Multivariate time-series forecasting(MTSF)plays an important role in diverse real-world applications.To achieve better accuracy in MTSF,time-series patterns in each variable and interrelationship patterns between vari...Multivariate time-series forecasting(MTSF)plays an important role in diverse real-world applications.To achieve better accuracy in MTSF,time-series patterns in each variable and interrelationship patterns between variables should be considered together.Recently,graph neural networks(GNNs)has gained much attention as they can learn both patterns using a graph.For accurate forecasting through GNN,a well-defined graph is required.However,existing GNNs have limitations in reflecting the spectral similarity and time delay between nodes,and consider all nodes with the same weight when constructing graph.In this paper,we propose a novel graph construction method that solves aforementioned limitations.We first calculate the Fourier transform-based spectral similarity and then update this similarity to reflect the time delay.Then,we weight each node according to the number of edge connections to get the final graph and utilize it to train the GNN model.Through experiments on various datasets,we demonstrated that the proposed method enhanced the performance of GNN-based MTSF models,and the proposed forecasting model achieve of up to 18.1%predictive performance improvement over the state-of-the-art model.展开更多
Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includ...Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions.展开更多
The application of ti me-series modeling and forecasting method to the spectral analysis for lubricat ing oil of mechanical equipment is discussed. The AR model is used to perform a time-series modeling and forecasti...The application of ti me-series modeling and forecasting method to the spectral analysis for lubricat ing oil of mechanical equipment is discussed. The AR model is used to perform a time-series modeling and forecasting analysis for the spectral analysis data co llected from aero-engines. In the oil condition monitoring field of mechanical equipment, the use of the method of time-series analysis has rarely been report ed. As indicated in the satisfactory example, a practical method for condition m onitoring and fault forecasting of mechanical equipment has been achieved.展开更多
Short-term load forecast plays an important role in the day-to-day operation and scheduling of generating units. Season and temperature are the most important factors that affect the load change, but random factors su...Short-term load forecast plays an important role in the day-to-day operation and scheduling of generating units. Season and temperature are the most important factors that affect the load change, but random factors such as big sport events or popular TV shows can change demand consumption in particular hours, which will lead to sudden load changes. A weighted time-variant slide fuzzy time-series model (WTVS) for short-term load forecasting is proposed to improve forecasting accuracy. The WTVS model is divided into three parts, including the data preprocessing, the trend training and the load forecasting. In the data preprocessing phase, the impact of random factors will be weakened by smoothing the historical data. In the trend training and load forecasting phase, the seasonal factor and the weighted historical data are introduced into the Time-variant Slide Fuzzy Time-series Models (TVS) for short-term load forecasting. The WTVS model is tested on the load of the National Electric Power Company in Jordan. Results show that the proposed WTVS model achieves a significant improvement in load forecasting accuracy as compared to TVS models.展开更多
Based on the changing law of municipal water demand,a trigonometric function model for short-term water demand forecast is established using the time-series analysis approach.The method for forecasting water demand du...Based on the changing law of municipal water demand,a trigonometric function model for short-term water demand forecast is established using the time-series analysis approach.The method for forecasting water demand during holidays and under unexpected events is also presented.Meanwhile,a computer software is developed.Through actual application,this method performs well and has high accuracy,so it can be applied to the daily operation of a water distribution system and lay a foundation for on-line optimal operation.展开更多
Vapor pressure deficit(VPD)plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation,second only to carbon dioxide(CO_(2)).As a robust indicator of atmospheric ...Vapor pressure deficit(VPD)plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation,second only to carbon dioxide(CO_(2)).As a robust indicator of atmospheric water demand,VPD has implications for global water resources,and its significance extends to the structure and functioning of ecosystems.However,the influence of VPD on vegetation growth under climate change remains unclear in China.This study employed empirical equations to estimate the VPD in China from 2000 to 2020 based on meteorological reanalysis data of the Climatic Research Unit(CRU)Time-Series version 4.06(TS4.06)and European Centre for Medium-Range Weather Forecasts(ECMWF)Reanalysis 5(ERA-5).Vegetation growth status was characterized using three vegetation indices,namely gross primary productivity(GPP),leaf area index(LAI),and near-infrared reflectance of vegetation(NIRv).The spatiotemporal dynamics of VPD and vegetation indices were analyzed using the Theil-Sen median trend analysis and Mann-Kendall test.Furthermore,the influence of VPD on vegetation growth and its relative contribution were assessed using a multiple linear regression model.The results indicated an overall negative correlation between VPD and vegetation indices.Three VPD intervals for the correlations between VPD and vegetation indices were identified:a significant positive correlation at VPD below 4.820 hPa,a significant negative correlation at VPD within 4.820–9.000 hPa,and a notable weakening of negative correlation at VPD above 9.000 hPa.VPD exhibited a pronounced negative impact on vegetation growth,surpassing those of temperature,precipitation,and solar radiation in absolute magnitude.CO_(2) contributed most positively to vegetation growth,with VPD offsetting approximately 30.00%of the positive effect of CO_(2).As the rise of VPD decelerated,its relative contribution to vegetation growth diminished.Additionally,the intensification of spatial variations in temperature and precipitation accentuated the spatial heterogeneity in the impact of VPD on vegetation growth in China.This research provides a theoretical foundation for addressing climate change in China,especially regarding the challenges posed by increasing VPD.展开更多
Diffusion models, a family of generative models based on deep learning, have become increasinglyprominent in cutting-edge machine learning research. With distinguished performance in generating samples thatresemble th...Diffusion models, a family of generative models based on deep learning, have become increasinglyprominent in cutting-edge machine learning research. With distinguished performance in generating samples thatresemble the observed data, diffusion models are widely used in image, video, and text synthesis nowadays. Inrecent years, the concept of diffusion has been extended to time-series applications, and many powerful models havebeen developed. Considering the deficiency of a methodical summary and discourse on these models, we providethis survey as an elementary resource for new researchers in this area and to provide inspiration to motivate futureresearch. For better understanding, we include an introduction about the basics of diffusion models. Except forthis, we primarily focus on diffusion-based methods for time-series forecasting, imputation, and generation, andpresent them, separately, in three individual sections. We also compare different methods for the same applicationand highlight their connections if applicable. Finally, we conclude with the common limitation of diffusion-basedmethods and highlight potential future research directions.展开更多
Management and efficient operations in critical infrastructures such as smart grids take huge advantage of accurate power load forecasting,which,due to its non-linear nature,remains a challenging task.Recently,deep le...Management and efficient operations in critical infrastructures such as smart grids take huge advantage of accurate power load forecasting,which,due to its non-linear nature,remains a challenging task.Recently,deep learning has emerged in the machine learning field achieving impressive performance in a vast range of tasks,from image classification to machine translation.Applications of deep learning models to the electric load forecasting problem are gaining interest among researchers as well as the industry,but a comprehensive and sound comparison among different-also traditional-architectures is not yet available in the literature.This work aims at filling the gap by reviewing and experimentally evaluating four real world datasets on the most recent trends in electric load forecasting,by contrasting deep learning architectures on short-term forecast(oneday-ahead prediction).Specifically,the focus is on feedforward and recurrent neural networks,sequence-to-sequence models and temporal convolutional neural networks along with architectural variants,which are known in the signal processing community but are novel to the load forecasting one.展开更多
Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec as...Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec asting model. However, the conventional methods of making sell and buy decision based on human forecast or conventional moving average and exponential smoothing methods is no longer be sufficient to meet the future need. Furthermore, the un derlying statistics of the market information change from time to time due to a number of reasons such as change of global economic environment, government poli cies and business risks. This demands for highly adaptive forecasting model which is robust enough to response and adapt well to the fast changes in the dat a characteristics, in other words, the trajectory of the "dynamic characteristic s" of the data. In this paper, an adaptive time-series modelling method was proposed for short -term dynamic forecasting. The method employs an autoregressive (AR) time-seri es model to carry out the forecasting process. A modified least mean square (MLM S) adaptive filter algorithm was established for adjusting the AR model coeffici ents so as to minimise the sum of squared of forecasting errors. A prototype dyn amic forecasting system was built based on the adaptive time-series modelling m ethod. Basically, the dynamic forecasting system can be divided into two phases, i.e. the Learning Phase and the Application Phase. The learning procedures star t with the determination of upper limit of the adaptation gain based on the conv ergence in the mean square criterion. Hence, the optimum ELMS filter parameters are determined using an iteration algorithm which changes each filter parameter i.e. the order, the adaptation gain andthe values initial coefficient vector on e by one inside a predetermined iteration range. The set of parameters which giv es the minimum value for sum of squared errors within the iteration range is sel ected as the optimum set of filter parameters. In the Application Phase, the sys tem is operated under a real-time environment. The sampled data is processed by the optimised ELMS filter and the forecasted data are calculated based on the a daptive time-series model. The error of forecasting is continuously monitored w ithin the predefined tolerance. When the system detects excessive forecasting er ror, a feedback alarm signal was issued for system re-calibration. Experimental results indicated that the convergence rate and sum of squared erro rs during initial adaptation could be significantly improved using the MLMS algorithm. The performance of the system was verified through a series of experi ments conducted on the forecast of materials demand and costing in productio n logistics. Satisfactory results were achieved with the forecast errors confini ng within in most instances. Further applications of the system can be found i n sales demand forecast, inventory management as well as collaborative planning, forecast and replenishment (CPFR) in logistics engineering.展开更多
The vast majority of tourism forecasting studies have centered on tourist arrivals at an aggregated level.Little research has been done of forecasting tourist expenditure at a national level let alone at a regional le...The vast majority of tourism forecasting studies have centered on tourist arrivals at an aggregated level.Little research has been done of forecasting tourist expenditure at a national level let alone at a regional level.This study uses expenditure data to assess the relative economic impact of tourism into regional areas.By comparing five time-series models(the Na?ve,Holt,ARMA and Basic Structural Model(BSM)with and without intervention),and three econometric models(the Vector Autoregressive(VAR)model and the Time Varying Parameter(TVP)with and without intervention),the study sought to find the most accurate model for forecasting tourism expenditure two years ahead for each of the 31 provinces of China's Mainland.The results show that TVP models outperform other time series and econometric models.The research also provides practical management outcomes by providing methods for forecasting tourist expenditure as an indicator of economic growth in China’s provinces.The research concludes with the findings on the most appropriate model for regional forecasting and potential new variables suitable at the regional level.展开更多
Boosted by a strong solar power market,the electricity grid is exposed to risk under an increasing share of fluctuant solar power.To increase the stability of the electricity grid,an accurate solar power forecast is n...Boosted by a strong solar power market,the electricity grid is exposed to risk under an increasing share of fluctuant solar power.To increase the stability of the electricity grid,an accurate solar power forecast is needed to evaluate such fluctuations.In terms of forecast,solar irradiance is the key factor of solar power generation,which is affected by atmospheric conditions,including surface meteorological variables and column integrated variables.These variables involve multiple numerical timeseries and images.However,few studies have focused on the processing method of multiple data types in an interhour direct normal irradiance(DNI)forecast.In this study,a framework for predicting the DNI for a 10-min time horizon was developed,which included the nondimensionalization of multiple data types and time-series,development of a forecast model,and transformation of the outputs.Several atmospheric variables were considered in the forecast framework,including the historical DNI,wind speed and direction,relative humidity time-series,and ground-based cloud images.Experiments were conducted to evaluate the performance of the forecast framework.The experimental results demonstrate that the proposed method performs well with a normalized mean bias error of 0.41%and a normalized root mean square error(n RMSE)of20.53%,and outperforms the persistent model with an improvement of 34%in the nRMSE.展开更多
Intentionally added plastic microbeads in personal care products(PCP)are an underestimated source of microplastics.These microbeads are added as fillers,to increase product volume or aesthetics and allegedly have the ...Intentionally added plastic microbeads in personal care products(PCP)are an underestimated source of microplastics.These microbeads are added as fillers,to increase product volume or aesthetics and allegedly have the purpose of cleansing and exfoliation.To assess and forecast microbead emissions in India,this study analysed 45 items from four different categories of personal care products:face wash,face scrub,shower gel and body scrub available in the Indian market and determined microbead abundance,size,colour,shape and polymer composition.Also,an emission estimation and time-seriesbased forecast for 2030 was done using ARIMA(0,2,0)for individual categories and overall.The results indicate that 45.00%of the products contained irregular or smooth microplastics,with Polyethylene being the dominant polymer,followed by Polypropylene,Polystyrene,Polyurethane and Polycaprolactone.A significant number of products(23.33%)contained cellulose microbeads,with ambiguity regarding their biodegradability.The identified microbeads were mainly irregular in shape and granular in texture,especially scrubs.White/transparent colour dominated the identified microbeads,followed by blue,pink,yellow,red and green.Approximately 1.34%of the total product contained plastic microbeads,with 5.04%and 0.04%being the highest and lowest percentages quantified.The average size of microbeads was found to be 640.74 mm,452.45 mm,556.66 mm and 606.30 mm in different categories.The overall annual emission estimation was 3.51×10^(19)(highest),2.14×10^(18)(lowest)and 1.37×10^(19)(average)in 2021 and forecasted to be 4.12×10^(19)(highest),2.52×10^(18)(lowest)and 1.611019(average)in 2030.This exorbitantly high value is due to India's significant population,globalisation,inefficient wastewater efficiency,growing economy and disposable income.A lack of policies and adequate regulations further add to this.This study emphasises and recommends the development of stringent policies and other well-tailored mitigation measures for intentionally added microbeads in PCP in India.The study recommends some policy measures to curb this threat.展开更多
基金supported by Energy Cloud R&D Program(grant number:2019M3F2A1073184)through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT.
文摘Multivariate time-series forecasting(MTSF)plays an important role in diverse real-world applications.To achieve better accuracy in MTSF,time-series patterns in each variable and interrelationship patterns between variables should be considered together.Recently,graph neural networks(GNNs)has gained much attention as they can learn both patterns using a graph.For accurate forecasting through GNN,a well-defined graph is required.However,existing GNNs have limitations in reflecting the spectral similarity and time delay between nodes,and consider all nodes with the same weight when constructing graph.In this paper,we propose a novel graph construction method that solves aforementioned limitations.We first calculate the Fourier transform-based spectral similarity and then update this similarity to reflect the time delay.Then,we weight each node according to the number of edge connections to get the final graph and utilize it to train the GNN model.Through experiments on various datasets,we demonstrated that the proposed method enhanced the performance of GNN-based MTSF models,and the proposed forecasting model achieve of up to 18.1%predictive performance improvement over the state-of-the-art model.
基金the National Natural Science Foundation of China(61873283)the Changsha Science&Technology Project(KQ1707017)the innovation-driven project of the Central South University(2019CX005).
文摘Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions.
文摘The application of ti me-series modeling and forecasting method to the spectral analysis for lubricat ing oil of mechanical equipment is discussed. The AR model is used to perform a time-series modeling and forecasting analysis for the spectral analysis data co llected from aero-engines. In the oil condition monitoring field of mechanical equipment, the use of the method of time-series analysis has rarely been report ed. As indicated in the satisfactory example, a practical method for condition m onitoring and fault forecasting of mechanical equipment has been achieved.
文摘Short-term load forecast plays an important role in the day-to-day operation and scheduling of generating units. Season and temperature are the most important factors that affect the load change, but random factors such as big sport events or popular TV shows can change demand consumption in particular hours, which will lead to sudden load changes. A weighted time-variant slide fuzzy time-series model (WTVS) for short-term load forecasting is proposed to improve forecasting accuracy. The WTVS model is divided into three parts, including the data preprocessing, the trend training and the load forecasting. In the data preprocessing phase, the impact of random factors will be weakened by smoothing the historical data. In the trend training and load forecasting phase, the seasonal factor and the weighted historical data are introduced into the Time-variant Slide Fuzzy Time-series Models (TVS) for short-term load forecasting. The WTVS model is tested on the load of the National Electric Power Company in Jordan. Results show that the proposed WTVS model achieves a significant improvement in load forecasting accuracy as compared to TVS models.
基金Natural Science Foundation of China!(No.598780 30 )
文摘Based on the changing law of municipal water demand,a trigonometric function model for short-term water demand forecast is established using the time-series analysis approach.The method for forecasting water demand during holidays and under unexpected events is also presented.Meanwhile,a computer software is developed.Through actual application,this method performs well and has high accuracy,so it can be applied to the daily operation of a water distribution system and lay a foundation for on-line optimal operation.
基金This research was supported by the National Natural Science Foundation of China(42161058).
文摘Vapor pressure deficit(VPD)plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation,second only to carbon dioxide(CO_(2)).As a robust indicator of atmospheric water demand,VPD has implications for global water resources,and its significance extends to the structure and functioning of ecosystems.However,the influence of VPD on vegetation growth under climate change remains unclear in China.This study employed empirical equations to estimate the VPD in China from 2000 to 2020 based on meteorological reanalysis data of the Climatic Research Unit(CRU)Time-Series version 4.06(TS4.06)and European Centre for Medium-Range Weather Forecasts(ECMWF)Reanalysis 5(ERA-5).Vegetation growth status was characterized using three vegetation indices,namely gross primary productivity(GPP),leaf area index(LAI),and near-infrared reflectance of vegetation(NIRv).The spatiotemporal dynamics of VPD and vegetation indices were analyzed using the Theil-Sen median trend analysis and Mann-Kendall test.Furthermore,the influence of VPD on vegetation growth and its relative contribution were assessed using a multiple linear regression model.The results indicated an overall negative correlation between VPD and vegetation indices.Three VPD intervals for the correlations between VPD and vegetation indices were identified:a significant positive correlation at VPD below 4.820 hPa,a significant negative correlation at VPD within 4.820–9.000 hPa,and a notable weakening of negative correlation at VPD above 9.000 hPa.VPD exhibited a pronounced negative impact on vegetation growth,surpassing those of temperature,precipitation,and solar radiation in absolute magnitude.CO_(2) contributed most positively to vegetation growth,with VPD offsetting approximately 30.00%of the positive effect of CO_(2).As the rise of VPD decelerated,its relative contribution to vegetation growth diminished.Additionally,the intensification of spatial variations in temperature and precipitation accentuated the spatial heterogeneity in the impact of VPD on vegetation growth in China.This research provides a theoretical foundation for addressing climate change in China,especially regarding the challenges posed by increasing VPD.
文摘Diffusion models, a family of generative models based on deep learning, have become increasinglyprominent in cutting-edge machine learning research. With distinguished performance in generating samples thatresemble the observed data, diffusion models are widely used in image, video, and text synthesis nowadays. Inrecent years, the concept of diffusion has been extended to time-series applications, and many powerful models havebeen developed. Considering the deficiency of a methodical summary and discourse on these models, we providethis survey as an elementary resource for new researchers in this area and to provide inspiration to motivate futureresearch. For better understanding, we include an introduction about the basics of diffusion models. Except forthis, we primarily focus on diffusion-based methods for time-series forecasting, imputation, and generation, andpresent them, separately, in three individual sections. We also compare different methods for the same applicationand highlight their connections if applicable. Finally, we conclude with the common limitation of diffusion-basedmethods and highlight potential future research directions.
基金Innosuisse-Schweizerische Agentur für Innovationsförderung,Grant/Award Number:1155002544。
文摘Management and efficient operations in critical infrastructures such as smart grids take huge advantage of accurate power load forecasting,which,due to its non-linear nature,remains a challenging task.Recently,deep learning has emerged in the machine learning field achieving impressive performance in a vast range of tasks,from image classification to machine translation.Applications of deep learning models to the electric load forecasting problem are gaining interest among researchers as well as the industry,but a comprehensive and sound comparison among different-also traditional-architectures is not yet available in the literature.This work aims at filling the gap by reviewing and experimentally evaluating four real world datasets on the most recent trends in electric load forecasting,by contrasting deep learning architectures on short-term forecast(oneday-ahead prediction).Specifically,the focus is on feedforward and recurrent neural networks,sequence-to-sequence models and temporal convolutional neural networks along with architectural variants,which are known in the signal processing community but are novel to the load forecasting one.
文摘Production logistics involve the co-ordination of ac tivities such as production and materials control (PMC), inventory management, p roduct life cycle management, etc. Those activities demand for an accurate forec asting model. However, the conventional methods of making sell and buy decision based on human forecast or conventional moving average and exponential smoothing methods is no longer be sufficient to meet the future need. Furthermore, the un derlying statistics of the market information change from time to time due to a number of reasons such as change of global economic environment, government poli cies and business risks. This demands for highly adaptive forecasting model which is robust enough to response and adapt well to the fast changes in the dat a characteristics, in other words, the trajectory of the "dynamic characteristic s" of the data. In this paper, an adaptive time-series modelling method was proposed for short -term dynamic forecasting. The method employs an autoregressive (AR) time-seri es model to carry out the forecasting process. A modified least mean square (MLM S) adaptive filter algorithm was established for adjusting the AR model coeffici ents so as to minimise the sum of squared of forecasting errors. A prototype dyn amic forecasting system was built based on the adaptive time-series modelling m ethod. Basically, the dynamic forecasting system can be divided into two phases, i.e. the Learning Phase and the Application Phase. The learning procedures star t with the determination of upper limit of the adaptation gain based on the conv ergence in the mean square criterion. Hence, the optimum ELMS filter parameters are determined using an iteration algorithm which changes each filter parameter i.e. the order, the adaptation gain andthe values initial coefficient vector on e by one inside a predetermined iteration range. The set of parameters which giv es the minimum value for sum of squared errors within the iteration range is sel ected as the optimum set of filter parameters. In the Application Phase, the sys tem is operated under a real-time environment. The sampled data is processed by the optimised ELMS filter and the forecasted data are calculated based on the a daptive time-series model. The error of forecasting is continuously monitored w ithin the predefined tolerance. When the system detects excessive forecasting er ror, a feedback alarm signal was issued for system re-calibration. Experimental results indicated that the convergence rate and sum of squared erro rs during initial adaptation could be significantly improved using the MLMS algorithm. The performance of the system was verified through a series of experi ments conducted on the forecast of materials demand and costing in productio n logistics. Satisfactory results were achieved with the forecast errors confini ng within in most instances. Further applications of the system can be found i n sales demand forecast, inventory management as well as collaborative planning, forecast and replenishment (CPFR) in logistics engineering.
文摘The vast majority of tourism forecasting studies have centered on tourist arrivals at an aggregated level.Little research has been done of forecasting tourist expenditure at a national level let alone at a regional level.This study uses expenditure data to assess the relative economic impact of tourism into regional areas.By comparing five time-series models(the Na?ve,Holt,ARMA and Basic Structural Model(BSM)with and without intervention),and three econometric models(the Vector Autoregressive(VAR)model and the Time Varying Parameter(TVP)with and without intervention),the study sought to find the most accurate model for forecasting tourism expenditure two years ahead for each of the 31 provinces of China's Mainland.The results show that TVP models outperform other time series and econometric models.The research also provides practical management outcomes by providing methods for forecasting tourist expenditure as an indicator of economic growth in China’s provinces.The research concludes with the findings on the most appropriate model for regional forecasting and potential new variables suitable at the regional level.
基金supported by the National Key Research and Development Program of China(No.2018YFB1500803)National Natural Science Foundation of China(No.61773118,No.61703100)Fundamental Research Funds for Central Universities.
文摘Boosted by a strong solar power market,the electricity grid is exposed to risk under an increasing share of fluctuant solar power.To increase the stability of the electricity grid,an accurate solar power forecast is needed to evaluate such fluctuations.In terms of forecast,solar irradiance is the key factor of solar power generation,which is affected by atmospheric conditions,including surface meteorological variables and column integrated variables.These variables involve multiple numerical timeseries and images.However,few studies have focused on the processing method of multiple data types in an interhour direct normal irradiance(DNI)forecast.In this study,a framework for predicting the DNI for a 10-min time horizon was developed,which included the nondimensionalization of multiple data types and time-series,development of a forecast model,and transformation of the outputs.Several atmospheric variables were considered in the forecast framework,including the historical DNI,wind speed and direction,relative humidity time-series,and ground-based cloud images.Experiments were conducted to evaluate the performance of the forecast framework.The experimental results demonstrate that the proposed method performs well with a normalized mean bias error of 0.41%and a normalized root mean square error(n RMSE)of20.53%,and outperforms the persistent model with an improvement of 34%in the nRMSE.
基金funded by Indian Council of Social Science Research(ICSSR)under the Minor Project Research Scheme(F.No.02/64/GEN/2022-23/ICSSR/RP/MN),CUSAT/PL(B).A2/3116/2023.
文摘Intentionally added plastic microbeads in personal care products(PCP)are an underestimated source of microplastics.These microbeads are added as fillers,to increase product volume or aesthetics and allegedly have the purpose of cleansing and exfoliation.To assess and forecast microbead emissions in India,this study analysed 45 items from four different categories of personal care products:face wash,face scrub,shower gel and body scrub available in the Indian market and determined microbead abundance,size,colour,shape and polymer composition.Also,an emission estimation and time-seriesbased forecast for 2030 was done using ARIMA(0,2,0)for individual categories and overall.The results indicate that 45.00%of the products contained irregular or smooth microplastics,with Polyethylene being the dominant polymer,followed by Polypropylene,Polystyrene,Polyurethane and Polycaprolactone.A significant number of products(23.33%)contained cellulose microbeads,with ambiguity regarding their biodegradability.The identified microbeads were mainly irregular in shape and granular in texture,especially scrubs.White/transparent colour dominated the identified microbeads,followed by blue,pink,yellow,red and green.Approximately 1.34%of the total product contained plastic microbeads,with 5.04%and 0.04%being the highest and lowest percentages quantified.The average size of microbeads was found to be 640.74 mm,452.45 mm,556.66 mm and 606.30 mm in different categories.The overall annual emission estimation was 3.51×10^(19)(highest),2.14×10^(18)(lowest)and 1.37×10^(19)(average)in 2021 and forecasted to be 4.12×10^(19)(highest),2.52×10^(18)(lowest)and 1.611019(average)in 2030.This exorbitantly high value is due to India's significant population,globalisation,inefficient wastewater efficiency,growing economy and disposable income.A lack of policies and adequate regulations further add to this.This study emphasises and recommends the development of stringent policies and other well-tailored mitigation measures for intentionally added microbeads in PCP in India.The study recommends some policy measures to curb this threat.