A novel approach for improving the spectral performance of sinusoidal Pulse Width Modulation (SPWM) inverter is presented. By varying the carrier frequency according to chaotic time-sequence, the discrete spectrum of ...A novel approach for improving the spectral performance of sinusoidal Pulse Width Modulation (SPWM) inverter is presented. By varying the carrier frequency according to chaotic time-sequence, the discrete spectrum of the output voltage is transformed into the continuous spectrum, which could reduce the acoustic noise concentrated at specific tones in an inverter-driven electric machine. Fourier analysis shows that the harmonic at the fixed frequency has been restrained effectively and the distribution of the spectrum is in a wider range. Besides, a novel variable is introduced for the evaluation of the output voltage spectrum in SPWM inverter. Simulations and experiments with DSP confirm the advantages of the novel approach. Experimental results show the annoying acoustic noise has been translated into some enjoyable sound like a fall or water flowing when this novel method is applied.展开更多
Considering the time-sequence characteristic and randomness of load and natural resources, ?this paper studies on the distributed generation (DG) impacts on voltage limit violation probability of distribution lines. T...Considering the time-sequence characteristic and randomness of load and natural resources, ?this paper studies on the distributed generation (DG) impacts on voltage limit violation probability of distribution lines. The time-sequence characteristic and randomness of load, wind and photovoltaic (PV) generation are analyzed;the indices and risk levels of voltage limit violation probability of node and distribution line are proposed. By using probabilistic load flow based on semi-invariant method, the impact degrees of voltage limit violation are calculated with different distributed power penetration levels, different seasons, different time periods, different allocation ratio between the wind power and PV power. Voltage limit violation laws of distribution line, which are concluded by IEEE33 bus system simulation, are very helpful to guide the voltage?regulation of distribution line including distributed generation.展开更多
In order to achieve high-speed, real-time and accurate, an image acquisition method based on digital signal processor (DSP) TMS320DM642 is proposed for the paper currency image acquisition [1]. System will be high spe...In order to achieve high-speed, real-time and accurate, an image acquisition method based on digital signal processor (DSP) TMS320DM642 is proposed for the paper currency image acquisition [1]. System will be high speed digital signal processing (DSP) technology and complex programmable logic device (CPLD) and CIS acquisition module combination, the structure of acquisition system is given and the time series analysis, during the process of collecting this kind of design has the advantages of simple implementation, high recognition rate [2].展开更多
The distribution loads, output of distributed generations (DGs) and dynamic power price present obvious time-sequence property, the typical property is studied in this paper. The model of microgrid (including adjustab...The distribution loads, output of distributed generations (DGs) and dynamic power price present obvious time-sequence property, the typical property is studied in this paper. The model of microgrid (including adjustable load, DGs, storage and dynamic power price) is studied. A multi-timescale collaborative optimization model is built towards microgrid;main measures in different timescale optimization are realized. An improved adaptive genetic algorithm is used to solve the optimization problem, which improved the efficiency and reliability. The proposed optimization model is simulated in IEEE 33 node system;the results show it’s effective.展开更多
In order to boost contributions of power systems to a low-carbon economy,the installed capacity of renewable power generation,such as wind and photovoltaic(PV)power generation should be well planned.A bilevel formulat...In order to boost contributions of power systems to a low-carbon economy,the installed capacity of renewable power generation,such as wind and photovoltaic(PV)power generation should be well planned.A bilevel formulation is presented to optimize the proportion of wind and PV capacity in provincial power systems,in which,carbon emissions of generator units and features of renewable resources are taken into account.In the lowerlevel formulation,a time-sequence production simulation(TSPS)model that is suitable for actual power system has been adopted.In order to maximize benefits of energy conservation and emissions reduction resulting from renewable power generation,the commercial software called General Algebraic Modeling System(GAMS)is employed to optimize the annual operation of the power system.In the upper-level formulation,the optimal pattern search(OPS)algorithm is utilized to optimize the proportion of wind and PV capacity.The objective of the upper-level formulation is to maximize benefits of energy conservation and carbon emissions reductions optimized in the lowerlevel problem.Simulation results in practical provincial power systems validate the proposed model and corresponding solving algorithms.The optimization results can provide support to policy makers to make the polices related to renewable energy.展开更多
There are four basic operational modes for the hybrid AC/DC microgrid,including AC grid-connected while interconnecting,both off-grid while interconnecting,AC gridconnected without connection,and both off-grid withou...There are four basic operational modes for the hybrid AC/DC microgrid,including AC grid-connected while interconnecting,both off-grid while interconnecting,AC gridconnected without connection,and both off-grid without connection.How to achieve a seamless operational mode transition is an urgent technical need to overcome.First,this paper describes the typical structure of the hybrid microgrid,and places a detailed focus on the power balance and transition strategy.Secondly,it takes the master-slave control structure as an example,and designs the transition logic for different operational modes,and then a method for selecting the slack bus and transition time-sequence is proposed.Based on the different roles that the interlinking converter(IC)plays in the process of modes transition,a voltage-power(U-P)control method for a hybrid AC/DC microgrid is proposed,and the exchanged power is calculated based on the voltage deviation between the rating value and measured value.Finally,a control flowchart for the transition between the four operational modes in transition is designed.Using the PSCAD/EMTDC platform,this paper takes a typical seven-point microgrid structure as an example,the proposed transition strategy is carried out,and the results show that the transition method and time sequence can achieve smooth transition between different operational modes.展开更多
文摘A novel approach for improving the spectral performance of sinusoidal Pulse Width Modulation (SPWM) inverter is presented. By varying the carrier frequency according to chaotic time-sequence, the discrete spectrum of the output voltage is transformed into the continuous spectrum, which could reduce the acoustic noise concentrated at specific tones in an inverter-driven electric machine. Fourier analysis shows that the harmonic at the fixed frequency has been restrained effectively and the distribution of the spectrum is in a wider range. Besides, a novel variable is introduced for the evaluation of the output voltage spectrum in SPWM inverter. Simulations and experiments with DSP confirm the advantages of the novel approach. Experimental results show the annoying acoustic noise has been translated into some enjoyable sound like a fall or water flowing when this novel method is applied.
文摘Considering the time-sequence characteristic and randomness of load and natural resources, ?this paper studies on the distributed generation (DG) impacts on voltage limit violation probability of distribution lines. The time-sequence characteristic and randomness of load, wind and photovoltaic (PV) generation are analyzed;the indices and risk levels of voltage limit violation probability of node and distribution line are proposed. By using probabilistic load flow based on semi-invariant method, the impact degrees of voltage limit violation are calculated with different distributed power penetration levels, different seasons, different time periods, different allocation ratio between the wind power and PV power. Voltage limit violation laws of distribution line, which are concluded by IEEE33 bus system simulation, are very helpful to guide the voltage?regulation of distribution line including distributed generation.
文摘In order to achieve high-speed, real-time and accurate, an image acquisition method based on digital signal processor (DSP) TMS320DM642 is proposed for the paper currency image acquisition [1]. System will be high speed digital signal processing (DSP) technology and complex programmable logic device (CPLD) and CIS acquisition module combination, the structure of acquisition system is given and the time series analysis, during the process of collecting this kind of design has the advantages of simple implementation, high recognition rate [2].
文摘The distribution loads, output of distributed generations (DGs) and dynamic power price present obvious time-sequence property, the typical property is studied in this paper. The model of microgrid (including adjustable load, DGs, storage and dynamic power price) is studied. A multi-timescale collaborative optimization model is built towards microgrid;main measures in different timescale optimization are realized. An improved adaptive genetic algorithm is used to solve the optimization problem, which improved the efficiency and reliability. The proposed optimization model is simulated in IEEE 33 node system;the results show it’s effective.
基金This work is jointly supported by the research and application of evaluation of priority dispatching of wind/PV generation in multi-levels,State Grid Corporation of China(No.NY71-14-038)Jiangsu Provincial Graduate Education Innovation Project(No.KYLX_0431)+1 种基金the Fundamental Research Funds for the Central Universities(No.2014B33314)National Nature Science Foundation of China(No.51407097).
文摘In order to boost contributions of power systems to a low-carbon economy,the installed capacity of renewable power generation,such as wind and photovoltaic(PV)power generation should be well planned.A bilevel formulation is presented to optimize the proportion of wind and PV capacity in provincial power systems,in which,carbon emissions of generator units and features of renewable resources are taken into account.In the lowerlevel formulation,a time-sequence production simulation(TSPS)model that is suitable for actual power system has been adopted.In order to maximize benefits of energy conservation and emissions reduction resulting from renewable power generation,the commercial software called General Algebraic Modeling System(GAMS)is employed to optimize the annual operation of the power system.In the upper-level formulation,the optimal pattern search(OPS)algorithm is utilized to optimize the proportion of wind and PV capacity.The objective of the upper-level formulation is to maximize benefits of energy conservation and carbon emissions reductions optimized in the lowerlevel problem.Simulation results in practical provincial power systems validate the proposed model and corresponding solving algorithms.The optimization results can provide support to policy makers to make the polices related to renewable energy.
基金supported by the National High Technology Research and Development Program(“863”Project)under Grant 2015AA050102.
文摘There are four basic operational modes for the hybrid AC/DC microgrid,including AC grid-connected while interconnecting,both off-grid while interconnecting,AC gridconnected without connection,and both off-grid without connection.How to achieve a seamless operational mode transition is an urgent technical need to overcome.First,this paper describes the typical structure of the hybrid microgrid,and places a detailed focus on the power balance and transition strategy.Secondly,it takes the master-slave control structure as an example,and designs the transition logic for different operational modes,and then a method for selecting the slack bus and transition time-sequence is proposed.Based on the different roles that the interlinking converter(IC)plays in the process of modes transition,a voltage-power(U-P)control method for a hybrid AC/DC microgrid is proposed,and the exchanged power is calculated based on the voltage deviation between the rating value and measured value.Finally,a control flowchart for the transition between the four operational modes in transition is designed.Using the PSCAD/EMTDC platform,this paper takes a typical seven-point microgrid structure as an example,the proposed transition strategy is carried out,and the results show that the transition method and time sequence can achieve smooth transition between different operational modes.