This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict...This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict linear matrix inequalities(LMIs). Then, a static output feedback controller is designed for the uncertain closed-loop system to be admissible. Numerical examples are given to illustrate the proposed methods.展开更多
This paper studies the problem of designing adaptive fault-tolerant controllers for linear tirne-invariant systems with actuator saturation. New methods for designing indirect adaptive fault-tolerant controllers via s...This paper studies the problem of designing adaptive fault-tolerant controllers for linear tirne-invariant systems with actuator saturation. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updating automatically to compensate the fault effects on systems. The designs are developed in the framework of linear matrix inequality (LMI) approach, which can enlarge the domain of attraction of closed-loop systems in the cases of actuator saturation and actuator failures. Two examples are given to illustrate the effectiveness of the design method.展开更多
The definitions of controllability, observability and stability were presented for fractional-order linear systems. Using the Cayley-Hamilton theorem and Mittag-Leffler function in two parameters, the sufficient and n...The definitions of controllability, observability and stability were presented for fractional-order linear systems. Using the Cayley-Hamilton theorem and Mittag-Leffler function in two parameters, the sufficient and necessary conditions of controllability and observability for such systems were derived. In terms of Lyapunov’s stability theory, using the theorems of Mittage-Leffler function in two parameters this paper directly derived the sufficient and necessary condition of stability for such systems. The results obtained are useful for the analysis and synthesis of fractional-order linear control systems.展开更多
An efficient identification algorithm is given for commensurate order linear time-invariant fractional systems. This algorithm can identify not only model coefficients of the system, but also its differential order at...An efficient identification algorithm is given for commensurate order linear time-invariant fractional systems. This algorithm can identify not only model coefficients of the system, but also its differential order at the same time. The basic idea is to change the system matrix into a diagonal one through basis transformation. This makes it possible to turn the system’s input-output relationships into the summation of several simple subsystems, and after the identification of these subsystems, the whole identification system is obtained which is algebraically equivalent to the former system. Finally an identification example verifies the effectiveness of the method previously mentioned.展开更多
In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-tim...In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-time linear time-invariant systems. It solves the perturbed linear time-invariant systems via Riccati differential equations and continuous-time algebraic Riccati equations in finite and infinite time horizons. We derive the explicit expressions of measuring the perturbation bounds of condition numbers with respect to the solution of the linear time-invariant systems. Furthermore, condition numbers and their upper bounds of Riccati differential equations and continuous-time algebraic Riccati equations are also discussed. Numerical simulations show the sharpness of the perturbation bounds computed via the proposed methods.展开更多
This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)syste...This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)systems.A model-based probabilistic safe controller is first designed to guarantee probabilisticλ-contractivity(i.e.,stability and invariance)of the LPV system with respect to a given polyhedral safe set.To obviate the requirement of knowing the LPV system model and to bypass identifying its open-loop model,its closed-loop data-based representation is provided in terms of state and scheduling data as well as a decision variable.It is shown that the variance of the closedloop system,as well as the probability of safety satisfaction,depends on the decision variable and the noise covariance.A minimum-variance direct data-driven gain-scheduling safe control design approach is presented next by designing the decision variable such that all possible closed-loop system realizations satisfy safety with the highest confidence level.This minimum-variance approach is a control-oriented learning method since it minimizes the variance of the state of the closed-loop system with respect to the safe set,and thus minimizes the risk of safety violation.Unlike the certainty-equivalent approach that results in a risk-neutral control design,the minimum-variance method leads to a risk-averse control design.It is shown that the presented direct risk-averse learning approach requires weaker data richness conditions than existing indirect learning methods based on system identification and can lead to a lower risk of safety violation.Two simulation examples along with an experimental validation on an autonomous vehicle are provided to show the effectiveness of the presented approach.展开更多
In traditional system identification (SI), actual values of system parameters are concealed in the input and output data;hence, it is necessary to apply estimation methods to determine the parameters. In signal proces...In traditional system identification (SI), actual values of system parameters are concealed in the input and output data;hence, it is necessary to apply estimation methods to determine the parameters. In signal processing, a signal with N elements must be sampled at least N times. Thus, most SI methods use N or more sample data to identify a model with N parameters;however, this can be improved by a new sampling theory called compressive sensing (CS). Based on CS, an SI method called compressive measurement identification (CMI) is proposed for reducing the data needed for estimation, by measuring the parameters using a series of linear measurements, rather than the measurements in sequence. In addition, the accuracy of the measurement process is guaranteed by a criterion called the restrict isometric principle. Simulations demonstrate the accuracy and robustness of CMI in an underdetermined case. Further, the dynamic process of a DC motor is identified experimentally, establishing that CMI can shorten the identification process and increase the prediction accuracy.展开更多
This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of...This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.展开更多
In this paper, the problem of adaptive tracking control for a class of nonlinear large scale systems with unknown parameters entering linearly is discussed. Based on the theory of input output linearization of nonli...In this paper, the problem of adaptive tracking control for a class of nonlinear large scale systems with unknown parameters entering linearly is discussed. Based on the theory of input output linearization of nonlinear systems, direct adaptive control schemes are presented to achieve bounded tracking. The proposed control schemes are robust with respect to the uncertainties in interconnection structure as well as subsystem dynamics. A numerical example is given to illustrate the efficiency of this method.展开更多
The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (...The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (VSC),two-level and decentralized variable structure control laws for this kind of systems are presented respectively,which achieve asymptotically stabilization despite the uncertainties and disturbances. At last,sirnulation of the disturbed two-pendulum system is given to illustrate the feasibility of proposed technique.展开更多
The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for...The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.展开更多
A parametric method for the gain-scheduled controller design of a linear time-varying system is given. According to the proposed scheduling method, the performance between adjacent characteristic points is preserved b...A parametric method for the gain-scheduled controller design of a linear time-varying system is given. According to the proposed scheduling method, the performance between adjacent characteristic points is preserved by the invariant eigenvalues and the gradually varying eigenvectors. A sufficient stability criterion is given by constructing a series of Lyapunov functions based on the selected discrete characteristic points. An important contribution is that it provides a simple and feasible approach for the design of gain-scheduled controllers for linear time-varying systems, which can guarantee both the global stability and the desired closed-loop performance of the resulted system. The method is applied to the design of a BTT missile autopilot and the simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.展开更多
A block diagonal form about a nonlinear system is defined. Based on the de finition, a design method ca1led block diagonal controller (BDC) is proPOsed bo feedbacklinearization. Thus, a linearization design of a class...A block diagonal form about a nonlinear system is defined. Based on the de finition, a design method ca1led block diagonal controller (BDC) is proPOsed bo feedbacklinearization. Thus, a linearization design of a class of nonlinear system can be simply re-alized. The result of design has been proved by mathematical simulation of a certain anti-ship missile.展开更多
In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the...In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the input.The structure of the parallel control is provided,and the relationship between the parallel control and traditional feedback controls is presented.Considering the situations that the systems are controllable and incompletely controllable,the properties of the parallel control law are analyzed.The parallel controller design algorithms are given under the conditions that the systems are controllable and incompletely controllable.Finally,numerical simulations are carried out to demonstrate the effectiveness and applicability of the present method.Index Terms-Continuous-time linear systems,digital twin,parallel controller,parallel intelligence,parallel systems.展开更多
A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop sy...A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop system is regular, impulse free and stable with anH-infinity norm bound. Firstly, a deky-dependent bounded real lemma(BRL) of the time-deky descriptorsystems is presented in terms of linear matrix inequalities(LMIs) by using a descriptor modeltransformation of the system and by taking a new Lyapunov-Krasovsii functional. The introducedfunctional does not require bounding for cross terms, so it has less conservation. Secondly, withthe help of the obtained bounded real lemma, a sufficient condition for the existence of a newdeky-dependent H-infinity state-feedback controller is shown in terms of nonlinear matrixinequalities and the solvability of the problem can be obtained by using an iterative algorithminvolving convex optimization. Finally, numerical examples are given to demonstrate theeffectiveness of the new method presented.展开更多
The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear sy...The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.展开更多
In this paper, we investigate the block Lanczos algorithm for solving large sparse symmetric linear systems with multiple right-hand sides, and show how to incorporate deflation to drop converged linear systems using ...In this paper, we investigate the block Lanczos algorithm for solving large sparse symmetric linear systems with multiple right-hand sides, and show how to incorporate deflation to drop converged linear systems using a natural convergence criterion, and present an adaptive block Lanczos algorithm. We propose also a block version of Paige and Saunders’ MINRES method for iterative solution of symmetric linear systems, and describe important implementation details. We establish a relationship between the block Lanczos algorithm and block MINRES algorithm, and compare the numerical performance of the Lanczos algorithm and MINRES method for symmetric linear systems applied to a sequence of right hand sides with that of the block Lanczos algorithm and block MINRES algorithm for multiple linear systems simultaneously.[WT5,5”HZ]展开更多
This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in ...This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in a sector field by two odd symmetric piecewise linear functions and whose system matrices for each subsystem are Metzler. A class of multiple time-varying Lyapunov functions is constructed to obtain the computable sufficient conditions on the stability of such switched nonlinear systems within the framework of minimum dwell time switching.All present conditions can be solved by linear/nonlinear programming techniques. An example is provided to demonstrate the effectiveness of the proposed result.展开更多
文摘This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict linear matrix inequalities(LMIs). Then, a static output feedback controller is designed for the uncertain closed-loop system to be admissible. Numerical examples are given to illustrate the proposed methods.
基金supported by Program for New Century Excellent Talents in University (NCET-04-0283)the Funds for Creative Research Groups of China (No.60521003)+4 种基金Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0421)the State Key Program of National Natural Science of China (No.60534010)the Funds of National Science of China (No.60674021)the Funds of PhD program of MOE,China (No.20060145019)the 111 Project (B08015)
文摘This paper studies the problem of designing adaptive fault-tolerant controllers for linear tirne-invariant systems with actuator saturation. New methods for designing indirect adaptive fault-tolerant controllers via state feedback are presented for actuator fault compensations. Based on the on-line estimation of eventual faults, the adaptive fault-tolerant controller parameters are updating automatically to compensate the fault effects on systems. The designs are developed in the framework of linear matrix inequality (LMI) approach, which can enlarge the domain of attraction of closed-loop systems in the cases of actuator saturation and actuator failures. Two examples are given to illustrate the effectiveness of the design method.
基金Shanghai Science and Technology Devel-opm ent Funds ( No.0 1160 70 3 3)
文摘The definitions of controllability, observability and stability were presented for fractional-order linear systems. Using the Cayley-Hamilton theorem and Mittag-Leffler function in two parameters, the sufficient and necessary conditions of controllability and observability for such systems were derived. In terms of Lyapunov’s stability theory, using the theorems of Mittage-Leffler function in two parameters this paper directly derived the sufficient and necessary condition of stability for such systems. The results obtained are useful for the analysis and synthesis of fractional-order linear control systems.
基金Sponsored by 863 Project (Grant No.2002AA517020) Developing Fund of Shanghai Science Committee (Grant No.011607033).
文摘An efficient identification algorithm is given for commensurate order linear time-invariant fractional systems. This algorithm can identify not only model coefficients of the system, but also its differential order at the same time. The basic idea is to change the system matrix into a diagonal one through basis transformation. This makes it possible to turn the system’s input-output relationships into the summation of several simple subsystems, and after the identification of these subsystems, the whole identification system is obtained which is algebraically equivalent to the former system. Finally an identification example verifies the effectiveness of the method previously mentioned.
文摘In this paper, we consider the perturbation analysis of linear time-invariant systems, which arise from the linear optimal control in continuous-time. We provide a method to compute condition numbers of continuous-time linear time-invariant systems. It solves the perturbed linear time-invariant systems via Riccati differential equations and continuous-time algebraic Riccati equations in finite and infinite time horizons. We derive the explicit expressions of measuring the perturbation bounds of condition numbers with respect to the solution of the linear time-invariant systems. Furthermore, condition numbers and their upper bounds of Riccati differential equations and continuous-time algebraic Riccati equations are also discussed. Numerical simulations show the sharpness of the perturbation bounds computed via the proposed methods.
基金supported in part by the Department of Navy award (N00014-22-1-2159)the National Science Foundation under award (ECCS-2227311)。
文摘This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)systems.A model-based probabilistic safe controller is first designed to guarantee probabilisticλ-contractivity(i.e.,stability and invariance)of the LPV system with respect to a given polyhedral safe set.To obviate the requirement of knowing the LPV system model and to bypass identifying its open-loop model,its closed-loop data-based representation is provided in terms of state and scheduling data as well as a decision variable.It is shown that the variance of the closedloop system,as well as the probability of safety satisfaction,depends on the decision variable and the noise covariance.A minimum-variance direct data-driven gain-scheduling safe control design approach is presented next by designing the decision variable such that all possible closed-loop system realizations satisfy safety with the highest confidence level.This minimum-variance approach is a control-oriented learning method since it minimizes the variance of the state of the closed-loop system with respect to the safe set,and thus minimizes the risk of safety violation.Unlike the certainty-equivalent approach that results in a risk-neutral control design,the minimum-variance method leads to a risk-averse control design.It is shown that the presented direct risk-averse learning approach requires weaker data richness conditions than existing indirect learning methods based on system identification and can lead to a lower risk of safety violation.Two simulation examples along with an experimental validation on an autonomous vehicle are provided to show the effectiveness of the presented approach.
基金Supported by the National Natural Science Foundation of China(61605218)National Defense Science and Technology Innovation Foundation of Chinese Academy of Sciences(CXJJ-17S023)
文摘In traditional system identification (SI), actual values of system parameters are concealed in the input and output data;hence, it is necessary to apply estimation methods to determine the parameters. In signal processing, a signal with N elements must be sampled at least N times. Thus, most SI methods use N or more sample data to identify a model with N parameters;however, this can be improved by a new sampling theory called compressive sensing (CS). Based on CS, an SI method called compressive measurement identification (CMI) is proposed for reducing the data needed for estimation, by measuring the parameters using a series of linear measurements, rather than the measurements in sequence. In addition, the accuracy of the measurement process is guaranteed by a criterion called the restrict isometric principle. Simulations demonstrate the accuracy and robustness of CMI in an underdetermined case. Further, the dynamic process of a DC motor is identified experimentally, establishing that CMI can shorten the identification process and increase the prediction accuracy.
文摘This paper considers the design problem of static output feedback H ∞ controllers for descriptor linear systems with linear matrix inequality (LMI) approach. Necessary and sufficient conditions for the existence of a static output feedback H ∞ controller are given in terms of LMIs. Furthermore, the design method of H ∞ controllers is provided using the solutions to the LMIs.
文摘In this paper, the problem of adaptive tracking control for a class of nonlinear large scale systems with unknown parameters entering linearly is discussed. Based on the theory of input output linearization of nonlinear systems, direct adaptive control schemes are presented to achieve bounded tracking. The proposed control schemes are robust with respect to the uncertainties in interconnection structure as well as subsystem dynamics. A numerical example is given to illustrate the efficiency of this method.
文摘The robust stabilizating control problem for a class of uncertain nonlinear large-scale systems is discussed. Based on the theory of both input/output (I/O) linearization and decentralized variable structure control (VSC),two-level and decentralized variable structure control laws for this kind of systems are presented respectively,which achieve asymptotically stabilization despite the uncertainties and disturbances. At last,sirnulation of the disturbed two-pendulum system is given to illustrate the feasibility of proposed technique.
基金supported by Research Foundation of Education Bureau of Shannxi Province, PRC(No.2010JK400)
文摘The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China (60474015)Program for Changjiang Scholars and Innovative Research Team in University
文摘A parametric method for the gain-scheduled controller design of a linear time-varying system is given. According to the proposed scheduling method, the performance between adjacent characteristic points is preserved by the invariant eigenvalues and the gradually varying eigenvectors. A sufficient stability criterion is given by constructing a series of Lyapunov functions based on the selected discrete characteristic points. An important contribution is that it provides a simple and feasible approach for the design of gain-scheduled controllers for linear time-varying systems, which can guarantee both the global stability and the desired closed-loop performance of the resulted system. The method is applied to the design of a BTT missile autopilot and the simulation results show that the method is superior to the traditional one in sense of either global stability or system performance.
文摘A block diagonal form about a nonlinear system is defined. Based on the de finition, a design method ca1led block diagonal controller (BDC) is proPOsed bo feedbacklinearization. Thus, a linearization design of a class of nonlinear system can be simply re-alized. The result of design has been proved by mathematical simulation of a certain anti-ship missile.
基金supported in part by the National Key Research and Development Program of China(2018AAA0101502,2018YFB1702300)the National Natural Science Foundation of China(61722312,61533019,U1811463,61533017)。
文摘In this paper,a new parallel controller is developed for continuous-time linear systems.The main contribution of the method is to establish a new parallel control law,where both state and control are considered as the input.The structure of the parallel control is provided,and the relationship between the parallel control and traditional feedback controls is presented.Considering the situations that the systems are controllable and incompletely controllable,the properties of the parallel control law are analyzed.The parallel controller design algorithms are given under the conditions that the systems are controllable and incompletely controllable.Finally,numerical simulations are carried out to demonstrate the effectiveness and applicability of the present method.Index Terms-Continuous-time linear systems,digital twin,parallel controller,parallel intelligence,parallel systems.
文摘A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop system is regular, impulse free and stable with anH-infinity norm bound. Firstly, a deky-dependent bounded real lemma(BRL) of the time-deky descriptorsystems is presented in terms of linear matrix inequalities(LMIs) by using a descriptor modeltransformation of the system and by taking a new Lyapunov-Krasovsii functional. The introducedfunctional does not require bounding for cross terms, so it has less conservation. Secondly, withthe help of the obtained bounded real lemma, a sufficient condition for the existence of a newdeky-dependent H-infinity state-feedback controller is shown in terms of nonlinear matrixinequalities and the solvability of the problem can be obtained by using an iterative algorithminvolving convex optimization. Finally, numerical examples are given to demonstrate theeffectiveness of the new method presented.
基金supported by the Doctoral Foundation of Qingdao University of Science and Technology(0022330).
文摘The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.
基金Supported by the State Key Program of National Natural Science of China (60534010), National Basic Research Program of China (973 Program)(2009CB320604), National Natural Science Foundation of China (60674021), the Funds for Creative Research Groups of China (60521003), the 111 Project(B08015), and the Funds of Ph.D. Program of Ministry of Eduction, China (20060145019).
文摘In this paper, we investigate the block Lanczos algorithm for solving large sparse symmetric linear systems with multiple right-hand sides, and show how to incorporate deflation to drop converged linear systems using a natural convergence criterion, and present an adaptive block Lanczos algorithm. We propose also a block version of Paige and Saunders’ MINRES method for iterative solution of symmetric linear systems, and describe important implementation details. We establish a relationship between the block Lanczos algorithm and block MINRES algorithm, and compare the numerical performance of the Lanczos algorithm and MINRES method for symmetric linear systems applied to a sequence of right hand sides with that of the block Lanczos algorithm and block MINRES algorithm for multiple linear systems simultaneously.[WT5,5”HZ]
基金supported by the National Natural Science Foundation of China(61673198)the Provincial Natural Science Foundation of Liaoning Province(20180550473)
文摘This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in a sector field by two odd symmetric piecewise linear functions and whose system matrices for each subsystem are Metzler. A class of multiple time-varying Lyapunov functions is constructed to obtain the computable sufficient conditions on the stability of such switched nonlinear systems within the framework of minimum dwell time switching.All present conditions can be solved by linear/nonlinear programming techniques. An example is provided to demonstrate the effectiveness of the proposed result.