This paper proposes a methodology for an alternative history matching process enhanced by the incorporation of a simplified binary interpretation of reservoir saturation logs(RST) as objective function. Incorporating ...This paper proposes a methodology for an alternative history matching process enhanced by the incorporation of a simplified binary interpretation of reservoir saturation logs(RST) as objective function. Incorporating fluids saturation logs during the history matching phase unlocks the possibility to adjust or select models that better represent the near wellbore waterfront movement, which is particularly important for uncertainty mitigation during future well interference assessments in water driven reservoirs. For the purposes of this study, a semi-synthetic open-source reservoir model was used as base case to evaluate the proposed methodology. The reservoir model represents a water driven, highly heterogenous sandstone reservoir from Namorado field in Brazil. To effectively compare the proposed methodology against the conventional methods, a commercial reservoir simulator was used in combination with a state-of-the-art benchmarking workflow based on the Big LoopTMapproach. A well-known group of binary metrics were evaluated to be used as the objective function, and the Matthew correlation coefficient(MCC) has been proved to offer the best results when using binary data from water saturation logs. History matching results obtained with the proposed methodology allowed the selection of a more reliable group of reservoir models,especially for cases with high heterogeneity. The methodology also offers additional information and understanding of sweep behaviour behind the well casing at specific production zones, thus revealing full model potential to define new wells and reservoir development opportunities.展开更多
The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features.Electric kickboards are gradually growing in popularity in tourist...The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features.Electric kickboards are gradually growing in popularity in tourist and education-centric localities.In the upcoming arrival of electric kickboard vehicles,deploying a customer rental service is essential.Due to its freefloating nature,the shared electric kickboard is a common and practical means of transportation.Relocation plans for shared electric kickboards are required to increase the quality of service,and forecasting demand for their use in a specific region is crucial.Predicting demand accurately with small data is troublesome.Extensive data is necessary for training machine learning algorithms for effective prediction.Data generation is a method for expanding the amount of data that will be further accessible for training.In this work,we proposed a model that takes time-series customers’electric kickboard demand data as input,pre-processes it,and generates synthetic data according to the original data distribution using generative adversarial networks(GAN).The electric kickboard mobility demand prediction error was reduced when we combined synthetic data with the original data.We proposed Tabular-GAN-Modified-WGAN-GP for generating synthetic data for better prediction results.We modified The Wasserstein GAN-gradient penalty(GP)with the RMSprop optimizer and then employed Spectral Normalization(SN)to improve training stability and faster convergence.Finally,we applied a regression-based blending ensemble technique that can help us to improve performance of demand prediction.We used various evaluation criteria and visual representations to compare our proposed model’s performance.Synthetic data generated by our suggested GAN model is also evaluated.The TGAN-Modified-WGAN-GP model mitigates the overfitting and mode collapse problem,and it also converges faster than previous GAN models for synthetic data creation.The presented model’s performance is compared to existing ensemble and baseline models.The experimental findings imply that combining synthetic and actual data can significantly reduce prediction error rates in the mean absolute percentage error(MAPE)of 4.476 and increase prediction accuracy.展开更多
In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.Ho...In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.However,convolution operator is intractable in finite-difference time-domain(FDTD)method.A great deal of progress has been made in using time stepping instead of convolution in FDTD.To incorporate PML into viscoelastic media,more memory variables need to be introduced,which increases the code complexity and computation costs.By modifying the nonsplitting PML formulation,I propose a viscoelastic model,which can be used as a viscoelastic material and/or a PML just by adjusting the parameters.The proposed viscoelastic model is essentially equivalent to a Maxwell model.Compared with existing PML methods,the proposed method requires less memory and its implementation in existing finite-difference codes is much easier.The attenuation and phase velocity of P-and S-waves are frequency independent in the viscoelastic model if the related quality factors(Q)are greater than 10.The numerical examples show that the method is stable for materials with high absorption(Q=1),and for heterogeneous media with large contrast of acoustic impedance and large contrast of viscosity.展开更多
The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an...The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an inaccurate pose estimation or failed tracking.To address the challenge above,a new method of feature point matching is proposed in this paper,which combines the variable velocity model with the reverse optical flow method.First,the constant velocity model is extended to a new variable velocity model,and the expanded variable velocity model is used to provide the initial pixel shifting for the reverse optical flow method.Then the search range of feature points is accurately determined according to the results of the reverse optical flow method,thereby improving the accuracy and reliability of feature matching,with strengthened interframe tracking effects.Finally,we tested on TUM data set based on the RGB-D camera.Experimental results show that this method can reduce the probability of tracking failure and improve localization accuracy on SLAM(Simultaneous Localization and Mapping)systems.Compared with the traditional ORB-SLAM2,the test error of this method on each sequence in the TUM data set is significantly reduced,and the root mean square error is only 63.8%of the original system under the optimal condition.展开更多
The application of ti me-series modeling and forecasting method to the spectral analysis for lubricat ing oil of mechanical equipment is discussed. The AR model is used to perform a time-series modeling and forecasti...The application of ti me-series modeling and forecasting method to the spectral analysis for lubricat ing oil of mechanical equipment is discussed. The AR model is used to perform a time-series modeling and forecasting analysis for the spectral analysis data co llected from aero-engines. In the oil condition monitoring field of mechanical equipment, the use of the method of time-series analysis has rarely been report ed. As indicated in the satisfactory example, a practical method for condition m onitoring and fault forecasting of mechanical equipment has been achieved.展开更多
Accurate information about phenological stages is essential for canola field management practices such as irrigation, fertilization, and harvesting. Previous studies in canola phenology monitoring focused mainly on th...Accurate information about phenological stages is essential for canola field management practices such as irrigation, fertilization, and harvesting. Previous studies in canola phenology monitoring focused mainly on the flowering stage, using its apparent structure features and colors. Additional phenological stages have been largely overlooked. The objective of this study was to improve a shape-model method(SMM) for extracting winter canola phenological stages from time-series top-of-canopy reflectance images collected by an unmanned aerial vehicle(UAV). The transformation equation of the SMM was refined to account for the multi-peak features of the temporal dynamics of three vegetation indices(VIs)(NDVI, EVI, and CI). An experiment with various seeding scenarios was conducted, including four different seeding dates and three seeding densities. Three mathematical functions: asymmetric Gaussian function(AGF), Fourier function, and double logistic function, were employed to fit timeseries vegetation indices to extract information about phenological stages. The refined SMM effectively estimated the phenological stages of canola, with a minimum root mean square error(RMSE) of 3.7 days for all phenological stages. The AGF function provided the best fitting performance, as it captured multiple peaks in the growth dynamics characteristics for all seeding date scenarios using four scaling parameters. For the three selected VIs, CIred-edgeachieved the greatest accuracy in estimating the phenological stage dates. This study demonstrates the high potential of the refined SMM for estimating winter canola phenology.展开更多
In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring meth...In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring method was proposed in this study,and the major steps of the monitoring method include:firstly,time-series images of the similarity model in the test were obtained by a camera,and secondly,measuring points marked as artificial targets were automatically tracked and recognized from time-series images.Finally,the real-time plane displacement field was calculated by the fixed magnification between objects and images under the specific conditions.And then the application device of the method was designed and tested.At the same time,a sub-pixel location method and a distortion error model were used to improve the measuring accuracy.The results indicate that this method may record the entire test,especially the detailed non-uniform deformation and sudden deformation.Compared with traditional methods this method has a number of advantages,such as greater measurement accuracy and reliability,less manual intervention,higher automation,strong practical properties,much more measurement information and so on.展开更多
Diffusion models, a family of generative models based on deep learning, have become increasinglyprominent in cutting-edge machine learning research. With distinguished performance in generating samples thatresemble th...Diffusion models, a family of generative models based on deep learning, have become increasinglyprominent in cutting-edge machine learning research. With distinguished performance in generating samples thatresemble the observed data, diffusion models are widely used in image, video, and text synthesis nowadays. Inrecent years, the concept of diffusion has been extended to time-series applications, and many powerful models havebeen developed. Considering the deficiency of a methodical summary and discourse on these models, we providethis survey as an elementary resource for new researchers in this area and to provide inspiration to motivate futureresearch. For better understanding, we include an introduction about the basics of diffusion models. Except forthis, we primarily focus on diffusion-based methods for time-series forecasting, imputation, and generation, andpresent them, separately, in three individual sections. We also compare different methods for the same applicationand highlight their connections if applicable. Finally, we conclude with the common limitation of diffusion-basedmethods and highlight potential future research directions.展开更多
Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produce...Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced during collecting information and summarizing original data of traffic flow, cause large errors in the traffic flow forecasting results. This article suggests a solution to the above mentioned issues and proposes a fully connected time-gated neural network based on wavelet reconstruction(WT-FCTGN). To eliminate the potential noise and strengthen the potential traffic trend in the data, we adopt the methods of wavelet reconstruction and periodic data introduction to preprocess the data. The model introduces fully connected time-series blocks to model all the information including time sequence information and fluctuation information in the flow of traffic, and establishes the time gate block to comprehend the periodic characteristics of the flow of traffic and predict its flow. The performance of the WT-FCTGN model is validated on the public Pe MS data set. The experimental results show that the WT-FCTGN model has higher accuracy, and its mean absolute error(MAE), mean absolute percentage error(MAPE) and root mean square error(RMSE) are obviously lower than those of the other algorithms. The robust experimental results prove that the WT-FCTGN model has good anti-noise ability.展开更多
In 3D models retrieval, feature description and retrieval of non-rigid model face more complex problems due to the isometry transformation of itself. We introduce the hierarchical combination matching into the feature...In 3D models retrieval, feature description and retrieval of non-rigid model face more complex problems due to the isometry transformation of itself. We introduce the hierarchical combination matching into the feature comparison, and build a map between the divided regions of two models, and then achieve accurate feature matching based on patch-by-patch, which successfully introduces the spatial information into feature matching. Verified by experiment, the 3D model retrieval method proposed in this paper based on hierarchical combination matching can make sure more accurate feature matching, so as to enhance the precision of retrieval.展开更多
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme...The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.展开更多
The integration of the Lab model with the extended histogram of oriented gradients (EHOG) is proposed to improve the accuracy of human appearance matching across disjoint camera views under perturbations such as ill...The integration of the Lab model with the extended histogram of oriented gradients (EHOG) is proposed to improve the accuracy of human appearance matching across disjoint camera views under perturbations such as illumination changes and different viewing angles. For the Lab model that describes the global information of observations, a sorted nearest neighbor clustering method is proposed for color clustering and then a partitioned color matching method is used to calculate the color similarity between observations. The Bhattacharya distance is employed for the textural similarity calculation of the EHOG which describes the local information. The global information, which is robust to different viewing angles and scale changes, describes the observations well. Meanwhile, the use of local information, which is robust to illumination changes, can strengthen the discriminative ability of the method. The integration of global and local information improves the accuracy and robustness of the proposed matching approach. Experiments are carried out indoors, and the results show a high matching accuracy of the proposed method.展开更多
To improve the performance of the traditional map matching algorithms in freeway traffic state monitoring systems using the low logging frequency GPS (global positioning system) probe data, a map matching algorithm ...To improve the performance of the traditional map matching algorithms in freeway traffic state monitoring systems using the low logging frequency GPS (global positioning system) probe data, a map matching algorithm based on the Oracle spatial data model is proposed. The algorithm uses the Oracle road network data model to analyze the spatial relationships between massive GPS positioning points and freeway networks, builds an N-shortest path algorithm to find reasonable candidate routes between GPS positioning points efficiently, and uses the fuzzy logic inference system to determine the final matched traveling route. According to the implementation with field data from Los Angeles, the computation speed of the algorithm is about 135 GPS positioning points per second and the accuracy is 98.9%. The results demonstrate the effectiveness and accuracy of the proposed algorithm for mapping massive GPS positioning data onto freeway networks with complex geometric characteristics.展开更多
The mechanism of zirconium poisoning on the grain-refining efficiency of an Al-Ti-B based grain refiner was studied. The experiment was conducted by melting Al-5Ti-1B and Al-3Zr master alloys together. The edge-to-edg...The mechanism of zirconium poisoning on the grain-refining efficiency of an Al-Ti-B based grain refiner was studied. The experiment was conducted by melting Al-5Ti-1B and Al-3Zr master alloys together. The edge-to-edge matching model was used to investigate and compare the orientation relationships between the binary intermetallic compounds present in the Al-Ti-B-Zr system. The results show that the poisoning effect probably results from the combination of Al3 Zr with Al3 Ti and the decreased amount of Ti solute, for Al3 Ti particles have good crystallographic relationships with Al3 Zr. Totally six orientation relationships may present between them, while they play vital roles in grain refinement. TiB2 particles appear to remain unchanged because of a bit large misfit. Only one orientation relationship may present between them to prevent Al3 Zr phase from forming on the surface of TiB2, though TiB2 is agglomerated. The theoretical calculation agrees well with the experimental results. The edge-to-edge matching model is proved to be a useful tool for discovering the orientation relationships between phases.展开更多
For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for...For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.展开更多
Biomass is a key parameter in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Hybrid soft-sensor modeling is a good metho...Biomass is a key parameter in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Hybrid soft-sensor modeling is a good method for on-line estimation of biomass. Structure of hybrid soft-sensor model is a key to improve the estimating accuracy. In this paper, a forward heuristic breadth-first reasoning approach based on rule match is proposed for constructing structure of hybrid model. First, strategy of forward heuristic reasoning about facts is introduced, which can reason complex hybrid model structure in the event of few known facts. Second, rule match degree is defined to obtain higher esti- mating accuracy. The experiment results of Nosiheptide fermentation process show that the hybrid modeling process can estimate biomass with higher accuracy by adding transcendental knowledge and partial mechanism to the process.展开更多
The characterization of finite length Surface Acoustic Wave (SAW) and Bulk acoustic Wave (BAW) resonators is addressed here. The Finite Element Analysis (FEA) induces artificial wave reflections at the edges of the me...The characterization of finite length Surface Acoustic Wave (SAW) and Bulk acoustic Wave (BAW) resonators is addressed here. The Finite Element Analysis (FEA) induces artificial wave reflections at the edges of the mesh. In fact, these ones do not contribute in practice to the corresponding experimental response. The Perfectly Matched Layer (PML) method, allows to suppress the boundary reflections. In this work, we first demonstrate the basis of PML adapted to FEA formalism. Next, the results of such a method are depicted allowing a discussion on the behavior of finite acoustic resonators.展开更多
A critical component of the smart grid (SG) infrastructure is the embedded communications network, where an important objective of the latter is the expansion of its throughput, in conjunction with the satisfaction of...A critical component of the smart grid (SG) infrastructure is the embedded communications network, where an important objective of the latter is the expansion of its throughput, in conjunction with the satisfaction of specified latency and accuracy requirements. For the effective design of the communications network, the user and traffic profiles, such as known-user vs. unknown-user populations and bursty vs. non-bursty data traffics, must be carefully considered and subsequently modeled. This paper relates user and traffic models to the deployment of effective multiple access transmission algorithms in the communications network of the SG.展开更多
Background: Binary as well as polytomous logistic models are widely used for estimating odds ratios when the exposure of prime interest assumes unordered multiple levels under matched pairs case-control design. In our...Background: Binary as well as polytomous logistic models are widely used for estimating odds ratios when the exposure of prime interest assumes unordered multiple levels under matched pairs case-control design. In our previous studies, we have shown that the use of a polytomous logistic model for estimating cumulative odds ratios when the outcome (response) variable is ordinal (in addition to being polytomous) under matched pairs case-control design. The cumulative odds ratios were estimated based on separate fitting of the model at each of the cutpoint level as compared to less than equal to that level. In this paper we propose an alternative method of estimating the cumulative odds ratios and reanalyze the Los Angeles Endometrial Cancer data in the context of dose levels of conjugated oestrogen exposure and development of endometrial cancer under the matched pair case-control design. Methods: In the present study, the cumulative logit model is fitted using a single multinomial logit model for the data. For this, the full maximum likelihood estimation procedure is adopted. A test for equality of the cumulative odds ratios across the exposure levels is proposed. Results: The analysis revealed that there is a strong evidence of risk for developing endometrial cancer due to oestrogen exposure above each of the three dose level as compared to less than equal to that level. The estimated values at the three cutpoint levels were found to be 6.17, 3.60 and 5.16 respectively. Conclusions: The odds of developing endometrial cancer are very high for the users of any amount of oestrogen, even if it is the least dose, as compared to the non-users.展开更多
Knowledge of migration and retention mechanisms of elastic gel particles(EGPs)in pore-throats is essential for the effective application of EGPs as a smart sweep improvement and profile control agent for enhanced oil ...Knowledge of migration and retention mechanisms of elastic gel particles(EGPs)in pore-throats is essential for the effective application of EGPs as a smart sweep improvement and profile control agent for enhanced oil recovery(EOR).The matching coefficient(defined as the ratio of particle size to pore-throat size)is used to investigate its influence on migration,retention and profile control performance of EGPs.A 1-D continuous pore-throat visualization model(PTVM),a 2-D heterogeneous PTVM and a 3-D heterogeneous core model were constructed and used to investigate pore-scale migration,retention and controlling mechanism of migration and retention characteristics on EGPs profile control.The results of the 1-D continuous PTVM indicated that while the matching coefficient was in the optimal range(i.e.,0.20-0.32),the EGPs could not only smoothly migrate to the deeper pore-throats,but also form stable retention in the pores to resist the erosion of injected water,which was conducive to the effective indepth profile control.The results of the 2-D heterogeneous PTVM verified that the sweep efficiency in low-permeability regions could be significantly improved by in-depth migration and stable retention of EGPs in the pore-throats with an optimal matching coefficient(0.29),which was much better than that in cases with a smaller matching coefficient(0.17)or an excessive matching coefficient(0.39).Moreover,the NMR displacement experiments of 3-D heterogeneous cores were carried out to simulate the EGPs profile control in actual reservoir porous media.Saturation images and T2 spectrum curves of crude oil showed that EOR in the low-permeability layer was highest(56.1%)using EGPs profile control with an optimal matching coefficient,attributing to the in-depth migration and stable retention of EGPs.展开更多
文摘This paper proposes a methodology for an alternative history matching process enhanced by the incorporation of a simplified binary interpretation of reservoir saturation logs(RST) as objective function. Incorporating fluids saturation logs during the history matching phase unlocks the possibility to adjust or select models that better represent the near wellbore waterfront movement, which is particularly important for uncertainty mitigation during future well interference assessments in water driven reservoirs. For the purposes of this study, a semi-synthetic open-source reservoir model was used as base case to evaluate the proposed methodology. The reservoir model represents a water driven, highly heterogenous sandstone reservoir from Namorado field in Brazil. To effectively compare the proposed methodology against the conventional methods, a commercial reservoir simulator was used in combination with a state-of-the-art benchmarking workflow based on the Big LoopTMapproach. A well-known group of binary metrics were evaluated to be used as the objective function, and the Matthew correlation coefficient(MCC) has been proved to offer the best results when using binary data from water saturation logs. History matching results obtained with the proposed methodology allowed the selection of a more reliable group of reservoir models,especially for cases with high heterogeneity. The methodology also offers additional information and understanding of sweep behaviour behind the well casing at specific production zones, thus revealing full model potential to define new wells and reservoir development opportunities.
基金This work was supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0016977,The Establishment Project of Industry-University Fusion District).
文摘The increasing penetration rate of electric kickboard vehicles has been popularized and promoted primarily because of its clean and efficient features.Electric kickboards are gradually growing in popularity in tourist and education-centric localities.In the upcoming arrival of electric kickboard vehicles,deploying a customer rental service is essential.Due to its freefloating nature,the shared electric kickboard is a common and practical means of transportation.Relocation plans for shared electric kickboards are required to increase the quality of service,and forecasting demand for their use in a specific region is crucial.Predicting demand accurately with small data is troublesome.Extensive data is necessary for training machine learning algorithms for effective prediction.Data generation is a method for expanding the amount of data that will be further accessible for training.In this work,we proposed a model that takes time-series customers’electric kickboard demand data as input,pre-processes it,and generates synthetic data according to the original data distribution using generative adversarial networks(GAN).The electric kickboard mobility demand prediction error was reduced when we combined synthetic data with the original data.We proposed Tabular-GAN-Modified-WGAN-GP for generating synthetic data for better prediction results.We modified The Wasserstein GAN-gradient penalty(GP)with the RMSprop optimizer and then employed Spectral Normalization(SN)to improve training stability and faster convergence.Finally,we applied a regression-based blending ensemble technique that can help us to improve performance of demand prediction.We used various evaluation criteria and visual representations to compare our proposed model’s performance.Synthetic data generated by our suggested GAN model is also evaluated.The TGAN-Modified-WGAN-GP model mitigates the overfitting and mode collapse problem,and it also converges faster than previous GAN models for synthetic data creation.The presented model’s performance is compared to existing ensemble and baseline models.The experimental findings imply that combining synthetic and actual data can significantly reduce prediction error rates in the mean absolute percentage error(MAPE)of 4.476 and increase prediction accuracy.
文摘In numerical simulation of wave propagation,both viscoelastic materials and perfectly matched layers(PMLs)attenuate waves.The wave equations for both the viscoelastic model and the PML contain convolution operators.However,convolution operator is intractable in finite-difference time-domain(FDTD)method.A great deal of progress has been made in using time stepping instead of convolution in FDTD.To incorporate PML into viscoelastic media,more memory variables need to be introduced,which increases the code complexity and computation costs.By modifying the nonsplitting PML formulation,I propose a viscoelastic model,which can be used as a viscoelastic material and/or a PML just by adjusting the parameters.The proposed viscoelastic model is essentially equivalent to a Maxwell model.Compared with existing PML methods,the proposed method requires less memory and its implementation in existing finite-difference codes is much easier.The attenuation and phase velocity of P-and S-waves are frequency independent in the viscoelastic model if the related quality factors(Q)are greater than 10.The numerical examples show that the method is stable for materials with high absorption(Q=1),and for heterogeneous media with large contrast of acoustic impedance and large contrast of viscosity.
基金This work was supported by The National Natural Science Foundation of China under Grant No.61304205 and NO.61502240The Natural Science Foundation of Jiangsu Province under Grant No.BK20191401 and No.BK20201136Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.SJCX21_0364 and No.SJCX21_0363.
文摘The ORB-SLAM2 based on the constant velocity model is difficult to determine the search window of the reprojection of map points when the objects are in variable velocity motion,which leads to a false matching,with an inaccurate pose estimation or failed tracking.To address the challenge above,a new method of feature point matching is proposed in this paper,which combines the variable velocity model with the reverse optical flow method.First,the constant velocity model is extended to a new variable velocity model,and the expanded variable velocity model is used to provide the initial pixel shifting for the reverse optical flow method.Then the search range of feature points is accurately determined according to the results of the reverse optical flow method,thereby improving the accuracy and reliability of feature matching,with strengthened interframe tracking effects.Finally,we tested on TUM data set based on the RGB-D camera.Experimental results show that this method can reduce the probability of tracking failure and improve localization accuracy on SLAM(Simultaneous Localization and Mapping)systems.Compared with the traditional ORB-SLAM2,the test error of this method on each sequence in the TUM data set is significantly reduced,and the root mean square error is only 63.8%of the original system under the optimal condition.
文摘The application of ti me-series modeling and forecasting method to the spectral analysis for lubricat ing oil of mechanical equipment is discussed. The AR model is used to perform a time-series modeling and forecasting analysis for the spectral analysis data co llected from aero-engines. In the oil condition monitoring field of mechanical equipment, the use of the method of time-series analysis has rarely been report ed. As indicated in the satisfactory example, a practical method for condition m onitoring and fault forecasting of mechanical equipment has been achieved.
基金supported by the National Natural Science Foundation of China (51909228)the Postdoctoral Science Foundation of China (2020M671623)the ‘‘Blue Project” of Yangzhou University。
文摘Accurate information about phenological stages is essential for canola field management practices such as irrigation, fertilization, and harvesting. Previous studies in canola phenology monitoring focused mainly on the flowering stage, using its apparent structure features and colors. Additional phenological stages have been largely overlooked. The objective of this study was to improve a shape-model method(SMM) for extracting winter canola phenological stages from time-series top-of-canopy reflectance images collected by an unmanned aerial vehicle(UAV). The transformation equation of the SMM was refined to account for the multi-peak features of the temporal dynamics of three vegetation indices(VIs)(NDVI, EVI, and CI). An experiment with various seeding scenarios was conducted, including four different seeding dates and three seeding densities. Three mathematical functions: asymmetric Gaussian function(AGF), Fourier function, and double logistic function, were employed to fit timeseries vegetation indices to extract information about phenological stages. The refined SMM effectively estimated the phenological stages of canola, with a minimum root mean square error(RMSE) of 3.7 days for all phenological stages. The AGF function provided the best fitting performance, as it captured multiple peaks in the growth dynamics characteristics for all seeding date scenarios using four scaling parameters. For the three selected VIs, CIred-edgeachieved the greatest accuracy in estimating the phenological stage dates. This study demonstrates the high potential of the refined SMM for estimating winter canola phenology.
基金provided by the Program for New Century Excellent Talents in University (No. NCET-06-0477)the Independent Research Project of the State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology (No. SKLCRSM09X01)the Fundamental Research Funds for the Central Universities
文摘In order to compensate for the deficiency of present methods of monitoring plane displacement in similarity model tests,such as inadequate real-time monitoring and more manual intervention,an effective monitoring method was proposed in this study,and the major steps of the monitoring method include:firstly,time-series images of the similarity model in the test were obtained by a camera,and secondly,measuring points marked as artificial targets were automatically tracked and recognized from time-series images.Finally,the real-time plane displacement field was calculated by the fixed magnification between objects and images under the specific conditions.And then the application device of the method was designed and tested.At the same time,a sub-pixel location method and a distortion error model were used to improve the measuring accuracy.The results indicate that this method may record the entire test,especially the detailed non-uniform deformation and sudden deformation.Compared with traditional methods this method has a number of advantages,such as greater measurement accuracy and reliability,less manual intervention,higher automation,strong practical properties,much more measurement information and so on.
文摘Diffusion models, a family of generative models based on deep learning, have become increasinglyprominent in cutting-edge machine learning research. With distinguished performance in generating samples thatresemble the observed data, diffusion models are widely used in image, video, and text synthesis nowadays. Inrecent years, the concept of diffusion has been extended to time-series applications, and many powerful models havebeen developed. Considering the deficiency of a methodical summary and discourse on these models, we providethis survey as an elementary resource for new researchers in this area and to provide inspiration to motivate futureresearch. For better understanding, we include an introduction about the basics of diffusion models. Except forthis, we primarily focus on diffusion-based methods for time-series forecasting, imputation, and generation, andpresent them, separately, in three individual sections. We also compare different methods for the same applicationand highlight their connections if applicable. Finally, we conclude with the common limitation of diffusion-basedmethods and highlight potential future research directions.
基金The Science and Technology Research and Development Program Project of China Railway Group Ltd provided funding for this study(Project Nos.2020-Special-02 and 2021Special-08)。
文摘Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced during collecting information and summarizing original data of traffic flow, cause large errors in the traffic flow forecasting results. This article suggests a solution to the above mentioned issues and proposes a fully connected time-gated neural network based on wavelet reconstruction(WT-FCTGN). To eliminate the potential noise and strengthen the potential traffic trend in the data, we adopt the methods of wavelet reconstruction and periodic data introduction to preprocess the data. The model introduces fully connected time-series blocks to model all the information including time sequence information and fluctuation information in the flow of traffic, and establishes the time gate block to comprehend the periodic characteristics of the flow of traffic and predict its flow. The performance of the WT-FCTGN model is validated on the public Pe MS data set. The experimental results show that the WT-FCTGN model has higher accuracy, and its mean absolute error(MAE), mean absolute percentage error(MAPE) and root mean square error(RMSE) are obviously lower than those of the other algorithms. The robust experimental results prove that the WT-FCTGN model has good anti-noise ability.
基金Supported by National Nature Science Foundation of China(61379106,61379082,61227802)Shandong Provincial Natural Science Foundation(ZR2013FM036,ZR2015FM011,ZR2015FM022)
文摘In 3D models retrieval, feature description and retrieval of non-rigid model face more complex problems due to the isometry transformation of itself. We introduce the hierarchical combination matching into the feature comparison, and build a map between the divided regions of two models, and then achieve accurate feature matching based on patch-by-patch, which successfully introduces the spatial information into feature matching. Verified by experiment, the 3D model retrieval method proposed in this paper based on hierarchical combination matching can make sure more accurate feature matching, so as to enhance the precision of retrieval.
基金sponsored by the National Natural Science Foundation of China Research(Grant No.41274138)the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
文摘The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.
基金The National Natural Science Foundation of China(No.60972001)the Science and Technology Plan of Suzhou City(No.SG201076)
文摘The integration of the Lab model with the extended histogram of oriented gradients (EHOG) is proposed to improve the accuracy of human appearance matching across disjoint camera views under perturbations such as illumination changes and different viewing angles. For the Lab model that describes the global information of observations, a sorted nearest neighbor clustering method is proposed for color clustering and then a partitioned color matching method is used to calculate the color similarity between observations. The Bhattacharya distance is employed for the textural similarity calculation of the EHOG which describes the local information. The global information, which is robust to different viewing angles and scale changes, describes the observations well. Meanwhile, the use of local information, which is robust to illumination changes, can strengthen the discriminative ability of the method. The integration of global and local information improves the accuracy and robustness of the proposed matching approach. Experiments are carried out indoors, and the results show a high matching accuracy of the proposed method.
文摘To improve the performance of the traditional map matching algorithms in freeway traffic state monitoring systems using the low logging frequency GPS (global positioning system) probe data, a map matching algorithm based on the Oracle spatial data model is proposed. The algorithm uses the Oracle road network data model to analyze the spatial relationships between massive GPS positioning points and freeway networks, builds an N-shortest path algorithm to find reasonable candidate routes between GPS positioning points efficiently, and uses the fuzzy logic inference system to determine the final matched traveling route. According to the implementation with field data from Los Angeles, the computation speed of the algorithm is about 135 GPS positioning points per second and the accuracy is 98.9%. The results demonstrate the effectiveness and accuracy of the proposed algorithm for mapping massive GPS positioning data onto freeway networks with complex geometric characteristics.
基金Project(2012CB619504) supported by the National Basic Research Program of China
文摘The mechanism of zirconium poisoning on the grain-refining efficiency of an Al-Ti-B based grain refiner was studied. The experiment was conducted by melting Al-5Ti-1B and Al-3Zr master alloys together. The edge-to-edge matching model was used to investigate and compare the orientation relationships between the binary intermetallic compounds present in the Al-Ti-B-Zr system. The results show that the poisoning effect probably results from the combination of Al3 Zr with Al3 Ti and the decreased amount of Ti solute, for Al3 Ti particles have good crystallographic relationships with Al3 Zr. Totally six orientation relationships may present between them, while they play vital roles in grain refinement. TiB2 particles appear to remain unchanged because of a bit large misfit. Only one orientation relationship may present between them to prevent Al3 Zr phase from forming on the surface of TiB2, though TiB2 is agglomerated. The theoretical calculation agrees well with the experimental results. The edge-to-edge matching model is proved to be a useful tool for discovering the orientation relationships between phases.
基金supported by the National Natural Science Foundation of China under Grant 51722406,52074340,and 51874335the Shandong Provincial Natural Science Foundation under Grant JQ201808+5 种基金The Fundamental Research Funds for the Central Universities under Grant 18CX02097Athe Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008the Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002the National Research Council of Science and Technology Major Project of China under Grant 2016ZX05025001-006111 Project under Grant B08028Sinopec Science and Technology Project under Grant P20050-1
文摘For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.
基金Supported by the National Natural Science Foundation of China (20476007)
文摘Biomass is a key parameter in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Hybrid soft-sensor modeling is a good method for on-line estimation of biomass. Structure of hybrid soft-sensor model is a key to improve the estimating accuracy. In this paper, a forward heuristic breadth-first reasoning approach based on rule match is proposed for constructing structure of hybrid model. First, strategy of forward heuristic reasoning about facts is introduced, which can reason complex hybrid model structure in the event of few known facts. Second, rule match degree is defined to obtain higher esti- mating accuracy. The experiment results of Nosiheptide fermentation process show that the hybrid modeling process can estimate biomass with higher accuracy by adding transcendental knowledge and partial mechanism to the process.
文摘The characterization of finite length Surface Acoustic Wave (SAW) and Bulk acoustic Wave (BAW) resonators is addressed here. The Finite Element Analysis (FEA) induces artificial wave reflections at the edges of the mesh. In fact, these ones do not contribute in practice to the corresponding experimental response. The Perfectly Matched Layer (PML) method, allows to suppress the boundary reflections. In this work, we first demonstrate the basis of PML adapted to FEA formalism. Next, the results of such a method are depicted allowing a discussion on the behavior of finite acoustic resonators.
文摘A critical component of the smart grid (SG) infrastructure is the embedded communications network, where an important objective of the latter is the expansion of its throughput, in conjunction with the satisfaction of specified latency and accuracy requirements. For the effective design of the communications network, the user and traffic profiles, such as known-user vs. unknown-user populations and bursty vs. non-bursty data traffics, must be carefully considered and subsequently modeled. This paper relates user and traffic models to the deployment of effective multiple access transmission algorithms in the communications network of the SG.
文摘Background: Binary as well as polytomous logistic models are widely used for estimating odds ratios when the exposure of prime interest assumes unordered multiple levels under matched pairs case-control design. In our previous studies, we have shown that the use of a polytomous logistic model for estimating cumulative odds ratios when the outcome (response) variable is ordinal (in addition to being polytomous) under matched pairs case-control design. The cumulative odds ratios were estimated based on separate fitting of the model at each of the cutpoint level as compared to less than equal to that level. In this paper we propose an alternative method of estimating the cumulative odds ratios and reanalyze the Los Angeles Endometrial Cancer data in the context of dose levels of conjugated oestrogen exposure and development of endometrial cancer under the matched pair case-control design. Methods: In the present study, the cumulative logit model is fitted using a single multinomial logit model for the data. For this, the full maximum likelihood estimation procedure is adopted. A test for equality of the cumulative odds ratios across the exposure levels is proposed. Results: The analysis revealed that there is a strong evidence of risk for developing endometrial cancer due to oestrogen exposure above each of the three dose level as compared to less than equal to that level. The estimated values at the three cutpoint levels were found to be 6.17, 3.60 and 5.16 respectively. Conclusions: The odds of developing endometrial cancer are very high for the users of any amount of oestrogen, even if it is the least dose, as compared to the non-users.
基金supported by the National Key Research and Development Project(2019YFA0708700)the National Natural Science Foundation of China(52104061)+2 种基金the project funded by China Postdoctoral Science Foundation(2020M682264)the Shandong Provincial Natural Science Foundation(ZR2021QE075)the Fundamental Research Funds for the Central Universities(20CX06090A)。
文摘Knowledge of migration and retention mechanisms of elastic gel particles(EGPs)in pore-throats is essential for the effective application of EGPs as a smart sweep improvement and profile control agent for enhanced oil recovery(EOR).The matching coefficient(defined as the ratio of particle size to pore-throat size)is used to investigate its influence on migration,retention and profile control performance of EGPs.A 1-D continuous pore-throat visualization model(PTVM),a 2-D heterogeneous PTVM and a 3-D heterogeneous core model were constructed and used to investigate pore-scale migration,retention and controlling mechanism of migration and retention characteristics on EGPs profile control.The results of the 1-D continuous PTVM indicated that while the matching coefficient was in the optimal range(i.e.,0.20-0.32),the EGPs could not only smoothly migrate to the deeper pore-throats,but also form stable retention in the pores to resist the erosion of injected water,which was conducive to the effective indepth profile control.The results of the 2-D heterogeneous PTVM verified that the sweep efficiency in low-permeability regions could be significantly improved by in-depth migration and stable retention of EGPs in the pore-throats with an optimal matching coefficient(0.29),which was much better than that in cases with a smaller matching coefficient(0.17)or an excessive matching coefficient(0.39).Moreover,the NMR displacement experiments of 3-D heterogeneous cores were carried out to simulate the EGPs profile control in actual reservoir porous media.Saturation images and T2 spectrum curves of crude oil showed that EOR in the low-permeability layer was highest(56.1%)using EGPs profile control with an optimal matching coefficient,attributing to the in-depth migration and stable retention of EGPs.