The negative pressure conical fluidized bed is widely used in the pharmaceutical industry.In this study,experiments based on the negative pressure conical fluidized bed are carried out by changing the material mass an...The negative pressure conical fluidized bed is widely used in the pharmaceutical industry.In this study,experiments based on the negative pressure conical fluidized bed are carried out by changing the material mass and particle size.The pressure fluctuation signals are analyzed by the time and the frequency domain methods.A method for absolutely characterizing the degree of the energy concentration at the main frequency is proposed,where the calculation is to divide the original power spectrum by the average signal power.A phenomenon where the gas velocity curve temporarily stops growing is observed when the material mass is light,and the particle size is small.The standard deviation and kurtosis both rapidly change at the minimum fluidization velocity and thus can be used to determine the flow regime,and the variation rule of the kurtosis is independent of both the material mass and particle size.In the initial fluidization stage,the dominant pressure signal comes from the material movement;with the increase in the gas velocity,the power of a 2.5 Hz signal continues to increase.A method of dividing the main frequency by the average cycle frequency can conveniently determine the fluidized state,and a novel concept called stable fluidized zone proposed in this paper can be obtained.Controlling the gas velocity within the stable fluidized zone ensures that the fluidized bed consistently remains in a stable fluidized state.展开更多
Chronic myeloid leukemia(CML) is characterized by the accumulation of active BCR-ABL protein. Imatinib is the first-line treatment of CML; however, many patients are resistant to this drug. In this study, we aimed t...Chronic myeloid leukemia(CML) is characterized by the accumulation of active BCR-ABL protein. Imatinib is the first-line treatment of CML; however, many patients are resistant to this drug. In this study, we aimed to compare the differences in expression patterns and functions of time-series genes in imatinib-resistant CML cells under different drug treatments. GSE24946 was downloaded from the GEO database, which included 17 samples of K562-r cells with(n=12) or without drug administration(n=5). Three drug treatment groups were considered for this study: arsenic trioxide(ATO), AMN107, and ATO+AMN107. Each group had one sample at each time point(3, 12, 24, and 48 h). Time-series genes with a ratio of standard deviation/average(coefficient of variation) 〉0.15 were screened, and their expression patterns were revealed based on Short Time-series Expression Miner(STEM). Then, the functional enrichment analysis of time-series genes in each group was performed using DAVID, and the genes enriched in the top ten functional categories were extracted to detect their expression patterns. Different time-series genes were identified in the three groups, and most of them were enriched in the ribosome and oxidative phosphorylation pathways. Time-series genes in the three treatment groups had different expression patterns and functions. Time-series genes in the ATO group(e.g. CCNA2 and DAB2) were significantly associated with cell adhesion, those in the AMN107 group were related to cellular carbohydrate metabolic process, while those in the ATO+AMN107 group(e.g. AP2M1) were significantly related to cell proliferation and antigen processing. In imatinib-resistant CML cells, ATO could influence genes related to cell adhesion, AMN107 might affect genes involved in cellular carbohydrate metabolism, and the combination therapy might regulate genes involved in cell proliferation.展开更多
Time-series analysis is important to a wide range of disciplines transcending both the physical and social sciences for proactive policy decisions. Statistical models have sound theoretical basis and have been success...Time-series analysis is important to a wide range of disciplines transcending both the physical and social sciences for proactive policy decisions. Statistical models have sound theoretical basis and have been successfully used in a number of problem domains in time series forecasting. Due to power and flexibility, Box-Jenkins ARIMA model has gained enormous popularity in many areas and research practice for the last three decades. More recently, the neural networks have been shown to be a promising alternative tool for modeling and forecasting owing to their ability to capture the nonlinearity in the data. However, despite the popularity and the superiority of ARIMA and ANN models, the empirical forecasting performance has been rather mixed so that no single method is best in every situation. In this study, a hybrid ARIMA and neural networks model to time series forecasting is proposed. The basic idea behind the model combination is to use each model’s unique features to capture different patterns in the data. With three real data sets, empirical results evidently show that the hybrid model outperforms ARIMA and ANN model noticeably in terms of forecasting accuracy used in isolation.展开更多
In the past two decades,because of the significant increase in the availability of differential interferometry from synthetic aperture radar and GPS data,spaceborne geodesy has been widely employed to determine the co...In the past two decades,because of the significant increase in the availability of differential interferometry from synthetic aperture radar and GPS data,spaceborne geodesy has been widely employed to determine the co-seismic displacement field of earthquakes.On April 18,2021,a moderate earthquake(Mw 5.8)occurred east of Bandar Ganaveh,southern Iran,followed by intensive seismic activity and aftershocks of various magnitudes.We use two-pass D-InSAR and Small Baseline Inversion techniques via the LiCSBAS suite to study the coseismic displacement and monitor the four-month post-seismic deformation of the Bandar Ganaveh earthquake,as well as constrain the fault geometry of the co-seismic faulting mechanism during the seismic sequence.Analyses show that the co-and postseismic deformation are distributed in relatively shallow depths along with an NW-SE striking and NE dipping complex reverse/thrust fault branches of the Zagros Mountain Front Fault,complying with the main trend of the Zagros structures.The average cumulative displacements were obtained from-137.5 to+113.3 mm/yr in the SW and NE blocks of the Mountain Front Fault,respectively.The received maximum uplift amount is approximately consistent with the overall orogen-normal shortening component of the Arabian-Eurasian convergence in the Zagros region.No surface ruptures were associated with the seismic source;therefore,we propose a shallow blind thrust/reverse fault(depth~10 km)connected to the deeper basal decollement fault within a complex tectonic zone,emphasizing the thin-skinned tectonics.展开更多
Background There is a yearly increase in the rate of sudden unexplained death (SUD), even through extensive physical examination and the testing of a large number of biomarkers, the cause of sudden death in patients...Background There is a yearly increase in the rate of sudden unexplained death (SUD), even through extensive physical examination and the testing of a large number of biomarkers, the cause of sudden death in patients previously in good health cannot be fully determined. During clinical practice, a spatial aggregation phenomenon has been observed in the incidence of sudden unexplained death. Previous research has shown that environmental factors, such as air pollution, weather conditions, etc., have a significant impact on human health. In the wake of the continuous environmental damage, the relationship between environmental factors and sudden unexplained death still needs to be studied. To study the relationship between sudden unexplained death and air quality and temperature, commonly used markers such as particulate matter of aerodynamic diameter 〈10 μm (PM10), daily average concentration of the gaseous pollutants sulfur dioxide (SO2) and nitrogen dioxide (NO2), and the daily average temperature were investigated. Methods The methods include collecting the data of sudden unexplained death; air quality monitoring; meteorological monitoring from January 1, 2005 to December 31, 2008; utilizing generalized additive models (GAM); controlling the influential factors such as secular trend, seasonal trend, and Sunday dummy variable; and analyzing the correlation between daily inhalable particle concentration, daily average temperature, and the number of daily SUD. Results There was no statistical significance between the daily inhalable particle and daily incidence of sudden unexplained death. Incidence rate of sudden unexplained death had nonlinear positive correlation with daily temperature. When the temperature was 5℃ above the daily average temperature, the daily incidence of sudden unexplained death went up with the rising temperature. Conclusion Temperature may be one of the key risk factor or precipitating factor of SUD.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algor...Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.展开更多
Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includ...Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions.展开更多
The application of ti me-series modeling and forecasting method to the spectral analysis for lubricat ing oil of mechanical equipment is discussed. The AR model is used to perform a time-series modeling and forecasti...The application of ti me-series modeling and forecasting method to the spectral analysis for lubricat ing oil of mechanical equipment is discussed. The AR model is used to perform a time-series modeling and forecasting analysis for the spectral analysis data co llected from aero-engines. In the oil condition monitoring field of mechanical equipment, the use of the method of time-series analysis has rarely been report ed. As indicated in the satisfactory example, a practical method for condition m onitoring and fault forecasting of mechanical equipment has been achieved.展开更多
The Paris Agreement calls for maintaining a global temperature less than 2℃ above the pre-industrial level and pursuing efforts to limit the temperature increase even further to 1.5℃. To realize this objective and p...The Paris Agreement calls for maintaining a global temperature less than 2℃ above the pre-industrial level and pursuing efforts to limit the temperature increase even further to 1.5℃. To realize this objective and promote a low-carbon society, and because energy production and use is the largest source of global greenhouse-gas (GHG) emissions, it is important to efficiently manage energy demand and supply systems. This, in turn, requires theoretical and practical research and innovation in smart energy monitoring technologies, the identification of appropriate methods for detailed time-series analysis, and the application of these technologies at urban and national scales. Further, because developing countries contribute increasing shares of domestic energy consumption, it is important to consider the application of such innovations in these areas. Motivated by the mandates set out in global agreements on climate change and low-carbon societies, this paper focuses on the development of a smart energy monitoring system (SEMS) and its deployment in house- holds and public and commercial sectors in Bogor, Indonesia. An electricity demand prediction model is developed for each device using the Auto-Regression eXogenous model. The real-time SEMS data and time- series clustering to explore similarities in electricity consumption patterns between monitored units, such as residential, public, and commercial buildings, in Bogor is, then, used. These clusters are evaluated using peak demand and Ramadan term characteristics. The resulting energy- prediction models can be used for low-carbon planning.展开更多
To alleviate problems with access and affordability,six targeted anticancer medications(TAMs)were listed in the Provincial Reimbursement Drug List(PRDL)for the first time in Zhejiang,China in February 2015.In the pres...To alleviate problems with access and affordability,six targeted anticancer medications(TAMs)were listed in the Provincial Reimbursement Drug List(PRDL)for the first time in Zhejiang,China in February 2015.In the present study,we aimed to evaluate the implementation of the PRDL policy on TAMs use.Using the pharmaceutical procurement data of these six listed TAMs(study group)and four unlisted TAMs(control group)from 22 tertiary hospitals in Zhejiang,China dated between January 2014 and February 2017,interrupted time-series analysis was adopted to examine differences in the average hospital purchasing volume(HPV)and the average hospital purchasing spending(HPS)between the two groups.The average daily cost of listed TAMs in the study group was decreased after April 2015.After enlistment,the average HPV per month was significantly increased by 34.6 defined daily doses(DDDs)(P<0.001),and the average HPS per month was significantly increased by USD 6614.9(P<0.001)for the listed TAMs in the study group(n=6).Neither the average HPV nor the average HPS changed significantly for the unlisted TAMs in the control group(n=4).The PRDL policy showed positive effects on improving patients’affordability and promoting access to TAMs in Zhejiang.The government should conduct further price negotiations and include more TAMs with clinical benefits into reimbursement schemes to relieve patients’financial burden and promote access.展开更多
Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and su...Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and subjective questionnaires,yielding less objective,reliable,and timely data.Recent advancements in Geographic Information Systems(GIS)and remote-sensing technologies have improved the identification and mapping of urban redevelopment through quantitative analysis using satellite-based observations.Nonetheless,challenges persist,particularly concerning accuracy and significant temporal delays.This study introduces a novel approach to modeling urban redevelopment,leveraging machine learning algorithms and remote-sensing data.This methodology can facilitate the accurate and timely identification of urban redevelopment activities.The study’s machine learning model can analyze time-series remote-sensing data to identify spatio-temporal and spectral patterns related to urban redevelopment.The model is thoroughly evaluated,and the results indicate that it can accurately capture the time-series patterns of urban redevelopment.This research’s findings are useful for evaluating urban demographic and economic changes,informing policymaking and urban planning,and contributing to sustainable urban development.The model can also serve as a foundation for future research on early-stage urban redevelopment detection and evaluation of the causes and impacts of urban redevelopment.展开更多
In this study,we developed software for vehicle big data analysis to analyze the time-series data of connected vehicles.We designed two software modules:The rst to derive the Pearson correlation coefcients to analyze ...In this study,we developed software for vehicle big data analysis to analyze the time-series data of connected vehicles.We designed two software modules:The rst to derive the Pearson correlation coefcients to analyze the collected data and the second to conduct exploratory data analysis of the collected vehicle data.In particular,we analyzed the dangerous driving patterns of motorists based on the safety standards of the Korea Transportation Safety Authority.We also analyzed seasonal fuel efciency(four seasons)and mileage of vehicles,and identied rapid acceleration,rapid deceleration,sudden stopping(harsh braking),quick starting,sudden left turn,sudden right turn and sudden U-turn driving patterns of vehicles.We implemented the density-based spatial clustering of applications with a noise algorithm for trajectory analysis based on GPS(Global Positioning System)data and designed a long shortterm memory algorithm and an auto-regressive integrated moving average model for time-series data analysis.In this paper,we mainly describe the development environment of the analysis software,the structure and data ow of the overall analysis platform,the conguration of the collected vehicle data,and the various algorithms used in the analysis.Finally,we present illustrative results of our analysis,such as dangerous driving patterns that were detected.展开更多
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s...Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).展开更多
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl...Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.展开更多
DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation ...DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
BACKGROUND As a critical early event in hepatocellular carcinogenesis,telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma(HCC)patients,and its function in the genesis and tre...BACKGROUND As a critical early event in hepatocellular carcinogenesis,telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma(HCC)patients,and its function in the genesis and treatment of HCC has gained much attention over the past two decades.AIM To perform a bibliometric analysis to systematically assess the current state of research on HCC-related telomerase.METHODS The Web of Science Core Collection and PubMed were systematically searched to retrieve publications pertaining to HCC/telomerase limited to“articles”and“reviews”published in English.A total of 873 relevant publications related to HCC and telomerase were identified.We employed the Bibliometrix package in R to extract and analyze the fundamental information of the publications,such as the trends in the publications,citation counts,most prolific or influential writers,and most popular journals;to screen for keywords occurring at high frequency;and to draw collaboration and cluster analysis charts on the basis of coauthorship and co-occurrences.VOSviewer was utilized to compile and visualize the bibliometric data.RESULTS A surge of 51 publications on HCC/telomerase research occurred in 2016,the most productive year from 1996 to 2023,accompanied by the peak citation count recorded in 2016.Up to December 2023,35226 citations were made to all publications,an average of 46.6 citations to each paper.The United States received the most citations(n=13531),followed by China(n=7427)and Japan(n=5754).In terms of national cooperation,China presented the highest centrality,its strongest bonds being to the United States and Japan.Among the 20 academic institutions with the most publications,ten came from China and the rest of Asia,though the University of Paris Cité,Public Assistance-Hospitals of Paris,and the National Institute of Health and Medical Research(INSERM)were the most prolific.As for individual contributions,Hisatomi H,Kaneko S,and Ide T were the three most prolific authors.Kaneko S ranked first by H-index,G-index,and overall publication count,while Zucman-Rossi J ranked first in citation count.The five most popular journals were the World Journal of Gastroenterology,Hepatology,Journal of Hepatology,Oncotarget,and Oncogene,while Nature Genetics,Hepatology,and Nature Reviews Disease Primers had the most citations.We extracted 2293 keywords from the publications,120 of which appeared more than ten times.The most frequent were HCC,telomerase and human telomerase reverse transcriptase(hTERT).Keywords such as mutational landscape,TERT promoter mutations,landscape,risk,and prognosis were among the most common issues in this field in the last three years and may be topics for research in the coming years.CONCLUSION Our bibliometric analysis provides a comprehensive overview of HCC/telomerase research and insights into promising upcoming research.展开更多
The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the...The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.展开更多
基金the National Standardization Project of TCM(ZYBZH-C-TJ-55)and National Science and Technology Major Project(2018ZX09201011-002).
文摘The negative pressure conical fluidized bed is widely used in the pharmaceutical industry.In this study,experiments based on the negative pressure conical fluidized bed are carried out by changing the material mass and particle size.The pressure fluctuation signals are analyzed by the time and the frequency domain methods.A method for absolutely characterizing the degree of the energy concentration at the main frequency is proposed,where the calculation is to divide the original power spectrum by the average signal power.A phenomenon where the gas velocity curve temporarily stops growing is observed when the material mass is light,and the particle size is small.The standard deviation and kurtosis both rapidly change at the minimum fluidization velocity and thus can be used to determine the flow regime,and the variation rule of the kurtosis is independent of both the material mass and particle size.In the initial fluidization stage,the dominant pressure signal comes from the material movement;with the increase in the gas velocity,the power of a 2.5 Hz signal continues to increase.A method of dividing the main frequency by the average cycle frequency can conveniently determine the fluidized state,and a novel concept called stable fluidized zone proposed in this paper can be obtained.Controlling the gas velocity within the stable fluidized zone ensures that the fluidized bed consistently remains in a stable fluidized state.
基金supported by Natural Science Foundation of Heilongjiang Province of China(No.D201252)
文摘Chronic myeloid leukemia(CML) is characterized by the accumulation of active BCR-ABL protein. Imatinib is the first-line treatment of CML; however, many patients are resistant to this drug. In this study, we aimed to compare the differences in expression patterns and functions of time-series genes in imatinib-resistant CML cells under different drug treatments. GSE24946 was downloaded from the GEO database, which included 17 samples of K562-r cells with(n=12) or without drug administration(n=5). Three drug treatment groups were considered for this study: arsenic trioxide(ATO), AMN107, and ATO+AMN107. Each group had one sample at each time point(3, 12, 24, and 48 h). Time-series genes with a ratio of standard deviation/average(coefficient of variation) 〉0.15 were screened, and their expression patterns were revealed based on Short Time-series Expression Miner(STEM). Then, the functional enrichment analysis of time-series genes in each group was performed using DAVID, and the genes enriched in the top ten functional categories were extracted to detect their expression patterns. Different time-series genes were identified in the three groups, and most of them were enriched in the ribosome and oxidative phosphorylation pathways. Time-series genes in the three treatment groups had different expression patterns and functions. Time-series genes in the ATO group(e.g. CCNA2 and DAB2) were significantly associated with cell adhesion, those in the AMN107 group were related to cellular carbohydrate metabolic process, while those in the ATO+AMN107 group(e.g. AP2M1) were significantly related to cell proliferation and antigen processing. In imatinib-resistant CML cells, ATO could influence genes related to cell adhesion, AMN107 might affect genes involved in cellular carbohydrate metabolism, and the combination therapy might regulate genes involved in cell proliferation.
文摘Time-series analysis is important to a wide range of disciplines transcending both the physical and social sciences for proactive policy decisions. Statistical models have sound theoretical basis and have been successfully used in a number of problem domains in time series forecasting. Due to power and flexibility, Box-Jenkins ARIMA model has gained enormous popularity in many areas and research practice for the last three decades. More recently, the neural networks have been shown to be a promising alternative tool for modeling and forecasting owing to their ability to capture the nonlinearity in the data. However, despite the popularity and the superiority of ARIMA and ANN models, the empirical forecasting performance has been rather mixed so that no single method is best in every situation. In this study, a hybrid ARIMA and neural networks model to time series forecasting is proposed. The basic idea behind the model combination is to use each model’s unique features to capture different patterns in the data. With three real data sets, empirical results evidently show that the hybrid model outperforms ARIMA and ANN model noticeably in terms of forecasting accuracy used in isolation.
文摘In the past two decades,because of the significant increase in the availability of differential interferometry from synthetic aperture radar and GPS data,spaceborne geodesy has been widely employed to determine the co-seismic displacement field of earthquakes.On April 18,2021,a moderate earthquake(Mw 5.8)occurred east of Bandar Ganaveh,southern Iran,followed by intensive seismic activity and aftershocks of various magnitudes.We use two-pass D-InSAR and Small Baseline Inversion techniques via the LiCSBAS suite to study the coseismic displacement and monitor the four-month post-seismic deformation of the Bandar Ganaveh earthquake,as well as constrain the fault geometry of the co-seismic faulting mechanism during the seismic sequence.Analyses show that the co-and postseismic deformation are distributed in relatively shallow depths along with an NW-SE striking and NE dipping complex reverse/thrust fault branches of the Zagros Mountain Front Fault,complying with the main trend of the Zagros structures.The average cumulative displacements were obtained from-137.5 to+113.3 mm/yr in the SW and NE blocks of the Mountain Front Fault,respectively.The received maximum uplift amount is approximately consistent with the overall orogen-normal shortening component of the Arabian-Eurasian convergence in the Zagros region.No surface ruptures were associated with the seismic source;therefore,we propose a shallow blind thrust/reverse fault(depth~10 km)connected to the deeper basal decollement fault within a complex tectonic zone,emphasizing the thin-skinned tectonics.
基金This study was supporied by a grant from the National Natural Science Foundation of China (No. 81172745).
文摘Background There is a yearly increase in the rate of sudden unexplained death (SUD), even through extensive physical examination and the testing of a large number of biomarkers, the cause of sudden death in patients previously in good health cannot be fully determined. During clinical practice, a spatial aggregation phenomenon has been observed in the incidence of sudden unexplained death. Previous research has shown that environmental factors, such as air pollution, weather conditions, etc., have a significant impact on human health. In the wake of the continuous environmental damage, the relationship between environmental factors and sudden unexplained death still needs to be studied. To study the relationship between sudden unexplained death and air quality and temperature, commonly used markers such as particulate matter of aerodynamic diameter 〈10 μm (PM10), daily average concentration of the gaseous pollutants sulfur dioxide (SO2) and nitrogen dioxide (NO2), and the daily average temperature were investigated. Methods The methods include collecting the data of sudden unexplained death; air quality monitoring; meteorological monitoring from January 1, 2005 to December 31, 2008; utilizing generalized additive models (GAM); controlling the influential factors such as secular trend, seasonal trend, and Sunday dummy variable; and analyzing the correlation between daily inhalable particle concentration, daily average temperature, and the number of daily SUD. Results There was no statistical significance between the daily inhalable particle and daily incidence of sudden unexplained death. Incidence rate of sudden unexplained death had nonlinear positive correlation with daily temperature. When the temperature was 5℃ above the daily average temperature, the daily incidence of sudden unexplained death went up with the rising temperature. Conclusion Temperature may be one of the key risk factor or precipitating factor of SUD.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
文摘Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.
基金the National Natural Science Foundation of China(61873283)the Changsha Science&Technology Project(KQ1707017)the innovation-driven project of the Central South University(2019CX005).
文摘Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions.
文摘The application of ti me-series modeling and forecasting method to the spectral analysis for lubricat ing oil of mechanical equipment is discussed. The AR model is used to perform a time-series modeling and forecasting analysis for the spectral analysis data co llected from aero-engines. In the oil condition monitoring field of mechanical equipment, the use of the method of time-series analysis has rarely been report ed. As indicated in the satisfactory example, a practical method for condition m onitoring and fault forecasting of mechanical equipment has been achieved.
文摘The Paris Agreement calls for maintaining a global temperature less than 2℃ above the pre-industrial level and pursuing efforts to limit the temperature increase even further to 1.5℃. To realize this objective and promote a low-carbon society, and because energy production and use is the largest source of global greenhouse-gas (GHG) emissions, it is important to efficiently manage energy demand and supply systems. This, in turn, requires theoretical and practical research and innovation in smart energy monitoring technologies, the identification of appropriate methods for detailed time-series analysis, and the application of these technologies at urban and national scales. Further, because developing countries contribute increasing shares of domestic energy consumption, it is important to consider the application of such innovations in these areas. Motivated by the mandates set out in global agreements on climate change and low-carbon societies, this paper focuses on the development of a smart energy monitoring system (SEMS) and its deployment in house- holds and public and commercial sectors in Bogor, Indonesia. An electricity demand prediction model is developed for each device using the Auto-Regression eXogenous model. The real-time SEMS data and time- series clustering to explore similarities in electricity consumption patterns between monitored units, such as residential, public, and commercial buildings, in Bogor is, then, used. These clusters are evaluated using peak demand and Ramadan term characteristics. The resulting energy- prediction models can be used for low-carbon planning.
文摘To alleviate problems with access and affordability,six targeted anticancer medications(TAMs)were listed in the Provincial Reimbursement Drug List(PRDL)for the first time in Zhejiang,China in February 2015.In the present study,we aimed to evaluate the implementation of the PRDL policy on TAMs use.Using the pharmaceutical procurement data of these six listed TAMs(study group)and four unlisted TAMs(control group)from 22 tertiary hospitals in Zhejiang,China dated between January 2014 and February 2017,interrupted time-series analysis was adopted to examine differences in the average hospital purchasing volume(HPV)and the average hospital purchasing spending(HPS)between the two groups.The average daily cost of listed TAMs in the study group was decreased after April 2015.After enlistment,the average HPV per month was significantly increased by 34.6 defined daily doses(DDDs)(P<0.001),and the average HPS per month was significantly increased by USD 6614.9(P<0.001)for the listed TAMs in the study group(n=6).Neither the average HPV nor the average HPS changed significantly for the unlisted TAMs in the control group(n=4).The PRDL policy showed positive effects on improving patients’affordability and promoting access to TAMs in Zhejiang.The government should conduct further price negotiations and include more TAMs with clinical benefits into reimbursement schemes to relieve patients’financial burden and promote access.
文摘Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and subjective questionnaires,yielding less objective,reliable,and timely data.Recent advancements in Geographic Information Systems(GIS)and remote-sensing technologies have improved the identification and mapping of urban redevelopment through quantitative analysis using satellite-based observations.Nonetheless,challenges persist,particularly concerning accuracy and significant temporal delays.This study introduces a novel approach to modeling urban redevelopment,leveraging machine learning algorithms and remote-sensing data.This methodology can facilitate the accurate and timely identification of urban redevelopment activities.The study’s machine learning model can analyze time-series remote-sensing data to identify spatio-temporal and spectral patterns related to urban redevelopment.The model is thoroughly evaluated,and the results indicate that it can accurately capture the time-series patterns of urban redevelopment.This research’s findings are useful for evaluating urban demographic and economic changes,informing policymaking and urban planning,and contributing to sustainable urban development.The model can also serve as a foundation for future research on early-stage urban redevelopment detection and evaluation of the causes and impacts of urban redevelopment.
基金supported by the Technology Innovation Program(10083633,Development on Big Data Analysis Technology and Business Service for Connected Vehicles)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)。
文摘In this study,we developed software for vehicle big data analysis to analyze the time-series data of connected vehicles.We designed two software modules:The rst to derive the Pearson correlation coefcients to analyze the collected data and the second to conduct exploratory data analysis of the collected vehicle data.In particular,we analyzed the dangerous driving patterns of motorists based on the safety standards of the Korea Transportation Safety Authority.We also analyzed seasonal fuel efciency(four seasons)and mileage of vehicles,and identied rapid acceleration,rapid deceleration,sudden stopping(harsh braking),quick starting,sudden left turn,sudden right turn and sudden U-turn driving patterns of vehicles.We implemented the density-based spatial clustering of applications with a noise algorithm for trajectory analysis based on GPS(Global Positioning System)data and designed a long shortterm memory algorithm and an auto-regressive integrated moving average model for time-series data analysis.In this paper,we mainly describe the development environment of the analysis software,the structure and data ow of the overall analysis platform,the conguration of the collected vehicle data,and the various algorithms used in the analysis.Finally,we present illustrative results of our analysis,such as dangerous driving patterns that were detected.
基金supported by the Notional Natural Science Foundation of China,No.81960417 (to JX)Guangxi Key Research and Development Program,No.GuiKeA B20159027 (to JX)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2022GXNSFBA035545 (to YG)。
文摘Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).
文摘Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts.
基金support from the National Key R&D Program of China(Grant No.2018YFE0118700)the National Natural Science Foundation of China(NSFC Grant No.62174119)+1 种基金the 111 Project(Grant No.B07014)the Foundation for Talent Scientists of Nanchang Institute for Microtechnology of Tianjin University.
文摘DNA methylation has been extensively investigated in recent years,not least because of its known relationship with various diseases.Progress in analytical methods can greatly increase the relevance of DNA methylation studies to both clinical medicine and scientific research.Microflu-idic chips are excellent carriers for molecular analysis,and their use can provide improvements from multiple aspects.On-chip molecular analysis has received extensive attention owing to its advantages of portability,high throughput,low cost,and high efficiency.In recent years,the use of novel microfluidic chips for DNA methylation analysis has been widely reported and has shown obvious superiority to conventional methods.In this review,wefirst focus on DNA methylation and its applications.Then,we discuss advanced microfluidic-based methods for DNA methylation analysis and describe the great progress that has been made in recent years.Finally,we summarize the advantages that microfluidic technology brings to DNA methylation analysis and describe several challenges and perspectives for on-chip DNA methylation analysis.This review should help researchers improve their understanding and make progress in developing microfluidic-based methods for DNA methylation analysis.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
基金the Beijing Hope Run Special Fund of Cancer Foundation of China,No.LC2020L05.
文摘BACKGROUND As a critical early event in hepatocellular carcinogenesis,telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma(HCC)patients,and its function in the genesis and treatment of HCC has gained much attention over the past two decades.AIM To perform a bibliometric analysis to systematically assess the current state of research on HCC-related telomerase.METHODS The Web of Science Core Collection and PubMed were systematically searched to retrieve publications pertaining to HCC/telomerase limited to“articles”and“reviews”published in English.A total of 873 relevant publications related to HCC and telomerase were identified.We employed the Bibliometrix package in R to extract and analyze the fundamental information of the publications,such as the trends in the publications,citation counts,most prolific or influential writers,and most popular journals;to screen for keywords occurring at high frequency;and to draw collaboration and cluster analysis charts on the basis of coauthorship and co-occurrences.VOSviewer was utilized to compile and visualize the bibliometric data.RESULTS A surge of 51 publications on HCC/telomerase research occurred in 2016,the most productive year from 1996 to 2023,accompanied by the peak citation count recorded in 2016.Up to December 2023,35226 citations were made to all publications,an average of 46.6 citations to each paper.The United States received the most citations(n=13531),followed by China(n=7427)and Japan(n=5754).In terms of national cooperation,China presented the highest centrality,its strongest bonds being to the United States and Japan.Among the 20 academic institutions with the most publications,ten came from China and the rest of Asia,though the University of Paris Cité,Public Assistance-Hospitals of Paris,and the National Institute of Health and Medical Research(INSERM)were the most prolific.As for individual contributions,Hisatomi H,Kaneko S,and Ide T were the three most prolific authors.Kaneko S ranked first by H-index,G-index,and overall publication count,while Zucman-Rossi J ranked first in citation count.The five most popular journals were the World Journal of Gastroenterology,Hepatology,Journal of Hepatology,Oncotarget,and Oncogene,while Nature Genetics,Hepatology,and Nature Reviews Disease Primers had the most citations.We extracted 2293 keywords from the publications,120 of which appeared more than ten times.The most frequent were HCC,telomerase and human telomerase reverse transcriptase(hTERT).Keywords such as mutational landscape,TERT promoter mutations,landscape,risk,and prognosis were among the most common issues in this field in the last three years and may be topics for research in the coming years.CONCLUSION Our bibliometric analysis provides a comprehensive overview of HCC/telomerase research and insights into promising upcoming research.
基金provided by Science and Technology Development Project of Jilin Province(No.20230101338JC)。
文摘The printed circuit heat exchanger(PCHE) is receiving wide attention as a new kind of compact heat exchanger and is considered as a promising vaporizer in the LNG process. In this paper, a PCHE straight channel in the length of 500 mm is established, with a semicircular cross section in a diameter of 1.2 mm.Numerical simulation is employed to investigate the flow and heat transfer performance of supercritical methane in the channel. The pseudo-boiling theory is adopted and the liquid-like, two-phase-like, and vapor-like regimes are divided for supercritical methane to analyze the heat transfer and flow features.The results are presented in micro segment to show the local convective heat transfer coefficient and pressure drop. It shows that the convective heat transfer coefficient in segments along the channel has a significant peak feature near the pseudo-critical point and a heat transfer deterioration when the average fluid temperature in the segment is higher than the pseudo-critical point. The reason is explained with the generation of vapor-like film near the channel wall that the peak feature related to a nucleateboiling-like state and heat transfer deterioration related to a film-boiling-like state. The effects of parameters, including mass flow rate, pressure, and wall heat flux on flow and heat transfer were analyzed.In calculating of the averaged heat transfer coefficient of the whole channel, the traditional method shows significant deviation and the micro segment weighted average method is adopted. The pressure drop can mainly be affected by the mass flux and pressure and little affected by the wall heat flux. The peak of the convective heat transfer coefficient can only form at high mass flux, low wall heat flux, and near critical pressure, in which condition the nucleate-boiling-like state is easier to appear. Moreover,heat transfer deterioration will always appear, since the supercritical flow will finally develop into a filmboiling-like state. So heat transfer deterioration should be taken seriously in the design and safe operation of vaporizer PCHE. The study of this work clarified the local heat transfer and flow feature of supercritical methane in microchannel and contributed to the deep understanding of supercritical methane flow of the vaporization process in PCHE.