Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion...Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion on the networks of leaf traits in woody plants within remnant forest patches,thereby enhancing our understanding of plant adaptive strategies and contributing to the conservation of urban biodiversity.Methods:Our study examined woody plants within 120 sample plots across 15 remnant forest patches in Guiyang,China.We constructed leaf trait networks (LTNs) based on 26 anatomical,structural,and compositional leaf traits and assessed the effects of the spatiotemporal dynamics of urban expansion on these LTNs.Results and conclusions:Our results indicate that shrubs within these patches have greater average path lengths and diameters than trees.With increasing urban expansion intensity,we observed a rise in the edge density of the LTN-shrubs.Additionally,modularity within the networks of shrubs decreased as road density and urban expansion intensity increased,and increases in the average path length and average clustering coefficient for shrubs were observed with a rise in the composite terrain complexity index.Notably,patches subjected to‘leapfrog’expansion exhibited greater average patch length and diameter than those experiencing edge growth.Stomatal traits were found to have high degree centrality within these networks,signifying their substantial contribution to multiple functions.In urban remnant forests,shrubs bolster their resilience to variable environmental pressures by augmenting the complexity of their leaf trait networks.展开更多
This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of ...This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of China toward European investment and trade,and in particular,has expanded with the continuous progress of the One Belt and One Road(OBOR)initiative.In addition to improving the service quality of CR Express,the operating costs must be reduced for developing“smart railways”that serve“smart cities”.We propose a dualobjective-based function mathematical optimization model;the satisfaction of the cargo owner is considered,and the timeliness,transportation capacity,and goods category constraints of CR Express transportation are designed.Moreover,we present the normalized equivalent method of the two-objective function of the model.Finally,a case study is conducted against the background of certain trains in the western corridor of CR Express to validate the effectiveness of the model and research methods proposed in this study.展开更多
Deploying Picocell Base Station(PBS) throughout a Macrocell is a promising solution for capacity improvement in the next generation wireless networks.However,the strong received power from Macrocell Base Station(MBS) ...Deploying Picocell Base Station(PBS) throughout a Macrocell is a promising solution for capacity improvement in the next generation wireless networks.However,the strong received power from Macrocell Base Station(MBS) makes the areas of Picocell narrow and limits the gain of cell splitting.In this paper,we firstly propose a Dynamic Cell Range Expansion(DCRE) strategy.By expanding the coverage of the cell,we aim to balance the network load between MBS and PBS.Then,we present a cooperative Resource block and Power Allocation Scheme(coRPAS)based on DCRE.The objective of coRPAS is to decrease interference caused by MBS and Macrocell User Equipments,by which we can expand regions of Picocell User Equipments.Simulation results demonstrate the superiority of our method through comparing with other existing methods.展开更多
An on-line prediction scheme combining the Karhunen-Love expansion and a recurrent neural network for a wall-cooled fixed-bed reactor is presented.Benzene oxidation in a pilotscale,single tube fixed-bed reactor is cho...An on-line prediction scheme combining the Karhunen-Love expansion and a recurrent neural network for a wall-cooled fixed-bed reactor is presented.Benzene oxidation in a pilotscale,single tube fixed-bed reactor is chosen as a working system and a pseudo-homogeneous twodimensional model is used to generate simulation data to investigate the prediction scheme presentedunder randomly changing operating conditions.The scheme consisting of the K-L expansion andneural network performs satisfactorily for on-line prediction of reaction yield and bed temperatures.展开更多
Synthesis of heat exchanger networks including expansion process is a complex task due to the involvement of both heat and work.A stream that expands through expanders can produce work and cold load,while expansion th...Synthesis of heat exchanger networks including expansion process is a complex task due to the involvement of both heat and work.A stream that expands through expanders can produce work and cold load,while expansion through valves barely affects heat integration.In addition,expansion through expanders at higher temperature produces more work,but consumes more hot utility.Therefore,there is a need to weigh work production and heat consumption.To this end,an enhanced stage-wise superstructure is proposed that involves synchronous optimization of expander/valve placement and heat integration for each pressure-change sub-stream in stages.A mixed-integer nonlinear programming(MINLP)model is established for synthesizing sub and aboveambient heat exchanger networks with multi-stream expansion,which explicitly considers the optimized selection of end-heaters and end-coolers to adjust temperature requirement.Our proposed method can commendably achieve the optimal selection of expanders and valves in a bid for minimizing exergy consumption and total annual cost.Four example studies are conducted with two distinct objective function(minimization of exergy consumption and total annual cost,respectively)to illustrate the feasibility and efficacy of the proposed method.展开更多
The neural network has attracted researchers immensely in the last couple of years due to its wide applications in various areas such as Data mining,Natural language processing,Image processing,and Information retriev...The neural network has attracted researchers immensely in the last couple of years due to its wide applications in various areas such as Data mining,Natural language processing,Image processing,and Information retrieval etc.Word embedding has been applied by many researchers for Information retrieval tasks.In this paper word embedding-based skip-gram model has been developed for the query expansion task.Vocabulary terms are obtained from the top“k”initially retrieved documents using the Pseudo relevance feedback model and then they are trained using the skip-gram model to find the expansion terms for the user query.The performance of the model based on mean average precision is 0.3176.The proposed model compares with other existing models.An improvement of 6.61%,6.93%,and 9.07%on MAP value is observed compare to the Original query,BM25 model,and query expansion with the Chi-Square model respectively.The proposed model also retrieves 84,25,and 81 additional relevant documents compare to the original query,query expansion with Chi-Square model,and BM25 model respectively and thus improves the recall value also.The per query analysis reveals that the proposed model performs well in 30,36,and 30 queries compare to the original query,query expansion with Chi-square model,and BM25 model respectively.展开更多
This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based o...This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based on time and space)with 'centralized+distributed' idea,and then made a simulation in Clanguage.Experiments results show that GTS can produce the virtual network topology which can changedynamically with the characteristic of scaling-free network.GTS can also groom the different traffic andtrigger them under real-time or scheduling mechanisms,generating different optical connections.Thistraffic model is convenient for the simulation of optical networks considering the traffic complexity.展开更多
A new method for identifying nonlinear time varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning ...A new method for identifying nonlinear time varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning and nonlinear approximating ability of neural networks to model the non linearity of the system, characterize time varying dynamics of the system by the time varying parametric vector of the network, then the parametric vector of the network is approximated by a weighted sum of known basis sequences. Because of black box modeling ability of neural networks, the presented method can identify nonlinear time varying systems with unknown structure. In order to improve the real time capability of the algorithm, the neural network is trained by a simple fast learning algorithm based on local least squares presented by the authors. The effectiveness and the performance of the method are demonstrated by some simulation results.展开更多
August 30,2007,Shenzhen,China-ZTE Corporation ("ZTE"),a leading global provider of telecommunications equipment and network solutions,announced that it has recently signed an agreement with Telkom Indonesia...August 30,2007,Shenzhen,China-ZTE Corporation ("ZTE"),a leading global provider of telecommunications equipment and network solutions,announced that it has recently signed an agreement with Telkom Indonesia ("Telkom"),the largest InfoCom company and full-service network provider in Indonesia,to help expand the CDMA2000 network capacity for national coverage. Under the contract,the network expansion will cover the four main cities of the eastern part of Sulawesi,Indonesia.展开更多
This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, ener...This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, energy losses cost, and power congestion cost. A two-phase multi-objective PSO algorithm is employed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the improved multi-objective PSO have been verified by the 18-node typical system.展开更多
The minimum cost of capacity expansion for time-limited transportation problem on-demand (MCCETLTPD) is to find such a practicable capacity expansion transportation scheme satisfying the time-limited T along with all ...The minimum cost of capacity expansion for time-limited transportation problem on-demand (MCCETLTPD) is to find such a practicable capacity expansion transportation scheme satisfying the time-limited T along with all origins’ supply and all destinations’ demands as well as the expanding cost is minimum. Actually, MCCETLTPD is a balance transportation problem and a variant problem of minimum cost maximum flow problem. In this paper, by creating a mathematical model and constructing a network with lower and upper arc capacities, MCCETLTPD is transformed into searching feasible flow in the constructed network, and consequently, an algorithm MCCETLTPD-A is developed as MCCETLTPD’s solution method basing minimum cost maximum flow algorithm. Computational study validates that the MCCETLTPD-A algorithm is an efficient approach to solving the MCCETLTPD.展开更多
A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp...A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions.展开更多
Through two methods, we investigate the solitary and periodic wave solutions of the differential equation describing a nonlinear coupled two-dimensional discrete electrical lattice. The fixed points of our model equat...Through two methods, we investigate the solitary and periodic wave solutions of the differential equation describing a nonlinear coupled two-dimensional discrete electrical lattice. The fixed points of our model equation are examined and the bifurcations of phase portraits of this equation for various values of the front wave velocity are presented. Using the sineGordon expansion method and classic integration, we obtain exact transverse solutions including breathers, bright solitons,and periodic solutions.展开更多
An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Rad...An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Radial basis function neural network and Fourier series expansion (FSE) are combined into a new function approximator to model each suitable disturbed function in systems. The requirement of the traditional iterative learning control algorithm on the nonlinear functions (such as global Lipschitz condition) is relaxed. Furthermore, by using appropriate Lyapunov-Krasovskii functionals, all signs in the closed loop system are guaranteed to be semiglobally uniformly ultimately bounded, and the output of the system is proved to converge to the desired trajectory. A simulation example is provided to illustrate the effectiveness of the control scheme.展开更多
The conventional methodology for designing QC-LDPC decoders is applied for fixed configurations used in wireless communication standards, and the supported largest expansion factor Z (the parallelism of the layered de...The conventional methodology for designing QC-LDPC decoders is applied for fixed configurations used in wireless communication standards, and the supported largest expansion factor Z (the parallelism of the layered decoding) is a fixed number. In this paper, we study the circular-shifting network for decoding LDPC codes with arbitrary Z factor, especially for decoding large Z (Z P) codes, where P is the decoder parallelism. By buffering the P-length slices from the memory, and assembling the shifted slices in a fixed routine, the P-parallelism shift network can process Z-parallelism circular-shifting tasks. The implementation results show that the proposed network for arbitrary sized data shifting consumes only one times of additional resource cost compared to the traditional solution for only maximum P sized data shifting, and achieves significant saving on area and routing complexity.展开更多
Heterogeneous Networks(HetNets)and cell densification represent promising solutions for the surging data traffic demand in wireless networks.In dense HetNets,user traffic is steered toward the Low-Power Node(LPN)when ...Heterogeneous Networks(HetNets)and cell densification represent promising solutions for the surging data traffic demand in wireless networks.In dense HetNets,user traffic is steered toward the Low-Power Node(LPN)when possible to enhance the user throughput and system capacity by increasing the area spectral efficiency.However,because of the transmit power differences in different tiers of HetNets and irregular service demand,a load imbalance typically exists among different serving nodes.To offload more traffic to LPNs and coordinate the Inter-Cell Interference(ICI),Third-Generation Partnership Project(3GPP)has facilitated the development of the Cell Range Expansion(CRE),enhanced Inter-Cell Interference Coordination(eICIC)and Further enhanced ICIC(FeICIC).In this paper,we develop a cell clustering-based load-aware offsetting and an adaptive Low-Power Subframe(LPS)approach.Our solution allows the separation of User Association(UA)functions at the User Equipment(UE)and network server such that users can make a simple cell-selection decision similar to that in the maximum Received Signal Strength(max-RSS)based UA scheme,where the network server computes the load-aware offsetting and required LPS periods based on the load conditions of the system.The proposed solution is evaluated using system-level simulations wherein the results correspond to performance changes in different service regions.Results show that our method effectively solves the offloading and interference coordination problems in dense HetNets.展开更多
基金funded by the National Natural Science Foundation of China (No.32360418)the Guizhou Provincial Basic Research Program (Natural Science)(No.QianKeHeJiChu-ZK[2024]YiBan022)。
文摘Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion on the networks of leaf traits in woody plants within remnant forest patches,thereby enhancing our understanding of plant adaptive strategies and contributing to the conservation of urban biodiversity.Methods:Our study examined woody plants within 120 sample plots across 15 remnant forest patches in Guiyang,China.We constructed leaf trait networks (LTNs) based on 26 anatomical,structural,and compositional leaf traits and assessed the effects of the spatiotemporal dynamics of urban expansion on these LTNs.Results and conclusions:Our results indicate that shrubs within these patches have greater average path lengths and diameters than trees.With increasing urban expansion intensity,we observed a rise in the edge density of the LTN-shrubs.Additionally,modularity within the networks of shrubs decreased as road density and urban expansion intensity increased,and increases in the average path length and average clustering coefficient for shrubs were observed with a rise in the composite terrain complexity index.Notably,patches subjected to‘leapfrog’expansion exhibited greater average patch length and diameter than those experiencing edge growth.Stomatal traits were found to have high degree centrality within these networks,signifying their substantial contribution to multiple functions.In urban remnant forests,shrubs bolster their resilience to variable environmental pressures by augmenting the complexity of their leaf trait networks.
基金supported by the National Natural Science Foundation of China(Grant No.62102032)the R&D Program of Beijing Municipal Education Commission(Grant No.KM202211417010).
文摘This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of China toward European investment and trade,and in particular,has expanded with the continuous progress of the One Belt and One Road(OBOR)initiative.In addition to improving the service quality of CR Express,the operating costs must be reduced for developing“smart railways”that serve“smart cities”.We propose a dualobjective-based function mathematical optimization model;the satisfaction of the cargo owner is considered,and the timeliness,transportation capacity,and goods category constraints of CR Express transportation are designed.Moreover,we present the normalized equivalent method of the two-objective function of the model.Finally,a case study is conducted against the background of certain trains in the western corridor of CR Express to validate the effectiveness of the model and research methods proposed in this study.
基金supported in part by the National Natural Science Foundation of China(61172051,61302070,61202071, 61302072) the Fundamental Research Funds for the Central Universities (N110804003,N120804002,N120404001, N120604001)+1 种基金 the Program for New Century Excellent Talents in University(NCET-120102) the Specialized Research Fund for the Doctoral Program of Higher Education (20120042120049)
文摘Deploying Picocell Base Station(PBS) throughout a Macrocell is a promising solution for capacity improvement in the next generation wireless networks.However,the strong received power from Macrocell Base Station(MBS) makes the areas of Picocell narrow and limits the gain of cell splitting.In this paper,we firstly propose a Dynamic Cell Range Expansion(DCRE) strategy.By expanding the coverage of the cell,we aim to balance the network load between MBS and PBS.Then,we present a cooperative Resource block and Power Allocation Scheme(coRPAS)based on DCRE.The objective of coRPAS is to decrease interference caused by MBS and Macrocell User Equipments,by which we can expand regions of Picocell User Equipments.Simulation results demonstrate the superiority of our method through comparing with other existing methods.
基金Supported by the National Natural Science Foundation of China(No.29676014)and others.
文摘An on-line prediction scheme combining the Karhunen-Love expansion and a recurrent neural network for a wall-cooled fixed-bed reactor is presented.Benzene oxidation in a pilotscale,single tube fixed-bed reactor is chosen as a working system and a pseudo-homogeneous twodimensional model is used to generate simulation data to investigate the prediction scheme presentedunder randomly changing operating conditions.The scheme consisting of the K-L expansion andneural network performs satisfactorily for on-line prediction of reaction yield and bed temperatures.
基金the financial support provided by the National Natural Science Foundation of China(No.21776035)China Postdoctoral Science Foundation(No.2019TQ0045)。
文摘Synthesis of heat exchanger networks including expansion process is a complex task due to the involvement of both heat and work.A stream that expands through expanders can produce work and cold load,while expansion through valves barely affects heat integration.In addition,expansion through expanders at higher temperature produces more work,but consumes more hot utility.Therefore,there is a need to weigh work production and heat consumption.To this end,an enhanced stage-wise superstructure is proposed that involves synchronous optimization of expander/valve placement and heat integration for each pressure-change sub-stream in stages.A mixed-integer nonlinear programming(MINLP)model is established for synthesizing sub and aboveambient heat exchanger networks with multi-stream expansion,which explicitly considers the optimized selection of end-heaters and end-coolers to adjust temperature requirement.Our proposed method can commendably achieve the optimal selection of expanders and valves in a bid for minimizing exergy consumption and total annual cost.Four example studies are conducted with two distinct objective function(minimization of exergy consumption and total annual cost,respectively)to illustrate the feasibility and efficacy of the proposed method.
文摘The neural network has attracted researchers immensely in the last couple of years due to its wide applications in various areas such as Data mining,Natural language processing,Image processing,and Information retrieval etc.Word embedding has been applied by many researchers for Information retrieval tasks.In this paper word embedding-based skip-gram model has been developed for the query expansion task.Vocabulary terms are obtained from the top“k”initially retrieved documents using the Pseudo relevance feedback model and then they are trained using the skip-gram model to find the expansion terms for the user query.The performance of the model based on mean average precision is 0.3176.The proposed model compares with other existing models.An improvement of 6.61%,6.93%,and 9.07%on MAP value is observed compare to the Original query,BM25 model,and query expansion with the Chi-Square model respectively.The proposed model also retrieves 84,25,and 81 additional relevant documents compare to the original query,query expansion with Chi-Square model,and BM25 model respectively and thus improves the recall value also.The per query analysis reveals that the proposed model performs well in 30,36,and 30 queries compare to the original query,query expansion with Chi-square model,and BM25 model respectively.
基金Supported by the High Technology Research and Development Programme of China (No. 2008AA01A328)the National Natural Science Foundation of China (No. 60772022)+2 种基金the Program for New Century Excellent Talents in University (No. NCET-05-0112)the Program for Changjiang Scholars and Innovative Research Team in University of MOE, China (No. IRT0609)111 Project (No. B07005)
文摘This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based on time and space)with 'centralized+distributed' idea,and then made a simulation in Clanguage.Experiments results show that GTS can produce the virtual network topology which can changedynamically with the characteristic of scaling-free network.GTS can also groom the different traffic andtrigger them under real-time or scheduling mechanisms,generating different optical connections.Thistraffic model is convenient for the simulation of optical networks considering the traffic complexity.
文摘A new method for identifying nonlinear time varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning and nonlinear approximating ability of neural networks to model the non linearity of the system, characterize time varying dynamics of the system by the time varying parametric vector of the network, then the parametric vector of the network is approximated by a weighted sum of known basis sequences. Because of black box modeling ability of neural networks, the presented method can identify nonlinear time varying systems with unknown structure. In order to improve the real time capability of the algorithm, the neural network is trained by a simple fast learning algorithm based on local least squares presented by the authors. The effectiveness and the performance of the method are demonstrated by some simulation results.
文摘August 30,2007,Shenzhen,China-ZTE Corporation ("ZTE"),a leading global provider of telecommunications equipment and network solutions,announced that it has recently signed an agreement with Telkom Indonesia ("Telkom"),the largest InfoCom company and full-service network provider in Indonesia,to help expand the CDMA2000 network capacity for national coverage. Under the contract,the network expansion will cover the four main cities of the eastern part of Sulawesi,Indonesia.
基金financial supports and the strategic platform for innovation&research provided by Danish national project iPower.
文摘This paper presents a novel approach for electrical distribution network expansion planning using multi-objective particle swarm optimization (PSO). The optimization objectives are: investment and operation cost, energy losses cost, and power congestion cost. A two-phase multi-objective PSO algorithm is employed to solve this optimization problem, which can accelerate the convergence and guarantee the diversity of Pareto-optimal front set as well. The feasibility and effectiveness of both the proposed multi-objective planning approach and the improved multi-objective PSO have been verified by the 18-node typical system.
基金Supported by the Scientific and Technological Innovation Projects of Department of Education of Guangdong Province(2012KJCX0082)Guangzhou Education Science Planning Issues(2013A006)
文摘The minimum cost of capacity expansion for time-limited transportation problem on-demand (MCCETLTPD) is to find such a practicable capacity expansion transportation scheme satisfying the time-limited T along with all origins’ supply and all destinations’ demands as well as the expanding cost is minimum. Actually, MCCETLTPD is a balance transportation problem and a variant problem of minimum cost maximum flow problem. In this paper, by creating a mathematical model and constructing a network with lower and upper arc capacities, MCCETLTPD is transformed into searching feasible flow in the constructed network, and consequently, an algorithm MCCETLTPD-A is developed as MCCETLTPD’s solution method basing minimum cost maximum flow algorithm. Computational study validates that the MCCETLTPD-A algorithm is an efficient approach to solving the MCCETLTPD.
基金Project supported by the National Natural Science Foundation of China Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(No.11988102)the National Natural Science Foundation of China(No.12202451)。
文摘A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions.
文摘Through two methods, we investigate the solitary and periodic wave solutions of the differential equation describing a nonlinear coupled two-dimensional discrete electrical lattice. The fixed points of our model equation are examined and the bifurcations of phase portraits of this equation for various values of the front wave velocity are presented. Using the sineGordon expansion method and classic integration, we obtain exact transverse solutions including breathers, bright solitons,and periodic solutions.
基金supported by National Natural Science Foundation of China (No. 72103676)partially supported by the Fundamental Research Funds for the Central Universities
文摘An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Radial basis function neural network and Fourier series expansion (FSE) are combined into a new function approximator to model each suitable disturbed function in systems. The requirement of the traditional iterative learning control algorithm on the nonlinear functions (such as global Lipschitz condition) is relaxed. Furthermore, by using appropriate Lyapunov-Krasovskii functionals, all signs in the closed loop system are guaranteed to be semiglobally uniformly ultimately bounded, and the output of the system is proved to converge to the desired trajectory. A simulation example is provided to illustrate the effectiveness of the control scheme.
文摘The conventional methodology for designing QC-LDPC decoders is applied for fixed configurations used in wireless communication standards, and the supported largest expansion factor Z (the parallelism of the layered decoding) is a fixed number. In this paper, we study the circular-shifting network for decoding LDPC codes with arbitrary Z factor, especially for decoding large Z (Z P) codes, where P is the decoder parallelism. By buffering the P-length slices from the memory, and assembling the shifted slices in a fixed routine, the P-parallelism shift network can process Z-parallelism circular-shifting tasks. The implementation results show that the proposed network for arbitrary sized data shifting consumes only one times of additional resource cost compared to the traditional solution for only maximum P sized data shifting, and achieves significant saving on area and routing complexity.
文摘Heterogeneous Networks(HetNets)and cell densification represent promising solutions for the surging data traffic demand in wireless networks.In dense HetNets,user traffic is steered toward the Low-Power Node(LPN)when possible to enhance the user throughput and system capacity by increasing the area spectral efficiency.However,because of the transmit power differences in different tiers of HetNets and irregular service demand,a load imbalance typically exists among different serving nodes.To offload more traffic to LPNs and coordinate the Inter-Cell Interference(ICI),Third-Generation Partnership Project(3GPP)has facilitated the development of the Cell Range Expansion(CRE),enhanced Inter-Cell Interference Coordination(eICIC)and Further enhanced ICIC(FeICIC).In this paper,we develop a cell clustering-based load-aware offsetting and an adaptive Low-Power Subframe(LPS)approach.Our solution allows the separation of User Association(UA)functions at the User Equipment(UE)and network server such that users can make a simple cell-selection decision similar to that in the maximum Received Signal Strength(max-RSS)based UA scheme,where the network server computes the load-aware offsetting and required LPS periods based on the load conditions of the system.The proposed solution is evaluated using system-level simulations wherein the results correspond to performance changes in different service regions.Results show that our method effectively solves the offloading and interference coordination problems in dense HetNets.