[Objectives]This study was conducted to explore rapid and large-scale screening and detection of peste des petits ruminants(PPR),so as to provide important technical means for prevention,control and purification of PP...[Objectives]This study was conducted to explore rapid and large-scale screening and detection of peste des petits ruminants(PPR),so as to provide important technical means for prevention,control and purification of PPR.[Methods]Soluble N protein and NH fusion protein were successfully obtained in an Escherichia coli expression system by optimizing E.coli codon and expression conditions.Furthermore,based on purified soluble N protein and NH fusion protein,a double-antigen sandwich time-resolved fluorescence immunoassay method for detection of peste des petits ruminants virus(PPRV)was established.[Results]The method has high sensitivity and specificity and can specifically detect the antibody against PPRV in sheep serum,and it has no cross reaction with other related diseases.The method was used to detect 292 clinical samples,and compared with French IDVET competition ELISA kit.The coincidence rates of positive samples and negative samples from the two kinds of test kits were 92.47%and 97.26%,respectively,and the overall coincidence rate was 94.86%.The intra-group and inter-group coefficients of variation in the repeatability test were less than 10%.[Conclusions]Compared with the traditional ELISA method,the double-antigen sandwich time-resolved fluorescence immunoassay for detection of PPRV has equivalent sensitivity and specificity,and simple and rapid operation,and thus high application and popularization value.展开更多
Monodisperse Ag nanoparticles with diameters of about 3.4 nm were synthesized by a facile ultrasonic synthetic route at room temperature with the reduction of borane-tert-butylamine in the presence of oleylamine (OAm...Monodisperse Ag nanoparticles with diameters of about 3.4 nm were synthesized by a facile ultrasonic synthetic route at room temperature with the reduction of borane-tert-butylamine in the presence of oleylamine (OAm) and oleic acid (OA). The reaction parameters of time, the molar ratios of OAm to OA were studied, and it was found that these parameters played important roles in the morphology and size of the products. Meanwhile, surface enhanced Raman spectrum (SERS) property suggested the Ag nanoparticles exhibited high SERS effect on the model molecule Rhodamine 6G. And also, two-photon fluorescence images showed that the silver nanoparticles had high performances in fluorescence enhancement.展开更多
The determination method of catechol by fluorescence quenching was developed.The assay was based on the combination of the unique property of gold nanoparticles with tyrosinase enzymatic reaction.In the presence of ty...The determination method of catechol by fluorescence quenching was developed.The assay was based on the combination of the unique property of gold nanoparticles with tyrosinase enzymatic reaction.In the presence of tyrosinase,the fluorescence of gold nanoparticles was quenched by catechol which can be employed to detect catechol.Under the optimal conditions,a linear range 5.0×10^(-7)-1.0×10^(-3) mol L^(-1) and a detection limit 1.0×10^(-7) mol L^(-1) of catechol were obtained.o-Quinone intermediate produced...展开更多
A new structured metallic nanomaterial of europium nanoparticle was prepared using tannic acid as the reductive agent, and nanoeuropium protein conjugates were synthesized by the method of lipoic acid modification on ...A new structured metallic nanomaterial of europium nanoparticle was prepared using tannic acid as the reductive agent, and nanoeuropium protein conjugates were synthesized by the method of lipoic acid modification on the surface of nanoparticle, which opens a new field of application of lanthanides in nanotechniques. Their properties were also characterized by UV-vis absorption spectroscopy, transmission electron microscopy (TEM), and fluorescence spectroscopy. The europium nanoparticle and its protein conjugates solution were stable and water-soluble. The fluorescence intensity of the composite europium nanoparticles was significantly increased in the presence of trace protein, and was linear proportional to the concentration of proteins under optimum conditions. According to this, a fluorimetric method for the determination of nrotein was develooed in this paper.展开更多
Traditional fluorescence switching molecules achieving the state change between on and off states commonly based on UV irradiation. However, it is worth noting that UV irradiation is harmful to both the cancer cells a...Traditional fluorescence switching molecules achieving the state change between on and off states commonly based on UV irradiation. However, it is worth noting that UV irradiation is harmful to both the cancer cells and the normal cells. To achieve fluorescence switching under visible wavelength and avoid complicate molecular design, a fluorophore of 2,4,5,6-tetrakis(carbazol-9-yl)-1,3-dicyanobenzene(4Cz IPN) and a quencher of diarylethene(DAE) were physically incorporated within the biocompatible block copolymer poly(lactic-co-glycolic acid)-b-poly(ethylene glycol)(PLGA-b-PEG) to form 4Cz IPNDAE nanoparticles(NPs) through flash nanoprecipitation(FNP). By using the FNP method, the NPs were prepared within milliseconds in a confined impingement jets dilution(CIJ-D) mixer. Quenching and recovery of fluorescence could achieve in the presence of DAE under 475 nm and 560 nm irradiation.Appropriate structure and fluorescent properties of the nanoparticles can be tuned by external conditions for their efficient fluorescence resonance energy transfer(FRET) in a kinetic stabilization process. This NPs formation process was further optimized by varying the dilution ratio, Reynolds number(Re) and polymer concentration to modulate the mixing and particle nucleation and growth process. The size and fluorescence switching properties of the NPs were systematically investigated in solution and in cellular uptake experiments. This work is anticipated to provide a simple and highly effective engineering strategy for the modulation of fluorescence switching nanoparticles and beneficial to its engineering application.展开更多
The siRNA-loaded lipid nanoparticles have attracted much attention due to its significant gene silencing effect and successful marketization.However,the in vivo distribution and release of siRNA still cannot be effect...The siRNA-loaded lipid nanoparticles have attracted much attention due to its significant gene silencing effect and successful marketization.However,the in vivo distribution and release of siRNA still cannot be effectively monitored.In this study,based on the fluorescence resonance energy transfer(FRET)principle,a fluorescence dye Cy5-modified survivin siRNA was conjugated to nanogolds(Au-DR-siRNA),which were then wrapped with lipid nanoparticles(LNPs)for monitoring the release behaviour of siRNA in vivo.The results showed that once Au-DR-siRNA was released from the LNPs and cleaved by the Dicer enzyme to produce free siRNA in cells,the fluorescence of Cy5 would change from quenched state to activated state,showing the location and time of siRNA release.Besides,the LNPs showed a significant antitumor effect by silencing the survivin gene and a CT imaging function superior to iohexol by nanogolds.Therefore,this work provided not only an effective method for monitoring the pharmacokinetic behaviour of LNP-based siRNA,but also a siRNA delivery system for treating and diagnosing tumors.展开更多
The optical absorption spectrum ranging from 200 to 800 nm and fluorescence spectra ranging from 300 to 650 nm of GaP nanoparticles at room temperature were reported. From the optical absorption spectrum it is inferre...The optical absorption spectrum ranging from 200 to 800 nm and fluorescence spectra ranging from 300 to 650 nm of GaP nanoparticles at room temperature were reported. From the optical absorption spectrum it is inferred that the GaP nanoparticles exhibit a direct transition of about 410 nm (3.02 eV) and an indirect transition around 480 nm (2.58 eV). In addition, an absorption peak at about 308 nm (4.02 eV) corresponding to the direct transition at higher energy was observed. The absorption peak was attributed to the transition from the spin-orbit-split valence band to the lowest conduction band along the Λ direction. By observing the fluorescence of the GaP nanoparticles, it follows that multiple emission bands corresponding to the violet, blue, and yellow light are shown peaking at about 400.4?414.1 nm (3.097?2.994 eV), 450.1?466.8 nm (2.755?2.656 eV), and 582.4 nm (2.129 eV), respectively. The violet and blue light emissions are ascribed to the direct and indirect transitions from conduction band to valence band of the GaP nanoparticles. As to the weak yellow emission, it may be attributed to the radiative recombination from defect centers. The spin-orbit-splitting of the GaP nanoparticles is determined as about 100 meV.展开更多
The value of spin-orbit splitting Δ 0 of gallium phosphide (GaP) nanoparticles was determined. The information concerning the spin-orbit splitting of the valence band at Γ was acquired using fluorescence and infra...The value of spin-orbit splitting Δ 0 of gallium phosphide (GaP) nanoparticles was determined. The information concerning the spin-orbit splitting of the valence band at Γ was acquired using fluorescence and infrared spectroscopes. Detailed investigation on the fluorescence characteristics under ultraviolet photoexcitation reveals that two doublets of emission transitions are related to the spin-orbit splitting of the valence band. The origin of two broad violet emissions, 3.00 and 3.10 eV, can be attributed to the direct transitions near the Γ point of the Brillouin zone between the Γ 1 conduction band and Γ 15 valance band, that is, Γ 6c –Γ 8v and Γ 6c –Γ 7v , respectively. The origin of two blue emissions, 2.74 and 2.64 eV, can be attributed to the indirect transitions between the X 1 conduction band and Γ 15 valance band, that is, Δ 5c –Γ 8v and Δ 5c –Γ 7v , respectively. Based on these transitions, the spin-orbit splitting Δ 0 of the GaP nanoparticles is determined as 0.10 eV. The infrared spectrum of the GaP nanoparticles shows a band at 817 cm -1 which is assigned to the transition between the Γ 7v and Γ 8v valence band maxima. It follows therefore that the spin-orbit splitting Δ 0 is 0.10 eV.展开更多
Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to m...Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to modulate the optical properties of fluorescent molecules,which is less reported.In this paper,based on the fluorescence enhancement effect of AuNPs on 2-(2-hydroxyphenyl)-1H-benzimidazole(HPBI)molecules,zeolitic imidazolate framework-8(ZIF-8)crystals with structural stability were introduced.AuNPs@ZIF-8 exhibited a significantly pronounced fluorescence enhancement of the HPBI molecules.In addition,by comparing the fluorescence characteristics of the HPBI molecules adsorbed on AuNPs@ZIF-8 and those captured in AuNPs@ZIF-8,we found that the ZIF-8 can act as a spacer layer with highly effective near-field enhancement.All our preliminary results shed light on future research on the composite structures of noble metal particles and MOFs for fluorescent probes and sensing applications.展开更多
The intensive use of engineered nanoparticles (NPs) in industrial, agricultural and household applications will very likely lead to the release of such materials into the environment, especially water ecosystems. Wate...The intensive use of engineered nanoparticles (NPs) in industrial, agricultural and household applications will very likely lead to the release of such materials into the environment, especially water ecosystems. Water plants are an integral part of ecosystems;hence their interaction with NPs is inevitable. It is important to understand the consequences of this interaction and assess its potential effects. There are different types of approaches for investigating the toxic effects of NPs on plants. Chlorophyll fluorescence (ChlF) is one of interesting biophysical methods for testing the effects NPs on plants in vivo. ChlF is a suitable technique and a very powerful tool for the in vivo studying of photochemical and non-photochemical processes within thylakoid membranes, chloroplasts, plant tissues, and whole plants. The present work reports the in vivo observation of chlorophyll a fluorescence quenching induced by the iron (Fe3O4, Fe2O3) and aluminum oxide (Al2O3) nanoparticles. Excitation and emission spectra of intact leaves of Elodea were acquired by fluorescence spectrophotometer (Cary Eclipse) at room temperature. It was shown that the intensity of the ChlF decreased in the solution of Fe3O4 and Al2O3 nanoparticles on the light. Fe2O3 affected slightly and the toxicity of nanoparticles depended on dose and exposure period. It was clear from these experiments that the given nanoparticles penetrated into the cell and might decrease the chlorophyll content of leaves.展开更多
The assembling of a coating of time-resolved fluorescent chelator BSPDA ( abbreviated for 4, 7-bis ( sulfhydrylphenyl)-1, 10-phenanthroline-2, 9-dicarboxylic acid) onto a nano-gold layer was demonstrated. First, B...The assembling of a coating of time-resolved fluorescent chelator BSPDA ( abbreviated for 4, 7-bis ( sulfhydrylphenyl)-1, 10-phenanthroline-2, 9-dicarboxylic acid) onto a nano-gold layer was demonstrated. First, BSPDA was synthesized by simple procedures, and then an approach was developed to immobilize BSPDA onto the nano-gold layer deposited on a silane modified glass substrate, whereby europium ion (Ⅲ, Eu^3+ ) was captured and released owing to the interactive process of complexation and dissociation between BSPDA functionalized coating and Eu^3+ solution. The fluorescence spectra and related lifetimes were determined. Also, the BSPDA functionalized coating's specific complexation with Eu^3+ on the BSPDA assembly layer and the nonspecific adsorption of Eu^3+ on the nano-gold layer were compared. These results allowed a selective complexation of Eu^3+ by assembling a BSPDA chelating layer on the nano-gold layer; thus, a tunable time-resolved fluorescent layer was covalently attached, The results of the nanoparticle assembling and probing (or labeling) processes to specific bio-systems were very interesting and had significant implications to time-resolved-fluorescence-based detection on biosensor surfaces such as DNA chip and to arrayed light display devices.展开更多
[ Objective] The study aims at developing a novel fluorescence enhancement method to determine anionic surfactants. [ Method] Based on Fe3O4 @ PAA-RB fluorescent nanoparticles as fluorescent probes, we have developed ...[ Objective] The study aims at developing a novel fluorescence enhancement method to determine anionic surfactants. [ Method] Based on Fe3O4 @ PAA-RB fluorescent nanoparticles as fluorescent probes, we have developed a novel fluorescence enhancement method for the determi- nation of an anionic surfactant sodium dodecyl sulfate (SDS) through the gradual optimization of experiment conditions. [ Result] Under the opti- mum conditions, the extent of fluorescence enhancement is directly proportional to SDS concentration varying from 0.5 to 16.0 μmol/L, and the de- tection limit reaches 0.051 μmol/L. The relative standard deviation (RSD) for 4.0 μmol/L SDS is 3.3% ( n =6). The proposed method has been successfully applied to the determination of SDS in environmental water samples, with recovery of 96.3% -105.5%. E Conclusion] The novel fluo- rescence enhancement method is not only simple and rapid, but also has avoided using tedious solvent-extraction and toxic organic solvents.展开更多
In the late 1980s,superparamagnetic iron oxide nanoparticles(SPIO)moved into focus as contrast agents in magnetic resonance imaging(MRI),due to their strong relaxivity and resulting higher resolution of images.At ...In the late 1980s,superparamagnetic iron oxide nanoparticles(SPIO)moved into focus as contrast agents in magnetic resonance imaging(MRI),due to their strong relaxivity and resulting higher resolution of images.At the time,no one anticipated their high potential in basic research or for medical diagnostic andtreatment. Since then, SPIO have been evaluated notonly as spe- cific markers for MRI, but also for cell labeling and tracking (Li et al., 2013).展开更多
Fluorescence enhancement in a DNA-dye system is favorable for sensitive and accurate DNA detection/ sensing technologies.In this paper,we report that the fluorescence of the double-stranded DNA(dsDNA) and SYBR GreenⅠ...Fluorescence enhancement in a DNA-dye system is favorable for sensitive and accurate DNA detection/ sensing technologies.In this paper,we report that the fluorescence of the double-stranded DNA(dsDNA) and SYBR GreenⅠ(SG) system(dsDNA-SG) can be effectively enhanced by negatively charged magnetic iron oxide (Fe_2O_3@DMSA) and gold nanoparticles in suitable concentrations,but positively charged nanoparticles quench the fluorescence.Effects of the Fe_2O_3@DMSA on the fluorescence intensities are investigated with dsDNA-SG of different lengths or complexities.The results show that nanoparticles perform similarly in enhancing fluorescence intensity for several kinds of dsDNA.However,the dsDNA concentration determines the fluorescence amplitude.It shows that fluorescence intensity of lower concentration dsDNA is enhanced remarkably in DNA-SG.The finding may be useful in sensitive biomolecular detection.展开更多
The function of protein in long-range biological electron transfer is a question of debate. We report some preliminary results in femtosecond spectroscopic study of photosynthetic bacterial light-harvesting antenna co...The function of protein in long-range biological electron transfer is a question of debate. We report some preliminary results in femtosecond spectroscopic study of photosynthetic bacterial light-harvesting antenna complex assembled onto TiO2 nanoparticle with an average size of 8 nm in diameter. Crystal structure shows that photosynthetic bacterial antenna complex LH2 has a ring-like structure composed by alpha- and beta-apoprotein helices. The alpha- and beta-transmembrance helices construct two concentric cylinders with pigments bacteriochlorophyll a (Bchl a) and carotenoid (Car) buried inside the protein. We attempt to insert TiO2 nanoparticle into the cavity of the inner cylindrical hollow of LH2 to investigate the nature of the electron transfer between the excited-state Bchl a and the TiO2 nanoparticle. A significant decrease in the ground state bleaching recovery time constant for Bchl a at 850 run (B850) in respect to that of the Bchl a in free LH2 has been observed. By using the relation of distance-dependent long-range electron transfer rate in protein, the distance between the donor B850 and the acceptor TiO2 nanoparticle has been estimated, which is about 0.6 nm. The proposed method of assembling proteins onto wide-gap semiconductor nanoparticle can be a promising way to determine the role of the protein playing in biological electron transfer processes.展开更多
The development of effective and safe vehicles to deliver small interfering RNA(siRNA) and chemotherapeutics remains a major challenge in RNA interference-based combination therapy with chemotherapeutics,which has eme...The development of effective and safe vehicles to deliver small interfering RNA(siRNA) and chemotherapeutics remains a major challenge in RNA interference-based combination therapy with chemotherapeutics,which has emerged as a powerful platform to treat drug-resistant cancer cells.Herein,we describe the development of novel all-in-one fluorescent silicon nanoparticles(SiNPs)-based nanomedicine platform for imaging-guided co-delivery of siRNA and doxorubicin(DOX).This approach enhanced therapeutic efficacy in multidrug-resistant breast cancer cells(i.e.,MCF-7/ADR cells).Typically,the SiNP-based nanocarriers enhanced the stability of siRNA in a biological environment(i.e.,medium or RNase A) and imparted the responsive release behavior of siRNA,resulting in approximately 80% down-regulation of P-glycoprotein expression.Co-delivery of P-glycoprotein siRNA and DOX led to>35-fold decrease in the half maximal inhibitory concentration of DOX in comparison with free DOX,indicating the pronounced therapeutic efficiency of the resultant nanocomposites for drug-resistant breast cancer cells.The intracellular time-dependent release behaviors of siRNA and DOX were revealed through tracking the strong and stable fluorescence of SiNPs.These data provide valuable information for designing effective RNA interference-based co-delivery carriers.展开更多
Starch-nanoparticles were synthesized in water-in-oil microemusion at room temperature, and the starch-nanoparticles were coated with poly-L-lysine. The surface of the starch-nanoparticles was combined with fluorescen...Starch-nanoparticles were synthesized in water-in-oil microemusion at room temperature, and the starch-nanoparticles were coated with poly-L-lysine. The surface of the starch-nanoparticles was combined with fluorescence material Ru(bpy)32+·6H2O, and then the particles were characterized via transmission electron microscope. The fluorescence nanoparticles were conjugated with plasmid DNA to form complexes, and then treated with ultrasound and DNase I. pEGAD plasmid DNA-nanoparticle complexes were co-cultured with plant suspension cells of Dioscrea Zigiberensis G H Wright, and treated with ultrasound. The results show that the diameter of the fluorescence starch-nanoparticles is 50-100 nm. DNA-nanoparticle complexes can protect DNA from ultrasound damage as well as from DNase I cleavage. Mediated by ultrasound, pEGAD plasmid DNA-nanoparticle complexes can pierce into the cell wall, cell membrane and nucleus membrane of plant suspension cells. The green fluorescence protein(GFP) gene at a high frequency exceeds 5%. This nano-biomaterial can efficiently solve the problem that exterior genes cannot traverse the plant cell wall easily.展开更多
Fluorescent nanoparticles have good chemical stability and photostability,controllable optical properties and larger stokes shift.In light of their designability and functionability,the fluorescent nanoparticles are w...Fluorescent nanoparticles have good chemical stability and photostability,controllable optical properties and larger stokes shift.In light of their designability and functionability,the fluorescent nanoparticles are widely used as the fluorescent probes for diverse applications.To enhance the sensitivity and selectivity,the combination of the fluorescent nanoparticles with the molecularly imprinted polymer,i.e.molecularly imprinted fluorescent nanoparticles(MIFN),was an effective way.The sensor based on MIFN(the MIFN sensor)could be more compatible with the complex sample matrix,which was especially widely adopted in medical and biological analysis.In this mini-review,the construction method,detective mechanism and types of MIFN sensors are elaborated.The current applications of MIFN sensors in pharmaceutical analysis,including pesticides/herbicide,veterinary drugs/drugs residues and human related proteins,are highlighted based on the literature in the recent three years.Finally,the research prospect and development trend of the MIFN sensor are forecasted.展开更多
Fluorescent mesoporous silica nanoparticles functionalized with carboxyl group(Znq-CMSCOOH) were successfully synthesized by in situ formation route of 8-hydroxyquinolinate zinc complexes in channels of mesoporous sil...Fluorescent mesoporous silica nanoparticles functionalized with carboxyl group(Znq-CMSCOOH) were successfully synthesized by in situ formation route of 8-hydroxyquinolinate zinc complexes in channels of mesoporous silica nanoparticles and post-grafting of carboxyl group on the surface. Moreover,the particle size and structural properties of Znq-CMS-COOH were characterized by transmission electron microscopy(TEM),field emission scanning electron microscopy(FE-SEM),dynamic light scattering(DLS),Fourier transform infrared spectroscopy(FT-IR),UV-vis spectrometer, fluorescence spectrometer and nitrogen adsorption-desorption measurements. The obtained results suggest that the Znq-CMS-COOH presents the uniform spherical shape with the mean diameter of about 85 nm and the obvious wormhole arrangement mesoporous. In addition, the Znq-CMS-COOH possesses green fluorescence with the emission peaks at 495 nm. So the Znq-CMS-COOH, which is beneficial to further modification and tracing, might be a great potential carrier for applying in drug delivery system in the future.展开更多
A novel kind of fluorescent nanoparticles(FNPs)has been prepared using a precipitation polymerization method.Methacrylic acid,trimethylolpropane trimethacrylate and azobisisobutyronitrile were used as functional-mon...A novel kind of fluorescent nanoparticles(FNPs)has been prepared using a precipitation polymerization method.Methacrylic acid,trimethylolpropane trimethacrylate and azobisisobutyronitrile were used as functional-monomer,cross-linker and initiator, respectively.Compared with other fluorescent nanoparticles,the FNPs have the characteristics including low dye leakage and good photostability.The fluorescence microscopy imaging indicates that the FNPs can be used as fluorescent labels in bioanalysis.展开更多
基金Supported by National Key R&D Program for the Prevention and Control of Major Exotic Animal Diseases(2022YFD1800500)National Mutton Sheep Industrial Technology System(CARS39)+2 种基金Key Research and Development Program of Shandong Province(Major Science and Technology Innovation Project)(2021CXGC011306)Scientific Research Project of General Administration of Customs(2024HK033)Scientific Research Project of Jinan Customs(2023JK005).
文摘[Objectives]This study was conducted to explore rapid and large-scale screening and detection of peste des petits ruminants(PPR),so as to provide important technical means for prevention,control and purification of PPR.[Methods]Soluble N protein and NH fusion protein were successfully obtained in an Escherichia coli expression system by optimizing E.coli codon and expression conditions.Furthermore,based on purified soluble N protein and NH fusion protein,a double-antigen sandwich time-resolved fluorescence immunoassay method for detection of peste des petits ruminants virus(PPRV)was established.[Results]The method has high sensitivity and specificity and can specifically detect the antibody against PPRV in sheep serum,and it has no cross reaction with other related diseases.The method was used to detect 292 clinical samples,and compared with French IDVET competition ELISA kit.The coincidence rates of positive samples and negative samples from the two kinds of test kits were 92.47%and 97.26%,respectively,and the overall coincidence rate was 94.86%.The intra-group and inter-group coefficients of variation in the repeatability test were less than 10%.[Conclusions]Compared with the traditional ELISA method,the double-antigen sandwich time-resolved fluorescence immunoassay for detection of PPRV has equivalent sensitivity and specificity,and simple and rapid operation,and thus high application and popularization value.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.21071136), the National Basic Research Program of China (No.2010CB934700and No.2012CB932001), the Research FUnd for the Doctoral Program of Higher Education of China (No.20103402110033) and Anhui Provincial Education Department (No.KJ2012ZD11).
文摘Monodisperse Ag nanoparticles with diameters of about 3.4 nm were synthesized by a facile ultrasonic synthetic route at room temperature with the reduction of borane-tert-butylamine in the presence of oleylamine (OAm) and oleic acid (OA). The reaction parameters of time, the molar ratios of OAm to OA were studied, and it was found that these parameters played important roles in the morphology and size of the products. Meanwhile, surface enhanced Raman spectrum (SERS) property suggested the Ag nanoparticles exhibited high SERS effect on the model molecule Rhodamine 6G. And also, two-photon fluorescence images showed that the silver nanoparticles had high performances in fluorescence enhancement.
基金supported by the National Natural Science Foundation of China(No.20875059)
文摘The determination method of catechol by fluorescence quenching was developed.The assay was based on the combination of the unique property of gold nanoparticles with tyrosinase enzymatic reaction.In the presence of tyrosinase,the fluorescence of gold nanoparticles was quenched by catechol which can be employed to detect catechol.Under the optimal conditions,a linear range 5.0×10^(-7)-1.0×10^(-3) mol L^(-1) and a detection limit 1.0×10^(-7) mol L^(-1) of catechol were obtained.o-Quinone intermediate produced...
基金Support from the National Natural Science Foundation of China(No.20575035)Natural Science Foundation of Shandong Province(No.023100101)is gratefully acknowledged.
文摘A new structured metallic nanomaterial of europium nanoparticle was prepared using tannic acid as the reductive agent, and nanoeuropium protein conjugates were synthesized by the method of lipoic acid modification on the surface of nanoparticle, which opens a new field of application of lanthanides in nanotechniques. Their properties were also characterized by UV-vis absorption spectroscopy, transmission electron microscopy (TEM), and fluorescence spectroscopy. The europium nanoparticle and its protein conjugates solution were stable and water-soluble. The fluorescence intensity of the composite europium nanoparticles was significantly increased in the presence of trace protein, and was linear proportional to the concentration of proteins under optimum conditions. According to this, a fluorimetric method for the determination of nrotein was develooed in this paper.
基金financially supported by the National Key Research and Development Program of the International Scientific and Technological Innovation Cooperation Project among Governments (2021YFE0100400)Science and Technology Innovation Action Plan of Shanghai (22501100500)the international One Belt One Road Collaboration Project of Shanghai (18490740300)。
文摘Traditional fluorescence switching molecules achieving the state change between on and off states commonly based on UV irradiation. However, it is worth noting that UV irradiation is harmful to both the cancer cells and the normal cells. To achieve fluorescence switching under visible wavelength and avoid complicate molecular design, a fluorophore of 2,4,5,6-tetrakis(carbazol-9-yl)-1,3-dicyanobenzene(4Cz IPN) and a quencher of diarylethene(DAE) were physically incorporated within the biocompatible block copolymer poly(lactic-co-glycolic acid)-b-poly(ethylene glycol)(PLGA-b-PEG) to form 4Cz IPNDAE nanoparticles(NPs) through flash nanoprecipitation(FNP). By using the FNP method, the NPs were prepared within milliseconds in a confined impingement jets dilution(CIJ-D) mixer. Quenching and recovery of fluorescence could achieve in the presence of DAE under 475 nm and 560 nm irradiation.Appropriate structure and fluorescent properties of the nanoparticles can be tuned by external conditions for their efficient fluorescence resonance energy transfer(FRET) in a kinetic stabilization process. This NPs formation process was further optimized by varying the dilution ratio, Reynolds number(Re) and polymer concentration to modulate the mixing and particle nucleation and growth process. The size and fluorescence switching properties of the NPs were systematically investigated in solution and in cellular uptake experiments. This work is anticipated to provide a simple and highly effective engineering strategy for the modulation of fluorescence switching nanoparticles and beneficial to its engineering application.
基金by the National Natural Science Foundation of China(81872812,82073800)the China Postdoctoral Science Fundation(2021TQ0111,2021M691040).
文摘The siRNA-loaded lipid nanoparticles have attracted much attention due to its significant gene silencing effect and successful marketization.However,the in vivo distribution and release of siRNA still cannot be effectively monitored.In this study,based on the fluorescence resonance energy transfer(FRET)principle,a fluorescence dye Cy5-modified survivin siRNA was conjugated to nanogolds(Au-DR-siRNA),which were then wrapped with lipid nanoparticles(LNPs)for monitoring the release behaviour of siRNA in vivo.The results showed that once Au-DR-siRNA was released from the LNPs and cleaved by the Dicer enzyme to produce free siRNA in cells,the fluorescence of Cy5 would change from quenched state to activated state,showing the location and time of siRNA release.Besides,the LNPs showed a significant antitumor effect by silencing the survivin gene and a CT imaging function superior to iohexol by nanogolds.Therefore,this work provided not only an effective method for monitoring the pharmacokinetic behaviour of LNP-based siRNA,but also a siRNA delivery system for treating and diagnosing tumors.
文摘The optical absorption spectrum ranging from 200 to 800 nm and fluorescence spectra ranging from 300 to 650 nm of GaP nanoparticles at room temperature were reported. From the optical absorption spectrum it is inferred that the GaP nanoparticles exhibit a direct transition of about 410 nm (3.02 eV) and an indirect transition around 480 nm (2.58 eV). In addition, an absorption peak at about 308 nm (4.02 eV) corresponding to the direct transition at higher energy was observed. The absorption peak was attributed to the transition from the spin-orbit-split valence band to the lowest conduction band along the Λ direction. By observing the fluorescence of the GaP nanoparticles, it follows that multiple emission bands corresponding to the violet, blue, and yellow light are shown peaking at about 400.4?414.1 nm (3.097?2.994 eV), 450.1?466.8 nm (2.755?2.656 eV), and 582.4 nm (2.129 eV), respectively. The violet and blue light emissions are ascribed to the direct and indirect transitions from conduction band to valence band of the GaP nanoparticles. As to the weak yellow emission, it may be attributed to the radiative recombination from defect centers. The spin-orbit-splitting of the GaP nanoparticles is determined as about 100 meV.
文摘The value of spin-orbit splitting Δ 0 of gallium phosphide (GaP) nanoparticles was determined. The information concerning the spin-orbit splitting of the valence band at Γ was acquired using fluorescence and infrared spectroscopes. Detailed investigation on the fluorescence characteristics under ultraviolet photoexcitation reveals that two doublets of emission transitions are related to the spin-orbit splitting of the valence band. The origin of two broad violet emissions, 3.00 and 3.10 eV, can be attributed to the direct transitions near the Γ point of the Brillouin zone between the Γ 1 conduction band and Γ 15 valance band, that is, Γ 6c –Γ 8v and Γ 6c –Γ 7v , respectively. The origin of two blue emissions, 2.74 and 2.64 eV, can be attributed to the indirect transitions between the X 1 conduction band and Γ 15 valance band, that is, Δ 5c –Γ 8v and Δ 5c –Γ 7v , respectively. Based on these transitions, the spin-orbit splitting Δ 0 of the GaP nanoparticles is determined as 0.10 eV. The infrared spectrum of the GaP nanoparticles shows a band at 817 cm -1 which is assigned to the transition between the Γ 7v and Γ 8v valence band maxima. It follows therefore that the spin-orbit splitting Δ 0 is 0.10 eV.
文摘Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to modulate the optical properties of fluorescent molecules,which is less reported.In this paper,based on the fluorescence enhancement effect of AuNPs on 2-(2-hydroxyphenyl)-1H-benzimidazole(HPBI)molecules,zeolitic imidazolate framework-8(ZIF-8)crystals with structural stability were introduced.AuNPs@ZIF-8 exhibited a significantly pronounced fluorescence enhancement of the HPBI molecules.In addition,by comparing the fluorescence characteristics of the HPBI molecules adsorbed on AuNPs@ZIF-8 and those captured in AuNPs@ZIF-8,we found that the ZIF-8 can act as a spacer layer with highly effective near-field enhancement.All our preliminary results shed light on future research on the composite structures of noble metal particles and MOFs for fluorescent probes and sensing applications.
文摘The intensive use of engineered nanoparticles (NPs) in industrial, agricultural and household applications will very likely lead to the release of such materials into the environment, especially water ecosystems. Water plants are an integral part of ecosystems;hence their interaction with NPs is inevitable. It is important to understand the consequences of this interaction and assess its potential effects. There are different types of approaches for investigating the toxic effects of NPs on plants. Chlorophyll fluorescence (ChlF) is one of interesting biophysical methods for testing the effects NPs on plants in vivo. ChlF is a suitable technique and a very powerful tool for the in vivo studying of photochemical and non-photochemical processes within thylakoid membranes, chloroplasts, plant tissues, and whole plants. The present work reports the in vivo observation of chlorophyll a fluorescence quenching induced by the iron (Fe3O4, Fe2O3) and aluminum oxide (Al2O3) nanoparticles. Excitation and emission spectra of intact leaves of Elodea were acquired by fluorescence spectrophotometer (Cary Eclipse) at room temperature. It was shown that the intensity of the ChlF decreased in the solution of Fe3O4 and Al2O3 nanoparticles on the light. Fe2O3 affected slightly and the toxicity of nanoparticles depended on dose and exposure period. It was clear from these experiments that the given nanoparticles penetrated into the cell and might decrease the chlorophyll content of leaves.
基金Project supported by the National Natural Science Foundation of China (20505020) the Natural Science Foundation ofGuangdong Province (06300086) +2 种基金 China Postdoctoral Science Foundation (20060390202) Scientific Research Fund ofHunan Provincial Education Department (05C508) Skeleton Youth Faculty Programof Hunan Higher Educational School
文摘The assembling of a coating of time-resolved fluorescent chelator BSPDA ( abbreviated for 4, 7-bis ( sulfhydrylphenyl)-1, 10-phenanthroline-2, 9-dicarboxylic acid) onto a nano-gold layer was demonstrated. First, BSPDA was synthesized by simple procedures, and then an approach was developed to immobilize BSPDA onto the nano-gold layer deposited on a silane modified glass substrate, whereby europium ion (Ⅲ, Eu^3+ ) was captured and released owing to the interactive process of complexation and dissociation between BSPDA functionalized coating and Eu^3+ solution. The fluorescence spectra and related lifetimes were determined. Also, the BSPDA functionalized coating's specific complexation with Eu^3+ on the BSPDA assembly layer and the nonspecific adsorption of Eu^3+ on the nano-gold layer were compared. These results allowed a selective complexation of Eu^3+ by assembling a BSPDA chelating layer on the nano-gold layer; thus, a tunable time-resolved fluorescent layer was covalently attached, The results of the nanoparticle assembling and probing (or labeling) processes to specific bio-systems were very interesting and had significant implications to time-resolved-fluorescence-based detection on biosensor surfaces such as DNA chip and to arrayed light display devices.
基金Supported by the Project of Chongqing Municipal Education Commis-sion(KJ101101)Project of Innovation Team for"Water Quality Vari-ation and Water Environmental Security of Three Gorge Reservoir"of Higher Education in Chongqing City(201024)
文摘[ Objective] The study aims at developing a novel fluorescence enhancement method to determine anionic surfactants. [ Method] Based on Fe3O4 @ PAA-RB fluorescent nanoparticles as fluorescent probes, we have developed a novel fluorescence enhancement method for the determi- nation of an anionic surfactant sodium dodecyl sulfate (SDS) through the gradual optimization of experiment conditions. [ Result] Under the opti- mum conditions, the extent of fluorescence enhancement is directly proportional to SDS concentration varying from 0.5 to 16.0 μmol/L, and the de- tection limit reaches 0.051 μmol/L. The relative standard deviation (RSD) for 4.0 μmol/L SDS is 3.3% ( n =6). The proposed method has been successfully applied to the determination of SDS in environmental water samples, with recovery of 96.3% -105.5%. E Conclusion] The novel fluo- rescence enhancement method is not only simple and rapid, but also has avoided using tedious solvent-extraction and toxic organic solvents.
基金supported by deutsche Forschungsgemeinschaft Grant Klinische Forschungsgruppe 213 to JG
文摘In the late 1980s,superparamagnetic iron oxide nanoparticles(SPIO)moved into focus as contrast agents in magnetic resonance imaging(MRI),due to their strong relaxivity and resulting higher resolution of images.At the time,no one anticipated their high potential in basic research or for medical diagnostic andtreatment. Since then, SPIO have been evaluated notonly as spe- cific markers for MRI, but also for cell labeling and tracking (Li et al., 2013).
基金supported by grants from the National Science Foundation of China (No.10975175,90923002)the Chinese Academy of Sciences(No.KJCX2-EW-N03)
文摘Fluorescence enhancement in a DNA-dye system is favorable for sensitive and accurate DNA detection/ sensing technologies.In this paper,we report that the fluorescence of the double-stranded DNA(dsDNA) and SYBR GreenⅠ(SG) system(dsDNA-SG) can be effectively enhanced by negatively charged magnetic iron oxide (Fe_2O_3@DMSA) and gold nanoparticles in suitable concentrations,but positively charged nanoparticles quench the fluorescence.Effects of the Fe_2O_3@DMSA on the fluorescence intensities are investigated with dsDNA-SG of different lengths or complexities.The results show that nanoparticles perform similarly in enhancing fluorescence intensity for several kinds of dsDNA.However,the dsDNA concentration determines the fluorescence amplitude.It shows that fluorescence intensity of lower concentration dsDNA is enhanced remarkably in DNA-SG.The finding may be useful in sensitive biomolecular detection.
文摘The function of protein in long-range biological electron transfer is a question of debate. We report some preliminary results in femtosecond spectroscopic study of photosynthetic bacterial light-harvesting antenna complex assembled onto TiO2 nanoparticle with an average size of 8 nm in diameter. Crystal structure shows that photosynthetic bacterial antenna complex LH2 has a ring-like structure composed by alpha- and beta-apoprotein helices. The alpha- and beta-transmembrance helices construct two concentric cylinders with pigments bacteriochlorophyll a (Bchl a) and carotenoid (Car) buried inside the protein. We attempt to insert TiO2 nanoparticle into the cavity of the inner cylindrical hollow of LH2 to investigate the nature of the electron transfer between the excited-state Bchl a and the TiO2 nanoparticle. A significant decrease in the ground state bleaching recovery time constant for Bchl a at 850 run (B850) in respect to that of the Bchl a in free LH2 has been observed. By using the relation of distance-dependent long-range electron transfer rate in protein, the distance between the donor B850 and the acceptor TiO2 nanoparticle has been estimated, which is about 0.6 nm. The proposed method of assembling proteins onto wide-gap semiconductor nanoparticle can be a promising way to determine the role of the protein playing in biological electron transfer processes.
基金financial support from the National Basic Research Program of China(973 Program,2013CB934400)the National Natural Science Foundation of China(Nos.21825402,31400860,21575096,and 21605109)+3 种基金the Natural Science Foundation of Jiangsu Province of China(BK20170061)a Project funded by Collaborative Innovation Center of Suzhou Nano Science&Technology(NANO-CIC)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the 111 Project as well as Joint International Research Laboratory of Carbon-Based Functional Materials and Devices
文摘The development of effective and safe vehicles to deliver small interfering RNA(siRNA) and chemotherapeutics remains a major challenge in RNA interference-based combination therapy with chemotherapeutics,which has emerged as a powerful platform to treat drug-resistant cancer cells.Herein,we describe the development of novel all-in-one fluorescent silicon nanoparticles(SiNPs)-based nanomedicine platform for imaging-guided co-delivery of siRNA and doxorubicin(DOX).This approach enhanced therapeutic efficacy in multidrug-resistant breast cancer cells(i.e.,MCF-7/ADR cells).Typically,the SiNP-based nanocarriers enhanced the stability of siRNA in a biological environment(i.e.,medium or RNase A) and imparted the responsive release behavior of siRNA,resulting in approximately 80% down-regulation of P-glycoprotein expression.Co-delivery of P-glycoprotein siRNA and DOX led to>35-fold decrease in the half maximal inhibitory concentration of DOX in comparison with free DOX,indicating the pronounced therapeutic efficiency of the resultant nanocomposites for drug-resistant breast cancer cells.The intracellular time-dependent release behaviors of siRNA and DOX were revealed through tracking the strong and stable fluorescence of SiNPs.These data provide valuable information for designing effective RNA interference-based co-delivery carriers.
基金Project(200501) supported the "985" Program of China
文摘Starch-nanoparticles were synthesized in water-in-oil microemusion at room temperature, and the starch-nanoparticles were coated with poly-L-lysine. The surface of the starch-nanoparticles was combined with fluorescence material Ru(bpy)32+·6H2O, and then the particles were characterized via transmission electron microscope. The fluorescence nanoparticles were conjugated with plasmid DNA to form complexes, and then treated with ultrasound and DNase I. pEGAD plasmid DNA-nanoparticle complexes were co-cultured with plant suspension cells of Dioscrea Zigiberensis G H Wright, and treated with ultrasound. The results show that the diameter of the fluorescence starch-nanoparticles is 50-100 nm. DNA-nanoparticle complexes can protect DNA from ultrasound damage as well as from DNase I cleavage. Mediated by ultrasound, pEGAD plasmid DNA-nanoparticle complexes can pierce into the cell wall, cell membrane and nucleus membrane of plant suspension cells. The green fluorescence protein(GFP) gene at a high frequency exceeds 5%. This nano-biomaterial can efficiently solve the problem that exterior genes cannot traverse the plant cell wall easily.
基金This work is supported by the National Natural Science Foundation of China(No.21804105)by the Fundamental Research Funds for the Central Universities(No.5003515037)supported by the Huazhong University of Science and Technology Start-up Fund to Xu YU.
文摘Fluorescent nanoparticles have good chemical stability and photostability,controllable optical properties and larger stokes shift.In light of their designability and functionability,the fluorescent nanoparticles are widely used as the fluorescent probes for diverse applications.To enhance the sensitivity and selectivity,the combination of the fluorescent nanoparticles with the molecularly imprinted polymer,i.e.molecularly imprinted fluorescent nanoparticles(MIFN),was an effective way.The sensor based on MIFN(the MIFN sensor)could be more compatible with the complex sample matrix,which was especially widely adopted in medical and biological analysis.In this mini-review,the construction method,detective mechanism and types of MIFN sensors are elaborated.The current applications of MIFN sensors in pharmaceutical analysis,including pesticides/herbicide,veterinary drugs/drugs residues and human related proteins,are highlighted based on the literature in the recent three years.Finally,the research prospect and development trend of the MIFN sensor are forecasted.
基金Fund by the National Natural Science Foundation of China(No.8120119)
文摘Fluorescent mesoporous silica nanoparticles functionalized with carboxyl group(Znq-CMSCOOH) were successfully synthesized by in situ formation route of 8-hydroxyquinolinate zinc complexes in channels of mesoporous silica nanoparticles and post-grafting of carboxyl group on the surface. Moreover,the particle size and structural properties of Znq-CMS-COOH were characterized by transmission electron microscopy(TEM),field emission scanning electron microscopy(FE-SEM),dynamic light scattering(DLS),Fourier transform infrared spectroscopy(FT-IR),UV-vis spectrometer, fluorescence spectrometer and nitrogen adsorption-desorption measurements. The obtained results suggest that the Znq-CMS-COOH presents the uniform spherical shape with the mean diameter of about 85 nm and the obvious wormhole arrangement mesoporous. In addition, the Znq-CMS-COOH possesses green fluorescence with the emission peaks at 495 nm. So the Znq-CMS-COOH, which is beneficial to further modification and tracing, might be a great potential carrier for applying in drug delivery system in the future.
基金supported by the National Natural Science Foundation of China(No.30470886).
文摘A novel kind of fluorescent nanoparticles(FNPs)has been prepared using a precipitation polymerization method.Methacrylic acid,trimethylolpropane trimethacrylate and azobisisobutyronitrile were used as functional-monomer,cross-linker and initiator, respectively.Compared with other fluorescent nanoparticles,the FNPs have the characteristics including low dye leakage and good photostability.The fluorescence microscopy imaging indicates that the FNPs can be used as fluorescent labels in bioanalysis.