in parameters.The OS-GD is developed for efficacious feature extraction,aggregation and distribution,further enhancing the global information gather and deployment capability of the network.On a self-made solder joint image data set,the VMMAOYOLO achieves a mean average precision mAP@0.5 of 91.6%,surpassing all the mainstream YOLO-series models.Moreover,the VMMAO-YOLO has a body size of merely 19.3 MB and a detection speed up to 119 frame per second,far superior to the prevalent YOLO-series detectors.展开更多
The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time vari...The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time variant (LTV--due to damage) systems based on Time-frequency (TF) techniques--such as short-time Fourier transform (STFT), empirical mode decomposition (EMD), and wavelets--is proposed. STFT, EMD, and wavelet methods developed to date are reviewed in detail. In addition a Hilbert transform (HT) approach to determine frequency and damping is also presented. In this paper, STFT, EMD, HT and wavelet techniques are developed for decomposition of free vibration response of MDOF systems into their modal components. Once the modal components are obtained, each one is processed using Hilbert transform to obtain the modal frequency and damping ratios. In addition, the ratio of modal components at different degrees of freedom facilitate determination of mode shape. In cases with output only modal identification using ambient/random response, the random decrement technique is used to obtain free vibration response. The advantage of TF techniques is that they arc signal based; hence, can be used for output only modal identification. A three degree of freedom 1:10 scale model test structure is used to validate the proposed output only modal identification techniques based on STFT, EMD, HT, wavelets. Both measured free vibration and forced vibration (white noise) response are considered. The secondary objective of this paper is to show the relative ease with which the TF techniques can be used for modal identification and their potential for real world applications where output only identification is essential. Recorded ambient vibration data processed using techniques such as the random decrement technique can be used to obtain the free vibration response, so that further processing using TF based modal identification can be performed.展开更多
基金supported by the Stable-Support Scientific Project of the China Research Institute of Radio-wave Propagation(Grant No.A13XXXXWXX)the National Natural Science Foundation of China(Grant Nos.42174210,4207202,and 42188101)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant No.XDA15014800)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.
基金supported in part by the National Key Research Project of China under Grant No.2023YFA1009402General Science and Technology Plan Items in Zhejiang Province ZJKJT-2023-02.
文摘With the remarkable advancements in machine vision research and its ever-expanding applications,scholars have increasingly focused on harnessing various vision methodologies within the industrial realm.Specifically,detecting vehicle floor welding points poses unique challenges,including high operational costs and limited portability in practical settings.To address these challenges,this paper innovatively integrates template matching and the Faster RCNN algorithm,presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly blends template matching with deep learning techniques.This algorithm meticulously weights and fuses the optimized features of both methodologies,enhancing the overall detection capabilities.Furthermore,it introduces an optimized multi-scale and multi-template matching approach,leveraging a diverse array of templates and image pyramid algorithms to bolster the accuracy and resilience of object detection.By integrating deep learning algorithms with this multi-scale and multi-template matching strategy,the cascaded target matching algorithm effectively accurately identifies solder joint types and positions.A comprehensive welding point dataset,labeled by experts specifically for vehicle detection,was constructed based on images from authentic industrial environments to validate the algorithm’s performance.Experiments demonstrate the algorithm’s compelling performance in industrial scenarios,outperforming the single-template matching algorithm by 21.3%,the multi-scale and multitemplate matching algorithm by 3.4%,the Faster RCNN algorithm by 19.7%,and the YOLOv9 algorithm by 17.3%in terms of solder joint detection accuracy.This optimized algorithm exhibits remarkable robustness and portability,ideally suited for detecting solder joints across diverse vehicle workpieces.Notably,this study’s dataset and feature fusion approach can be a valuable resource for other algorithms seeking to enhance their solder joint detection capabilities.This work thus not only presents a novel and effective solution for industrial solder joint detection but lays the groundwork for future advancements in this critical area.
基金This work was supported by the National Natural Science Foundation of China(62071475,61890541,62171447).
文摘The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.
基金supported by the National Natural Science Foundation of China(No.51876114)the Shanghai Engineering Research Center of Marine Renewable Energy(Grant No.19DZ2254800).
文摘To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and LiDAR point-cloud projection for water surface target detection.Firstly,the visual recognition component employs an improved YOLOv7 algorithmbased on a self-built dataset for the detection of water surface targets.This algorithm modifies the original YOLOv7 architecture to a Slim-Neck structure,addressing the problemof excessive redundant information during feature extraction in the original YOLOv7 network model.Simultaneously,this modification simplifies the computational burden of the detector,reduces inference time,and maintains accuracy.Secondly,to tackle the issue of sample imbalance in the self-built dataset,slide loss function is introduced.Finally,this paper replaces the original Complete Intersection over Union(CIoU)loss function with the Minimum Point Distance Intersection over Union(MPDIoU)loss function in the YOLOv7 algorithm,which accelerates model learning and enhances robustness.To mitigate the problem of missed recognitions caused by complex water surface conditions in purely visual algorithms,this paper further adopts the fusion of LiDAR and camera data,projecting the threedimensional point-cloud data from LiDAR onto a two-dimensional pixel plane.This significantly reduces the rate of missed detections for water surface targets.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFB1600402)National Natural Science Foundation of China(Grant No.52072212)+1 种基金Dongfeng USharing Technology Co.,Ltd.,China Intelli‑gent and Connected Vehicles(Beijing)Research Institute Co.,Ltd.“Shuimu Tsinghua Scholarship”of Tsinghua University of China.
文摘Environment perception is one of the most critical technology of intelligent transportation systems(ITS).Motion interaction between multiple vehicles in ITS makes it important to perform multi-object tracking(MOT).However,most existing MOT algorithms follow the tracking-by-detection framework,which separates detection and tracking into two independent segments and limit the global efciency.Recently,a few algorithms have combined feature extraction into one network;however,the tracking portion continues to rely on data association,and requires com‑plex post-processing for life cycle management.Those methods do not combine detection and tracking efciently.This paper presents a novel network to realize joint multi-object detection and tracking in an end-to-end manner for ITS,named as global correlation network(GCNet).Unlike most object detection methods,GCNet introduces a global correlation layer for regression of absolute size and coordinates of bounding boxes,instead of ofsetting predictions.The pipeline of detection and tracking in GCNet is conceptually simple,and does not require compli‑cated tracking strategies such as non-maximum suppression and data association.GCNet was evaluated on a multivehicle tracking dataset,UA-DETRAC,demonstrating promising performance compared to state-of-the-art detectors and trackers.
基金The National Natural Science Foundation of China(No.61301295,61273266,61301219,61201326,61003131)the Natural Science Foundation of Anhui Province(No.1308085QF100,1408085MF113)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20130241)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.12KJB510021)the Doctoral Fund of Anhui University
文摘Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyzed. Experimental results show that for a spectrum of some density, the joint time-frequency gain-modification based speech enhancement algorithm achieves significant improvement in intelligibility. Additionally, the spectrum region where the estimated spectrum is smaller than the clean spectrum, is the most important region contributing to intelligibility improvement for the enhanced whisper. The spectrum region where the estimated spectrum is larger than twice the size of the clean spectrum is detrimental to speech intelligibility perception within the whisper context.
文摘In this paper,we propose a joint channel estimation and symbol detection(JCESD)algorithm relying on message-passing algorithms(MPA)for orthogonal frequency division multiple access(OFDMA)systems.The channel estimation and symbol detection leverage the framework of expectation propagation(EP)and belief propagation(BP)with the aid of Gaussian approximation,respectively.Furthermore,to reduce the computation complexity involved in channel estimation,the matrix inversion is transformed into a series of diagonal matrix inversions through the Sherman-Morrison formula.Simulation experiments show that the proposed algorithm can reduce the pilot overhead by about 50%,compared with the traditional linear minimum mean square error(LMMSE)algorithm,and can approach to the bit error rate(BER)performance bound of perfectly known channel state information within 0.1 dB.
基金supported by the National Natural Science Foundation of China(Grant No.61973037 and No.61673066).
文摘This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.
基金supported by the National Natural Scieince Foundation of China(Nos.52004204 and 52034007).
文摘This paper proposes a digital image processing-based detection algorithm for cross joint traces of coal roadway heading face.Initially,the acquired images were preprocessed,i.e.,adaptive correction was conducted for non-uniform illumination images based on the 2D gamma function.The edge detection algorithm was then applied to extract the edges of the structural plane,followed by the filtration of the non-structural plane noises.Moreover,the Hough transform algorithm was applied to extract the linear edges;finally,the edges were locally connected in accordance with the angle and distance criteria.The experimental results show that this algorithm can be used to reduce the noise caused by non-uniform illumination and avoid the mutual interference of multi-scale edges,so as to effectively extract the traces of the cross joint.Furthermore,Q-system and rock mass rating(RMR),were applied to conduct a quantitative evaluation on the stand-up time of unsupported roof in the four test images.The Q-system quality scores are 26.7,43.3,3.1,and 6.7,and the RMR quality scores are 56.84,58.73,48.42,and 51.42,respectively.The stand-up time of unsupported roofs with a span of 4.6 m are 30,36,7.7 and 14 d,respectively.
基金supported by the Natural Science Foundation of Sichuan Province of China under Grant No.2022NSFSC40574partially supported by the National Natural Science Foundation of China under Grants No.61571096 and No.61775030.
文摘In this paper,an algorithm based on a fractional time-frequency spectrum feature is proposed to improve the accuracy of synthetic aperture radar(SAR)target detection.By extending the fractional Gabor transform(FrGT)into two dimensions,the fractional time-frequency spectrum feature of an image can be obtained.In the achievement process,we search for the optimal order and design the optimal window function to accomplish the two-dimensional optimal FrGT.Finally,the energy attenuation gradient(EAG)feature of the optimal time-frequency spectrum is extracted for high-frequency detection.The simulation results show the proposed algorithm has a good performance in SAR target detection and lays the foundation for recognition.
基金supported by the National Natural Science Foundation of China(61472443)the Basic Research Priorities Program of Shaanxi Province Natural Science Foundation of China(2013JQ8042)
文摘As an important application research topic of the intelligent aviation multi-station, collaborative detecting must overcome the problem of scouting measurement with status of 'fragmentation', and the NP-hardness problem of matching association between target and measurement in the process of scouting to data-link, which has complicated technical architecture of network construction. In this paper, taking advantage of cooperation mechanism on signal level in the aviation multi-station sympathetic network, a method of obtaining target time difference of arrival (TDOA) measurement using multi-station collaborative detecting based on time-frequency association is proposed. The method can not only achieve matching between target and its measurement, but also obtain TDOA measurement by further evolutionary transaction through refreshing sequential pulse time of arrival (TOA) measurement matrix for matching and correlating. Simulation results show that the accuracy of TDOA measurement has significant superiority over TOA, and detection probability of false TDOA measurement introduced by noise and fake measurement can be reduced effectively.
文摘With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. However, due to the complexity of SAR imaging mechanism, interpreting targets in SAR images is a tough problem. This paper presents a new aircraft interpretation method based on the joint time-frequency analysis and multi-dimensional contrasting of basic structures. Moreover, SAR data acquisition experiment is designed for interpreting the aircraft. Analyzing the experiment data with our method, the result shows that the proposed method largely makes use of the SAR data information. The reasonable results can provide some auxiliary support for the SAR images manual interpretation.
基金Supported by the National Natural Science Foundation of China (No. 61001105), the National Science and Technology Major Projects (No. 2011ZX03001- 007- 03) and Beijing Natural Science Foundation (No. 4102043).
文摘A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.
文摘A kind of turbo joint detection scheme based on parallel interference cancellation (PIC) is studied; then, the eigenvalues of iteration matrix is deeply analyzed for studying the ping-pong effects in PIC JD and the corresponding compensation approach is introduced. Finally, the proposed algorithm is validated through computer simulation in TDD CDMA uplink transmission. The result shows that the ping-pong effects are almost avoided completely in the presence of the compensation scheme, and system performance is greatly improved.
文摘To achieve much efficient multimedia transmission over an error-prone wireless network, there are still some problem must to be solved, especially in energy limited wireless sensor network. In this paper, we propose a joint detection based on Schur Algorithm for image wireless transmission over wireless sensor network. To eliminate error transmissions and save transmission energy, we combine Schur algorithm with joint dynamic detection for wireless transmission of JPEG 2000 encoded image which we proposed in [1]. Schur algorithm is used to computing the decomposition of system matrix to decrease the computational complexity. We de-scribe our transmission protocol, and report on its performance evaluation using a simulation testbed we have designed for this purpose. Our results clearly indicate that our method could approach efficient images transmission in wireless sensor network and the transmission errors are significantly reduced when compared to regular transmissions.
基金supported by the National Science and Technology Major Project (No. 2011ZX05019-008)the National Natural Science Foundation of China (No. 41074080)+1 种基金the Science Foundation of China University of Petroleum, Beijing (No. KYJJ2012-05-11)supported by the CNPC international collaboration program through the Edinburgh Anisotropy Project (EAP) of the British Geological Survey (BGS) and the CNPC Key Geophysical Laboratory at the China University of Petroleum and CNPC geophysical prospecting projects for new method and technique research
文摘According to the Chapman multi-scale rock physical model, the seismic response characteristics vary for different fluid-saturated reservoirs. For class I AVO reservoirs and gas-saturation, the seismic response is a high-frequency bright spot as the amplitude energy shifts. However, it is a low-frequency shadow for the Class III AVO reservoirs saturated with hydrocarbons. In this paper, we verified the high-frequency bright spot results of Chapman for the Class I AVO response using the frequency-dependent analysis of a physical model dataset. The physical model is designed as inter-bedded thin sand and shale based on real field geology parameters. We observed two datasets using fixed offset and 2D geometry with different fluid- saturated conditions. Spectral and time-frequency analyses methods are applied to the seismic datasets to describe the response characteristics for gas-, water-, and oil-saturation. The results of physical model dataset processing and analysis indicate that reflection wave tuning and fluid-related dispersion are the main seismic response characteristic mechanisms. Additionally, the gas saturation model can be distinguished from water and oil saturation for Class I AVO utilizing the frequency-dependent abnormal characteristic. The frequency-dependent characteristic analysis of the physical model dataset verified the different spectral response characteristics corresponding to the different fluid-saturated models. Therefore, by careful analysis of real field seismic data, we can obtain the abnormal spectral characteristics induced by the fluid variation and implement fluid detection using seismic data directly.
基金supported by the National Natural Science Foundation of China(No.62072020)Key-Area Research and the Leading Talents in Innovation and Entrepreneurship of Qingdao(No.19-3-2-21-zhc).
文摘Visual localization and object detection both play important roles in various tasks.In many indoor application scenarios where some detected objects have fixed positions,the two techniques work closely together.However,few researchers consider these two tasks simultaneously,because of a lack of datasets and the little attention paid to such environments.In this paper,we explore multi-task network design and joint refinement of detection and localization.To address the dataset problem,we construct a medium indoor scene of an aviation exhibition hall through a semi-automatic process.The dataset provides localization and detection information,and is publicly available at https://drive.google.com/drive/folders/1U28zk0N4_I0db zkqyIAK1A15k9oUKOjI?usp=sharing for benchmarking localization and object detection tasks.Targeting this dataset,we have designed a multi-task network,JLDNet,based on YOLO v3,that outputs a target point cloud and object bounding boxes.For dynamic environments,the detection branch also promotes the perception of dynamics.JLDNet includes image feature learning,point feature learning,feature fusion,detection construction,and point cloud regression.Moreover,object-level bundle adjustment is used to further improve localization and detection accuracy.To test JLDNet and compare it to other methods,we have conducted experiments on 7 static scenes,our constructed dataset,and the dynamic TUM RGB-D and Bonn datasets.Our results show state-of-the-art accuracy for both tasks,and the benefit of jointly working on both tasks is demonstrated.
文摘Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body image. Yet, occlusion and robustness are still open challenges. In this paper, we present an automatic, model-free feature point detection and action tracking method using a time-of-flight camera. Our method automatically detects feature points for movement abstraction. To overcome errors caused by miss-detection and occlusion, a refinement method is devised that uses the trajectory of the feature points to correct the erroneous detections. Experiments were conducted using videos acquired with a Microsoft Kinect camera and a publicly available video set and comparisons were conducted with the state-of-the-art methods. The results demonstrated that our proposed method delivered improved and reliable performance with an average accuracy in the range of 90 %.The trajectorybased refinement also demonstrated satisfactory effectiveness that recovers the detection with a success rate of 93.7 %. Our method processed a frame in an average time of 71.1 ms.
基金supported by the National Natural Science Foundation of China(Grant No.52305623)the Natural Science Foundation of Hubei Province,China(Grant No.2022CFB589)the Natural Science Foundation of Chongqing,China(Grant No.CSTB2023NSCQ-MSX0636).
文摘The quality of the exposed avionics solder joints has a significant impact on the stable operation of the inorbit spacecrafts.Nevertheless,the previously reported inspection methods for multi-scale solder joint defects generally suffer low accuracy and slow detection speed.Herein,a novel real-time detector VMMAO-YOLO is demonstrated based on variable multi-scale concurrency and multi-depth aggregation network(VMMANet)backbone and“one-stop”global information gather-distribute(OS-GD)module.Combined with infrared thermography technology,it can achieve fast and high-precision detection of both internal and external solder joint defects.Specifically,VMMANet is designed for efficient multi-scale feature extraction,which mainly comprises variable multi-scale feature concurrency(VMC)and multi-depth feature aggregation-alignment(MAA)modules.VMC can extract multi-scale features via multiple fix-sized and deformable convolutions,while MAA can aggregate and align multi-depth features on the same order for feature inference.This allows the low-level features with more spatial details to be transmitted in depth-wise,enabling the deeper network to selectively utilize the preceding inference information.The VMMANet replaces inefficient highdensity deep convolution by increasing the width of intermediate feature levels,leading to a salient decline in parameters.The OS-GD is developed for efficacious feature extraction,aggregation and distribution,further enhancing the global information gather and deployment capability of the network.On a self-made solder joint image data set,the VMMAOYOLO achieves a mean average precision mAP@0.5 of 91.6%,surpassing all the mainstream YOLO-series models.Moreover,the VMMAO-YOLO has a body size of merely 19.3 MB and a detection speed up to 119 frame per second,far superior to the prevalent YOLO-series detectors.
基金National Science Foundation Grant NSF CMS CAREER Under Grant No.9996290NSF CMMI Under Grant No.0830391
文摘The primary objective of this paper is to develop output only modal identification and structural damage detection. Identification of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time variant (LTV--due to damage) systems based on Time-frequency (TF) techniques--such as short-time Fourier transform (STFT), empirical mode decomposition (EMD), and wavelets--is proposed. STFT, EMD, and wavelet methods developed to date are reviewed in detail. In addition a Hilbert transform (HT) approach to determine frequency and damping is also presented. In this paper, STFT, EMD, HT and wavelet techniques are developed for decomposition of free vibration response of MDOF systems into their modal components. Once the modal components are obtained, each one is processed using Hilbert transform to obtain the modal frequency and damping ratios. In addition, the ratio of modal components at different degrees of freedom facilitate determination of mode shape. In cases with output only modal identification using ambient/random response, the random decrement technique is used to obtain free vibration response. The advantage of TF techniques is that they arc signal based; hence, can be used for output only modal identification. A three degree of freedom 1:10 scale model test structure is used to validate the proposed output only modal identification techniques based on STFT, EMD, HT, wavelets. Both measured free vibration and forced vibration (white noise) response are considered. The secondary objective of this paper is to show the relative ease with which the TF techniques can be used for modal identification and their potential for real world applications where output only identification is essential. Recorded ambient vibration data processed using techniques such as the random decrement technique can be used to obtain the free vibration response, so that further processing using TF based modal identification can be performed.