期刊文献+
共找到266,312篇文章
< 1 2 250 >
每页显示 20 50 100
Review of the SBAS InSAR Time-series algorithms, applications, and challenges 被引量:13
1
作者 Shaowei Li Wenbin Xu Zhiwei Li 《Geodesy and Geodynamics》 CSCD 2022年第2期114-126,共13页
In the past 30 years,the small baseline subset(SBAS)InSAR time-series technique has emerged as an essential tool for measuring slow surface displacement and estimating geophysical parameters.Because of its ability to ... In the past 30 years,the small baseline subset(SBAS)InSAR time-series technique has emerged as an essential tool for measuring slow surface displacement and estimating geophysical parameters.Because of its ability to monitor large-scale deformation with millimeter accuracy,the SBAS method has been widely used in various geodetic fields,such as ground subsidence,landslides,and seismic activity.The obtained long-term time-series cumulative deformation is vital for studying the deformation mecha-nism.This article reviews the algorithms,applications,and challenges of the SBAS method.First,we recall the fundamental principle and analyze the shortcomings of the traditional SBAS algorithm,which provides a basic framework for the following improved time series methods.Second,we classify the current improved SBAS techniques from different perspectives:solving the ill-posed equation,increasing the density of high-coherence points,improving the accuracy of monitoring deformation and measuring the multi-dimensional deformation.Third,we summarize the application of the SBAS method in monitoring ground subsidence,permafrost degradation,glacier movement,volcanic activity,landslides,and seismic activity.Finally,we discuss the difficulties faced by the SBAS method and explore its future development direction. 展开更多
关键词 INSAR Small baseline subset time-series InSAR DEFORMATION
下载PDF
Hierarchical multihead self-attention for time-series-based fault diagnosis
2
作者 Chengtian Wang Hongbo Shi +1 位作者 Bing Song Yang Tao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期104-117,共14页
Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fa... Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fault diagnosis methods have been developed in recent years.However,the existing methods have the problem of long-term dependency and are difficult to train due to the sequential way of training.To overcome these problems,a novel fault diagnosis method based on time-series and the hierarchical multihead self-attention(HMSAN)is proposed for chemical process.First,a sliding window strategy is adopted to construct the normalized time-series dataset.Second,the HMSAN is developed to extract the time-relevant features from the time-series process data.It improves the basic self-attention model in both width and depth.With the multihead structure,the HMSAN can pay attention to different aspects of the complicated chemical process and obtain the global dynamic features.However,the multiple heads in parallel lead to redundant information,which cannot improve the diagnosis performance.With the hierarchical structure,the redundant information is reduced and the deep local time-related features are further extracted.Besides,a novel many-to-one training strategy is introduced for HMSAN to simplify the training procedure and capture the long-term dependency.Finally,the effectiveness of the proposed method is demonstrated by two chemical cases.The experimental results show that the proposed method achieves a great performance on time-series industrial data and outperforms the state-of-the-art approaches. 展开更多
关键词 Self-attention mechanism Deep learning Chemical process time-series Fault diagnosis
下载PDF
Modeling urban redevelopment:A novel approach using time-series remote sensing data and machine learning
3
作者 Li Lin Liping Di +6 位作者 Chen Zhang Liying Guo Haoteng Zhao Didarul Islam Hui Li Ziao Liu Gavin Middleton 《Geography and Sustainability》 CSCD 2024年第2期211-219,共9页
Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and su... Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and subjective questionnaires,yielding less objective,reliable,and timely data.Recent advancements in Geographic Information Systems(GIS)and remote-sensing technologies have improved the identification and mapping of urban redevelopment through quantitative analysis using satellite-based observations.Nonetheless,challenges persist,particularly concerning accuracy and significant temporal delays.This study introduces a novel approach to modeling urban redevelopment,leveraging machine learning algorithms and remote-sensing data.This methodology can facilitate the accurate and timely identification of urban redevelopment activities.The study’s machine learning model can analyze time-series remote-sensing data to identify spatio-temporal and spectral patterns related to urban redevelopment.The model is thoroughly evaluated,and the results indicate that it can accurately capture the time-series patterns of urban redevelopment.This research’s findings are useful for evaluating urban demographic and economic changes,informing policymaking and urban planning,and contributing to sustainable urban development.The model can also serve as a foundation for future research on early-stage urban redevelopment detection and evaluation of the causes and impacts of urban redevelopment. 展开更多
关键词 Urban redevelopment Urban sustainability Remote sensing time-series analysis Machine learning
下载PDF
Missing Value Imputation for Radar-Derived Time-Series Tracks of Aerial Targets Based on Improved Self-Attention-Based Network
4
作者 Zihao Song Yan Zhou +2 位作者 Wei Cheng Futai Liang Chenhao Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第3期3349-3376,共28页
The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random mis... The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random missing(RM)that differs significantly from common missing patterns of RTT-AT.The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation.Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss.In this paper,a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed.Our model consists of two probabilistic sparse diagonal masking self-attention(PSDMSA)units and a weight fusion unit.It learns missing values by combining the representations outputted by the two units,aiming to minimize the difference between the missing values and their actual values.The PSDMSA units effectively capture temporal dependencies and attribute correlations between time steps,improving imputation quality.The weight fusion unit automatically updates the weights of the output representations from the two units to obtain a more accurate final representation.The experimental results indicate that,despite varying missing rates in the two missing patterns,our model consistently outperforms other methods in imputation performance and exhibits a low frequency of deviations in estimates for specific missing entries.Compared to the state-of-the-art autoregressive deep learning imputation model Bidirectional Recurrent Imputation for Time Series(BRITS),our proposed model reduces mean absolute error(MAE)by 31%~50%.Additionally,the model attains a training speed that is 4 to 8 times faster when compared to both BRITS and a standard Transformer model when trained on the same dataset.Finally,the findings from the ablation experiments demonstrate that the PSDMSA,the weight fusion unit,cascade network design,and imputation loss enhance imputation performance and confirm the efficacy of our design. 展开更多
关键词 Missing value imputation time-series tracks probabilistic sparsity diagonal masking self-attention weight fusion
下载PDF
Temperature and Daily Mortality in Shanghai:A Time-series Study 被引量:21
5
作者 HAI-DONGKAN JIANJIA BING-HENGCHEN 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2003年第2期133-139,共7页
To investigate the association between temperature and daily mortality in Shanghai from June 1, 2000 to December 31, 2001. Methods Time-series approach was used to estimate the effect of temperature on daily tota... To investigate the association between temperature and daily mortality in Shanghai from June 1, 2000 to December 31, 2001. Methods Time-series approach was used to estimate the effect of temperature on daily total and cause-specific mortality. We fitted generalized additive Poisson regression using non-parametric smooth functions to control for long-term time trend, season and other variables. We also controlled for day of the week. Results A gently sloping V-like relationship between total mortality and temperature was found, with an optimum temperature (e.g. temperature with lowest mortality risk) value of 26.7癈 in Shanghai. For temperatures above the optimum value, total mortality increased by 0.73% for each degree Celsius increase; while for temperature below the optimum value, total mortality decreased by 1.21% for each degree Celsius increase. Conclusions Our findings indicate that temperature has an effect on daily mortality in Shanghai, and the time-series approach is a useful tool for studying the temperature-mortality association. 展开更多
关键词 TEMPERATURE MORTALITY time-series
下载PDF
Mapping winter wheat using phenological feature of peak before winter on the North China Plain based on time-series MODIS data 被引量:17
6
作者 TAO Jian-bin WU Wen-bin +2 位作者 ZHOU Yong WANG Yu JIANG Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第2期348-359,共12页
By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution a... By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat. 展开更多
关键词 time-series MODIS data phenological feature peak before wintering winter wheat mapping
下载PDF
Clustering Structure Analysis in Time-Series Data With Density-Based Clusterability Measure 被引量:6
7
作者 Juho Jokinen Tomi Raty Timo Lintonen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1332-1343,共12页
Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algor... Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data. 展开更多
关键词 CLUSTERING EXPLORATORY data analysis time-series UNSUPERVISED LEARNING
下载PDF
Wavelet matrix transform for time-series similarity measurement 被引量:2
8
作者 胡志坤 徐飞 +1 位作者 桂卫华 阳春华 《Journal of Central South University》 SCIE EI CAS 2009年第5期802-806,共5页
A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet... A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet subspace,and sample feature vector and orthogonal basics of sample time-series sequences were obtained by K-L transform. Then the inner product transform was carried out to project analyzed time-series sequence into orthogonal basics to gain analyzed feature vectors. The similarity was calculated between sample feature vector and analyzed feature vector by the Euclid distance. Taking fault wave of power electronic devices for example,the experimental results show that the proposed method has low dimension of feature vector,the anti-noise ability of proposed method is 30 times as large as that of plain wavelet method,the sensitivity of proposed method is 1/3 as large as that of plain wavelet method,and the accuracy of proposed method is higher than that of the wavelet singular value decomposition method. The proposed method can be applied in similarity matching and indexing for lager time series databases. 展开更多
关键词 wavelet transform singular value decomposition inner product transform time-series similarity
下载PDF
Time-series gas prediction model using LS-SVR within a Bayesian framework 被引量:8
9
作者 Qiao Meiying Ma Xiaoping +1 位作者 Lan ]ianyi Wang Ying 《Mining Science and Technology》 EI CAS 2011年第1期153-157,共5页
The traditional least squares support vector regression(LS-SVR)model,using cross validation to determine the regularization parameter and kernel parameter,is time-consuming.We propose a Bayesian evidence framework t... The traditional least squares support vector regression(LS-SVR)model,using cross validation to determine the regularization parameter and kernel parameter,is time-consuming.We propose a Bayesian evidence framework to infer the LS-SVR model parameters.Three levels Bayesian inferences are used to determine the model parameters,regularization hyper-parameters and tune the nuclear parameters by model comparison.On this basis,we established Bayesian LS-SVR time-series gas forecasting models and provide steps for the algorithm.The gas outburst data of a Hebi 10th mine working face is used to validate the model.The optimal embedding dimension and delay time of the time series were obtained by the smallest differential entropy method.Finally,within a MATLAB7.1 environment,we used actual coal gas data to compare the traditional LS-SVR and the Bayesian LS-SVR with LS-SVMlab1.5 Toolbox simulation.The results show that the Bayesian framework of an LS-SVR significantly improves the speed and accuracy of the forecast. 展开更多
关键词 Bayesian framework LS-SVR time-series Gas prediction
下载PDF
Spatio-temporal changes of underground coal fires during 2008-2016 in Khanh Hoa coal field(North-east of Viet Nam) using Landsat time-series data 被引量:3
10
作者 Tuyen Danh VU Thanh Tien NGUYEN 《Journal of Mountain Science》 SCIE CSCD 2018年第12期2703-2720,共18页
Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing th... Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field. 展开更多
关键词 UNDERGROUND COAL fires SPATIO-TEMPORAL CHANGES Khanh Hoa COAL field (Viet Nam) LANDSAT time-series data
下载PDF
Time-series gene expression prof iles in AGS cells stimulated with Helicobacter pylori 被引量:1
11
作者 You, Yuan-Hai Song, Yan-Yan +4 位作者 Meng, Fan-Liang He, Li-Hua Zhang, Mao-Jun Yan, Xiao-Mei Zhang, Jian-Zhong 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第11期1385-1396,共12页
AIM: To extend the knowledge of the dynamic interaction between Helicobacter pylori (H. pylori) and host mucosa. METHODS: A time-series cDNA microarray was performed in order to detect the temporal gene expression pro... AIM: To extend the knowledge of the dynamic interaction between Helicobacter pylori (H. pylori) and host mucosa. METHODS: A time-series cDNA microarray was performed in order to detect the temporal gene expression prof iles of human gastric epithelial adenocarcinoma cells infected with H. pylori. Six time points were selected to observe the changes in the model. A differential expression prof ile at each time point was obtained by comparing the microarray signal value with that of 0 h. Real-time polymerase chain reaction was subsequently performed to evaluate the data quality. RESULTS: We found a diversity of gene expression patterns at different time points and identifi ed a group of genes whose expression levels were significantly correlated with several important immune response and tumor related pathways. CONCLUSION: Early infection may trigger some important pathways and may impact the outcome of the infection. 展开更多
关键词 Helicobacter pylori Gene expression MICROARRAY time-series
下载PDF
Monitoring of winter wheat distribution and phenological phases based on MODIS time-series: A case study in the Yellow River Delta, China 被引量:6
12
作者 CHU Lin LIU Qing-sheng +1 位作者 HUANG Chong LIU Gao-huan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第10期2403-2416,共14页
Accurate winter wheat identification and phenology extraction are essential for field management and agricultural policy making. Here, we present mechanisms of winter wheat discrimination and phenological detection in... Accurate winter wheat identification and phenology extraction are essential for field management and agricultural policy making. Here, we present mechanisms of winter wheat discrimination and phenological detection in the Yellow River Delta(YRD) region using moderate resolution imaging spectroradiometer(MODIS) time-series data. The normalized difference vegetation index(NDVI) was obtained by calculating the surface reflectance in red and infrared. We used the Savitzky-Golay filter to smooth time series NDVI curves. We adopted a two-step classification to identify winter wheat. The first step was designed to mask out non-vegetation classes, and the second step aimed to identify winter wheat from other vegetation based on its phenological features. We used the double Gaussian model and the maximum curvature method to extract phenology. Due to the characteristics of the time-series profiles for winter wheat, a double Gaussian function method was selected to fit the temporal profile. A maximum curvature method was performed to extract phenological phases. Phenological phases such as the green-up, heading and harvesting phases were detected when the NDVI curvature exhibited local maximum values. The extracted phenological dates then were validated with records of the ground observations. The spatial patterns of phenological phases were investigated. This study concluded that, for winter wheat, the accuracy of classification is 87.07%, and the accuracy of planting acreage is 90.09%. The phenological result was comparable to the ground observation at the municipal level. The average green-up date for the whole region occurred on March 5, the average heading date occurred on May 9, and the average harvesting date occurred on June 5. The spatial distribution of the phenology for winter wheat showed a significant gradual delay from the southwest to the northeast. This study demonstrates the effectiveness of our proposed method for winter wheat classification and phenology detection. 展开更多
关键词 remote sensing monitoring time-series winter wheat discrimination Yellow River Delta phenology detection
下载PDF
TIME-SERIES MODELI NG AND FAULT FORECAST STUDY ON SPECTRAL ANALYSIS OF LUBRICATING OIL 被引量:1
13
作者 干敏梁 杨忠 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第1期86-90,共5页
The application of ti me-series modeling and forecasting method to the spectral analysis for lubricat ing oil of mechanical equipment is discussed. The AR model is used to perform a time-series modeling and forecasti... The application of ti me-series modeling and forecasting method to the spectral analysis for lubricat ing oil of mechanical equipment is discussed. The AR model is used to perform a time-series modeling and forecasting analysis for the spectral analysis data co llected from aero-engines. In the oil condition monitoring field of mechanical equipment, the use of the method of time-series analysis has rarely been report ed. As indicated in the satisfactory example, a practical method for condition m onitoring and fault forecasting of mechanical equipment has been achieved. 展开更多
关键词 spectral analysis tren ds forecasting condition monitoring time-series modeling
下载PDF
Time-Series Characteristics of Wind Power and Its Impact on Jilin Power Grid 被引量:2
14
作者 Yanping Xu Yong Sun +3 位作者 Taiyi Zheng Hongyi Cai Peng Li Shuo Ma 《Journal of Power and Energy Engineering》 2014年第4期203-212,共10页
With the rapid development of wind power, the large-scale wind power integration brings a new range of issues in dispatching operation. In order to gain a better grasp of the influence caused by wind power combined to... With the rapid development of wind power, the large-scale wind power integration brings a new range of issues in dispatching operation. In order to gain a better grasp of the influence caused by wind power combined to the grid, the paper first establishes the impact characteristic indexes, and then analyzes the regularity of wind power time series in different spatial and temporal scales. At last, according to the analysis results, this paper assesses the impact of time-series characteristics of wind power on power grid, such as the frequency regulation, peak load regulation, which can provide the reference for wind power optimal dispatching of Jilin Power Grid. 展开更多
关键词 CHARACTERISTIC Index time-series CHARACTERISTICS Frequency REGULATION PEAK LOAD REGULATION
下载PDF
A Hybrid Neural Network Model for Marine Dissolved Oxygen Concentrations Time-Series Forecasting Based on Multi-Factor Analysis and a Multi-Model Ensemble 被引量:2
15
作者 Hui Liu Rui Yang +1 位作者 Zhu Duan Haiping Wu 《Engineering》 SCIE EI 2021年第12期1751-1765,共15页
Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includ... Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions. 展开更多
关键词 Dissolved oxygen concentrations forecasting time-series multi-step forecasting Multi-factor analysis Empirical wavelet transform decomposition Multi-model optimization ensemble
下载PDF
Research on Reduction of Solar Power Curtailment with Grid Connected Energy Storage System Based on Time-Series Production Simulation 被引量:1
16
作者 S. Ma Y. P. Xu +3 位作者 X. F. Li Y. F. Wang N. Zhang Y. R. Xu 《Energy and Power Engineering》 2017年第4期162-175,共14页
Due to the variable output of renewable energy (RE) generation, difficulties of dispatching RE for power system operators could not be avoided. One of possible solutions is the energy storage technology, especially th... Due to the variable output of renewable energy (RE) generation, difficulties of dispatching RE for power system operators could not be avoided. One of possible solutions is the energy storage technology, especially the battery storage system. The large-scale energy storage system is available to support power system reliable flexibility for load following and system frequency regulation. In this paper, the bottlenecks of large-scale solar power generation dispatching and operation in Qinghai grid are discussed, and a new PV-energy storage coordinated dispatching method is proposed for reduction of PV curtailment in Qinghai. Moreover, the validation based on the time-series production simulation is provided using real data from Qinghai. The results indicate that the proposed method can effectively decrease the curtailment of solar power and future vision of large-scale solar power coordinated operation with energy storage system is also presented. 展开更多
关键词 SOLAR POWER curtailment ENERGY STORAGE time-series PRODUCTION simulation
下载PDF
Detecting winter canola(Brassica napus) phenological stages using an improved shape-model method based on time-series UAV spectral data 被引量:1
17
作者 Chao Zhang Zi’ang Xie +5 位作者 Jiali Shang Jiangui Liu Taifeng Dong Min Tang Shaoyuan Feng Huanjie Cai 《The Crop Journal》 SCIE CSCD 2022年第5期1353-1362,共10页
Accurate information about phenological stages is essential for canola field management practices such as irrigation, fertilization, and harvesting. Previous studies in canola phenology monitoring focused mainly on th... Accurate information about phenological stages is essential for canola field management practices such as irrigation, fertilization, and harvesting. Previous studies in canola phenology monitoring focused mainly on the flowering stage, using its apparent structure features and colors. Additional phenological stages have been largely overlooked. The objective of this study was to improve a shape-model method(SMM) for extracting winter canola phenological stages from time-series top-of-canopy reflectance images collected by an unmanned aerial vehicle(UAV). The transformation equation of the SMM was refined to account for the multi-peak features of the temporal dynamics of three vegetation indices(VIs)(NDVI, EVI, and CI). An experiment with various seeding scenarios was conducted, including four different seeding dates and three seeding densities. Three mathematical functions: asymmetric Gaussian function(AGF), Fourier function, and double logistic function, were employed to fit timeseries vegetation indices to extract information about phenological stages. The refined SMM effectively estimated the phenological stages of canola, with a minimum root mean square error(RMSE) of 3.7 days for all phenological stages. The AGF function provided the best fitting performance, as it captured multiple peaks in the growth dynamics characteristics for all seeding date scenarios using four scaling parameters. For the three selected VIs, CIred-edgeachieved the greatest accuracy in estimating the phenological stage dates. This study demonstrates the high potential of the refined SMM for estimating winter canola phenology. 展开更多
关键词 time-series Asymmetric Gaussian function Phenological stage Shape model Remote sensing
下载PDF
Study and application of monitoring plane displacement of a similarity model based on time-series images 被引量:5
18
作者 Xu Jiankun Wang Enyuan +1 位作者 Li Zhonghui Wang Chao 《Mining Science and Technology》 EI CAS 2011年第4期501-505,共5页
In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring meth... In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring method was proposed in this study,and the major steps of the monitoring method include:firstly,time-series images of the similarity model in the test were obtained by a camera,and secondly,measuring points marked as artificial targets were automatically tracked and recognized from time-series images.Finally,the real-time plane displacement field was calculated by the fixed magnification between objects and images under the specific conditions.And then the application device of the method was designed and tested.At the same time,a sub-pixel location method and a distortion error model were used to improve the measuring accuracy.The results indicate that this method may record the entire test,especially the detailed non-uniform deformation and sudden deformation.Compared with traditional methods this method has a number of advantages,such as greater measurement accuracy and reliability,less manual intervention,higher automation,strong practical properties,much more measurement information and so on. 展开更多
关键词 Plane displacement monitoring Similarity model test time-series images Displacement measurement
下载PDF
Time-series analysis of the characteristic pressure fluctuations in a conical fluidized bed with negative pressure 被引量:1
19
作者 Sheng Fang Yanding Wei +2 位作者 Lei Fu Geng Tian Haibin Qu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期87-99,共13页
The negative pressure conical fluidized bed is widely used in the pharmaceutical industry.In this study,experiments based on the negative pressure conical fluidized bed are carried out by changing the material mass an... The negative pressure conical fluidized bed is widely used in the pharmaceutical industry.In this study,experiments based on the negative pressure conical fluidized bed are carried out by changing the material mass and particle size.The pressure fluctuation signals are analyzed by the time and the frequency domain methods.A method for absolutely characterizing the degree of the energy concentration at the main frequency is proposed,where the calculation is to divide the original power spectrum by the average signal power.A phenomenon where the gas velocity curve temporarily stops growing is observed when the material mass is light,and the particle size is small.The standard deviation and kurtosis both rapidly change at the minimum fluidization velocity and thus can be used to determine the flow regime,and the variation rule of the kurtosis is independent of both the material mass and particle size.In the initial fluidization stage,the dominant pressure signal comes from the material movement;with the increase in the gas velocity,the power of a 2.5 Hz signal continues to increase.A method of dividing the main frequency by the average cycle frequency can conveniently determine the fluidized state,and a novel concept called stable fluidized zone proposed in this paper can be obtained.Controlling the gas velocity within the stable fluidized zone ensures that the fluidized bed consistently remains in a stable fluidized state. 展开更多
关键词 Conical fluidized bed Negative pressure Pressure fluctuation time-series analysis Characteristic value Fluidized state
下载PDF
Classification of Vegetation in North Tibet Plateau Based on MODIS Time-Series Data 被引量:1
20
作者 LU Yuan YAN Yan TAO Heping 《Wuhan University Journal of Natural Sciences》 CAS 2008年第3期273-278,共6页
Based on the 16d-composite MODIS (moderate resolution imaging spectroradiometer)-NDVI(normalized difference vegetation index) time-series data in 2004, vegetation in North Tibet Plateau was classified and seasonal... Based on the 16d-composite MODIS (moderate resolution imaging spectroradiometer)-NDVI(normalized difference vegetation index) time-series data in 2004, vegetation in North Tibet Plateau was classified and seasonal variations on the pixels selected from different vegetation type were analyzed. The Savitzky-Golay filtering algorithm was applied to perform a filtration processing for MODIS-NDVI time-series data. The processed time-series curves can reflect a real variation trend of vegetation growth. The NDVI time-series curves of coniferous forest, high-cold meadow, high-cold meadow steppe and high-cold steppe all appear a mono-peak model during vegetation growth with the maximum peak occurring in August. A decision-tree classification model was established according to either NDVI time-series data or land surface temperature data. And then, both classifying and processing for vegetations were carried out through the model based on NDVI time-series curves. An accuracy test illustrates that classification results are of high accuracy and credibility and the model is conducive for studying a climate variation and estimating a vegetation production at regional even global scale. 展开更多
关键词 vegetation classification moderate resolution imaging spectroradiometer normalized difference vegetation index time-series data North Tibet Plateau
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部