期刊文献+
共找到40,822篇文章
< 1 2 250 >
每页显示 20 50 100
Predicting hepatocellular carcinoma: A new non-invasive model based on shear wave elastography
1
作者 Dong Jiang Yi Qian +9 位作者 Yi-Jun Gu Ru Wang Hua Yu Hui Dong Dong-Yu Chen Yan Chen Hao-Zheng Jiang Bi-Bo Tan Min Peng Yi-Ran Li 《World Journal of Gastroenterology》 SCIE CAS 2024年第25期3166-3178,共13页
BACKGROUND Integrating conventional ultrasound features with 2D shear wave elastography(2D-SWE)can potentially enhance preoperative hepatocellular carcinoma(HCC)predictions.AIM To develop a 2D-SWE-based predictive mod... BACKGROUND Integrating conventional ultrasound features with 2D shear wave elastography(2D-SWE)can potentially enhance preoperative hepatocellular carcinoma(HCC)predictions.AIM To develop a 2D-SWE-based predictive model for preoperative identification of HCC.METHODS A retrospective analysis of 884 patients who underwent liver resection and pathology evaluation from February 2021 to August 2023 was conducted at the Oriental Hepatobiliary Surgery Hospital.The patients were divided into the modeling group(n=720)and the control group(n=164).The study included conventional ultrasound,2D-SWE,and preoperative laboratory tests.Multiple logistic regression was used to identify independent predictive factors for RESULTS In the modeling group analysis,maximal elasticity(Emax)of tumors and their peripheries,platelet count,cirrhosis,and blood flow were independent risk indicators for malignancies.These factors yielded an area under the curve of 0.77(95%confidence interval:0.73-0.81)with 84%sensitivity and 61%specificity.The model demonstrated good calibration in both the construction and validation cohorts,as shown by the calibration graph and Hosmer-Lemeshow test(P=0.683 and P=0.658,respectively).Additionally,the mean elasticity(Emean)of the tumor periphery was identified as a risk factor for microvascular invasion(MVI)in malignant liver tumors(P=0.003).Patients receiving antiviral treatment differed significantly in platelet count(P=0.002),Emax of tumors(P=0.033),Emean of tumors(P=0.042),Emax at tumor periphery(P<0.001),and Emean at tumor periphery(P=0.003).CONCLUSION 2D-SWE’s hardness value serves as a valuable marker for enhancing the preoperative diagnosis of malignant liver lesions,correlating significantly with MVI and antiviral treatment efficacy. 展开更多
关键词 Shear wave elastography predicting model Microvascular invasion Antiviral treatment Hepatocellular carcinoma
下载PDF
Computational Fluid Dynamics Approach for Predicting Pipeline Response to Various Blast Scenarios: A Numerical Modeling Study
2
作者 Farman Saifi Mohd Javaid +1 位作者 Abid Haleem S.M.Anas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2747-2777,共31页
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac... Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events. 展开更多
关键词 Blast loading computational fluid dynamics computer modeling pipe networks response prediction structural safety
下载PDF
Development of a new Cox model for predicting long-term survival in hepatitis cirrhosis patients underwent transjugular intrahepatic portosystemic shunts
3
作者 Yi-Fan Lv Bing Zhu +8 位作者 Ming-Ming Meng Yi-Fan Wu Cheng-Bin Dong Yu Zhang Bo-Wen Liu Shao-Li You Sa Lv Yong-Ping Yang Fu-Quan Liu 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第2期491-502,共12页
BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)placement is a procedure that can effectively treat complications of portal hypertension,such as variceal bleeding and refractory ascites.However,there hav... BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)placement is a procedure that can effectively treat complications of portal hypertension,such as variceal bleeding and refractory ascites.However,there have been no specific studies on predicting long-term survival after TIPS placement.AIM To establish a model to predict long-term survival in patients with hepatitis cirrhosis after TIPS.METHODS A retrospective analysis was conducted on a cohort of 224 patients who un-derwent TIPS implantation.Through univariate and multivariate Cox regression analyses,various factors were examined for their ability to predict survival at 6 years after TIPS.Consequently,a composite score was formulated,encompassing the indication,shunt reasonability,portal venous pressure gradient(PPG)after TIPS,percentage decrease in portal venous pressure(PVP),indocyanine green retention rate at 15 min(ICGR15)and total bilirubin(Tbil)level.Furthermore,the performance of the newly developed Cox(NDC)model was evaluated in an in-ternal validation cohort and compared with that of a series of existing models.RESULTS The indication(variceal bleeding or ascites),shunt reasonability(reasonable or unreasonable),ICGR15,post-operative PPG,percentage of PVP decrease and Tbil were found to be independent factors affecting long-term survival after TIPS placement.The NDC model incorporated these parameters and successfully identified patients at high risk,exhibiting a notably elevated mortality rate following the TIPS procedure,as observed in both the training and validation cohorts.Additionally,in terms of predicting the long-term survival rate,the performance of the NDC model was significantly better than that of the other four models[Child-Pugh,model for end-stage liver disease(MELD),MELD-sodium and the Freiburg index of post-TIPS survival].CONCLUSION The NDC model can accurately predict long-term survival after the TIPS procedure in patients with hepatitis cirrhosis,help identify high-risk patients and guide follow-up management after TIPS implantation. 展开更多
关键词 Transjugular intrahepatic portosystemic shunt Long-term survival predictive model
下载PDF
Predictive modeling for postoperative delirium in elderly patients with abdominal malignancies using synthetic minority oversampling technique 被引量:3
4
作者 Wen-Jing Hu Gang Bai +6 位作者 Yan Wang Dong-Mei Hong Jin-Hua Jiang Jia-Xun Li Yin Hua Xin-Yu Wang Ying Chen 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1227-1235,共9页
BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn... BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance. 展开更多
关键词 Elderly patients Abdominal cancer Postoperative delirium Synthetic minority oversampling technique predictive modeling Surgical outcomes
下载PDF
A modified stochastic model for LS+AR hybrid method and its application in polar motion short-term prediction 被引量:1
5
作者 Fei Ye Yunbin Yuan 《Geodesy and Geodynamics》 EI CSCD 2024年第1期100-105,共6页
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl... Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods. 展开更多
关键词 Stochastic model LS+AR Short-term prediction The earth rotation parameter(ERP) Observation model
下载PDF
Data-driven casting defect prediction model for sand casting based on random forest classification algorithm 被引量:1
6
作者 Bang Guan Dong-hong Wang +3 位作者 Da Shu Shou-qin Zhu Xiao-yuan Ji Bao-de Sun 《China Foundry》 SCIE EI CAS CSCD 2024年第2期137-146,共10页
The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was p... The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%. 展开更多
关键词 sand casting process data-driven method classification model quality prediction feature importance
下载PDF
Validation and performance of three scoring systems for predicting primary non-function and early allograft failure after liver transplantation 被引量:1
7
作者 Yu Nie Jin-Bo Huang +5 位作者 Shu-Jiao He Hua-Di Chen Jun-Jun Jia Jing-Jing Li Xiao-Shun He Qiang Zhao 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2024年第5期463-471,共9页
Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipien... Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipients at high risk of PNF and EAF were urgently needed. Recently, the Model for Early Allograft Function(MEAF), PNF score by King's College(King-PNF) and Balance-and-Risk-Lactate(BAR-Lac) score were developed to assess the risks of PNF and EAF. This study aimed to externally validate and compare the prognostic performance of these three scores for predicting PNF and EAF. Methods: A retrospective study included 720 patients with primary LT between January 2015 and December 2020. MEAF, King-PNF and BAR-Lac scores were compared using receiver operating characteristic(ROC) and the net reclassification improvement(NRI) and integrated discrimination improvement(IDI) analyses. Results: Of all 720 patients, 28(3.9%) developed PNF and 67(9.3%) developed EAF in 3 months. The overall early allograft dysfunction(EAD) rate was 39.0%. The 3-month patient mortality was 8.6% while 1-year graft-failure-free survival was 89.2%. The median MEAF, King-PNF and BAR-Lac scores were 5.0(3.5–6.3),-2.1(-2.6 to-1.2), and 5.0(2.0–11.0), respectively. For predicting PNF, MEAF and King-PNF scores had excellent area under curves(AUCs) of 0.872 and 0.891, superior to BAR-Lac(AUC = 0.830). The NRI and IDI analyses confirmed that King-PNF score had the best performance in predicting PNF while MEAF served as a better predictor of EAD. The EAF risk curve and 1-year graft-failure-free survival curve showed that King-PNF was superior to MEAF and BAR-Lac scores for stratifying the risk of EAF. Conclusions: MEAF, King-PNF and BAR-Lac were validated as practical and effective risk assessment tools of PNF. King-PNF score outperformed MEAF and BAR-Lac in predicting PNF and EAF within 6 months. BAR-Lac score had a huge advantage in the prediction for PNF without post-transplant variables. Proper use of these scores will help early identify PNF, standardize grading of EAF and reasonably select clinical endpoints in relative studies. 展开更多
关键词 Primary non-function Early allograft failure Risk predicting model Liver transplantation
下载PDF
Analysis of risk factors leading to anxiety and depression in patients with prostate cancer after castration and the construction of a risk prediction model 被引量:1
8
作者 Rui-Xiao Li Xue-Lian Li +4 位作者 Guo-Jun Wu Yong-Hua Lei Xiao-Shun Li Bo Li Jian-Xin Ni 《World Journal of Psychiatry》 SCIE 2024年第2期255-265,共11页
BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages ... BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions. 展开更多
关键词 Prostate cancer CASTRATION Anxiety and depression Risk factors Risk prediction model
下载PDF
Hybrid Dynamic Variables-Dependent Event-Triggered Fuzzy Model Predictive Control 被引量:1
9
作者 Xiongbo Wan Chaoling Zhang +2 位作者 Fan Wei Chuan-Ke Zhang Min Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期723-733,共11页
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ... This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance. 展开更多
关键词 Dynamic event-triggered mechanism(DETM) hybrid dynamic variables model predictive control(MPC) robust positive invariant(RPI)set T-S fuzzy systems
下载PDF
An attention-based teacher-student model for multivariate short-term landslide displacement prediction incorporating weather forecast data
10
作者 CHEN Jun HU Wang +2 位作者 ZHANG Yu QIU Hongzhi WANG Renchao 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2739-2753,共15页
Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection ... Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation. 展开更多
关键词 Landslide prediction MIC LSTM Attention mechanism Teacher Student model prediction stability and interpretability
下载PDF
Validation of prognostic scores for predicting acute liver failure and in-hospital death in patients with dengue-induced severe hepatitis
11
作者 Tongluk Teerasarntipan Kessarin Thanapirom +2 位作者 Roongruedee Chaiteerakij Piyawat Komolmit Sombat Treeprasertsuk 《World Journal of Gastroenterology》 SCIE CAS 2024年第45期4781-4790,共10页
BACKGROUND Acute liver failure(ALF)in dengue is rare but fatal.Early identification of patients who are at risk of ALF is the key strategy to improve survival.AIM To validate prognostic scores for predicting ALF and i... BACKGROUND Acute liver failure(ALF)in dengue is rare but fatal.Early identification of patients who are at risk of ALF is the key strategy to improve survival.AIM To validate prognostic scores for predicting ALF and in-hospital mortality in dengue-induced severe hepatitis(DISH).METHODS We retrospectively reviewed 2532 dengue patients over a period of 16 years(2007-2022).Patients with DISH,defined as transaminases>10 times the normal reference level and DISH with subsequent ALF,were included.Univariate regre-ssion analysis was used to identify factors associated with outcomes.Youden’s index in conjunction with receiver operating characteristic(ROC)analysis was used to determine optimal cut-off values for prognostic scores in predicting ALF and in-hospital death.Area under the ROC(AUROC)curve values were compared using paired data nonparametric ROC curve estimation.RESULTS Of 193 DISH patients,20 developed ALF(0.79%),with a mortality rate of 60.0%.International normalized ratio,bilirubin,albumin,and creatinine were indepen-dent predictors associated with ALF and death.Prognostic scores showed excel-lent performance:Model for end-stage liver disease(MELD)score≥15 predicted ALF(AUROC 0.917,sensitivity 90.0%,specificity 88.4%)and≥18 predicted death(AUROC 0.823,sensitivity 86.9%,specificity 89.1%);easy albumin-bilirubin(ALBI)score≥-30 predicted ALF and death(ALF:AUROC 0.835,sensitivity80.0%,specificity 72.2%;death:AUROC 0.808,sensitivity 76.9%,specificity 69.3%);ALBI score≥-2 predicted ALF and death(ALF:AUROC 0.806,sensitivity 80.0%,specificity 77.4%;death:AUROC 0.799,sensitivity 76.9%,specificity 74.3%).Platelet-ALBI score also showed good performance in predicting ALF and death(AUROC=0.786 and 0.699,respectively).MELD and EZ-ALBI scores had similar performance in predicting ALF(Z=1.688,P=0.091)and death(Z=0.322,P=0.747).CONCLUSION MELD score is the best predictor of ALF and death in DISH patients.EZ-ALBI score,a simpler yet effective score,shows promise as an alternative prognostic tool in dengue patients. 展开更多
关键词 FULMINANT Clinical outcomes Liver injury Prognostic assessment predictive models Mortality prediction
下载PDF
A Novel Predictive Model for Edge Computing Resource Scheduling Based on Deep Neural Network
12
作者 Ming Gao Weiwei Cai +3 位作者 Yizhang Jiang Wenjun Hu Jian Yao Pengjiang Qian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期259-277,共19页
Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of se... Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of service(QoS)and quality of experience(QoE).Edge computing technology extends cloud service functionality to the edge of the mobile network,closer to the task execution end,and can effectivelymitigate the communication latency problem.However,the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management,and the booming development of artificial neural networks provides us withmore powerfulmethods to alleviate this limitation.Therefore,in this paper,we proposed a time series forecasting model incorporating Conv1D,LSTM and GRU for edge computing device resource scheduling,trained and tested the forecasting model using a small self-built dataset,and achieved competitive experimental results. 展开更多
关键词 Edge computing resource scheduling predictive models
下载PDF
Development of a machine learning-based model for predicting risk of early postoperative recurrence of hepatocellular carcinoma 被引量:4
13
作者 Yu-Bo Zhang Gang Yang +3 位作者 Yang Bu Peng Lei Wei Zhang Dan-Yang Zhang 《World Journal of Gastroenterology》 SCIE CAS 2023年第43期5804-5817,共14页
BACKGROUND Surgical resection is the primary treatment for hepatocellular carcinoma(HCC).However,studies indicate that nearly 70%of patients experience HCC recurrence within five years following hepatectomy.The earlie... BACKGROUND Surgical resection is the primary treatment for hepatocellular carcinoma(HCC).However,studies indicate that nearly 70%of patients experience HCC recurrence within five years following hepatectomy.The earlier the recurrence,the worse the prognosis.Current studies on postoperative recurrence primarily rely on postoperative pathology and patient clinical data,which are lagging.Hence,developing a new pre-operative prediction model for postoperative recurrence is crucial for guiding individualized treatment of HCC patients and enhancing their prognosis.AIM To identify key variables in pre-operative clinical and imaging data using machine learning algorithms to construct multiple risk prediction models for early postoperative recurrence of HCC.METHODS The demographic and clinical data of 371 HCC patients were collected for this retrospective study.These data were randomly divided into training and test sets at a ratio of 8:2.The training set was analyzed,and key feature variables with predictive value for early HCC recurrence were selected to construct six different machine learning prediction models.Each model was evaluated,and the bestperforming model was selected for interpreting the importance of each variable.Finally,an online calculator based on the model was generated for daily clinical practice.RESULTS Following machine learning analysis,eight key feature variables(age,intratumoral arteries,alpha-fetoprotein,preoperative blood glucose,number of tumors,glucose-to-lymphocyte ratio,liver cirrhosis,and pre-operative platelets)were selected to construct six different prediction models.The XGBoost model outperformed other models,with the area under the receiver operating characteristic curve in the training,validation,and test datasets being 0.993(95%confidence interval:0.982-1.000),0.734(0.601-0.867),and 0.706(0.585-0.827),respectively.Calibration curve and decision curve analysis indicated that the XGBoost model also had good predictive performance and clinical application value.CONCLUSION The XGBoost model exhibits superior performance and is a reliable tool for predicting early postoperative HCC recurrence.This model may guide surgical strategies and postoperative individualized medicine. 展开更多
关键词 Machine learning Hepatocellular carcinoma Early recurrence Risk prediction models Imaging features Clinical features
下载PDF
Uncertainty and disturbance estimator-based model predictive control for wet flue gas desulphurization system
14
作者 Shan Liu Wenqi Zhong +2 位作者 Li Sun Xi Chen Rafal Madonski 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期182-194,共13页
Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanis... Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error. 展开更多
关键词 Desulphurization system Disturbance rejection model predictive control Uncertainty and disturbance estimator Nonlinear system
下载PDF
Prediction Model-based Multi-objective Optimization for Mix-ratio Design of Recycled Aggregate Concrete
15
作者 CHEN Tao WU Di YAO Xiaojun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1507-1517,共11页
The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio... The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method. 展开更多
关键词 recycled coarse aggregate mix ratio multi-objective optimization prediction model compressive strength
下载PDF
Comparing gastrointestinal dysfunction score and acute gastrointestinal injury grade for predicting short-term mortality in critically ill patients
16
作者 Chao Shen Xi Wang +3 位作者 Yi-Ying Xiao Jia-Ying Zhang Guo-Lian Xia Rong-Lin Jiang 《World Journal of Gastroenterology》 SCIE CAS 2024年第42期4523-4531,共9页
BACKGROUND The prognosis of critically ill patients is closely linked to their gastrointestinal(GI)function.The acute GI injury(AGI)grading system,established in 2012,is extensively utilized to evaluate GI dysfunction... BACKGROUND The prognosis of critically ill patients is closely linked to their gastrointestinal(GI)function.The acute GI injury(AGI)grading system,established in 2012,is extensively utilized to evaluate GI dysfunction and forecast outcomes in clinical settings.In 2021,the GI dysfunction score(GIDS)was developed,building on the AGI grading system,to enhance the accuracy of GI dysfunction severity assessment,improve prognostic predictions,reduce subjectivity,and increase reproducibility.AIM To compare the predictive capabilities of GIDS and the AGI grading system for 28-day mortality in critically ill patients.METHODS A retrospective study was conducted at the general intensive care unit(ICU)of a regional university hospital.All data were collected during the first week of ICU admission.The primary outcome was 28-day mortality.Multivariable logistic regression analyzed whether GIDS and AGI grade were independent risk factors for 28-day mortality.The predictive abilities of GIDS and AGI grade were compared using the receiver operating characteristic curve,with DeLong’s test assessing differences between the curves’areas.RESULTS The incidence of AGI in the first week of ICU admission was 92.13%.There were 85 deaths(47.75%)within 28 days of ICU admission.There was no initial 24-hour difference in GIDS between the non-survival and survival groups.Both GIDS(OR 2.01,95%CI:1.25-3.24;P=0.004)and AGI grade(OR 1.94,95%CI:1.12-3.38;P=0.019)were independent predictors of 28-day mortality.No significant difference was found between the predictive accuracy of GIDS and AGI grade for 28-day mortality during the first week of ICU admission(Z=-0.26,P=0.794).CONCLUSION GIDS within the first 24 hours was an unreliable predictor of 28-day mortality.The predictive accuracy for 28-day mortality from both systems during the first week was comparable. 展开更多
关键词 Critical illness Gastrointestinal dysfunction Acute gastrointestinal injury Prognostic indicators Intensive care unit outcomes Mortality prediction Risk stratification predictive modeling
下载PDF
Finite-Time Stabilization for Constrained Discrete-time Systems by Using Model Predictive Control
17
作者 Bing Zhu Xiaozhuoer Yuan +1 位作者 Li Dai Zhiwen Qiang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1656-1666,共11页
In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guar... In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples. 展开更多
关键词 CONSTRAINTS deadbeat control finite-time stabilization model predictive control(MPC)
下载PDF
A method for establishing a bearing residual life prediction model for process enhancement equipment based on rotor imbalance response analysis
18
作者 Feng Wang Haoran Li +3 位作者 Zhenghui Zhang Yan Bai Hong Yin Jing Bian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期203-215,共13页
A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adh... A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adhere to the wire mesh packing in the rotor,thus resulting in an imbalance in the vibration of the rotor,which may cause serious damage to the bearing and material leakage.This study proposes a model prediction for estimating the bearing residual life of a rotating packed bed based on rotor imbalance response analysis.This method is used to determine the influence of the mass on the imbalance in the vibration of the rotor on bearing damage.The major influence on rotor vibration was found to be exerted by the imbalanced mass and its distribution radius,as revealed by the results of orthogonal experiments.Through implementing finite element analysis,the imbalance response curve for the rotating packed bed rotor was obtained,and a correlation among rotor imbalance mass,distribution radius of imbalance mass,and bearing residue life was established via data fitting.The predicted value of the bearing life can be used as the reference basis for an early safety warning of a rotating packed bed to effectively avoid accidents. 展开更多
关键词 Rotating packed bed Mass imbalance Harmonic response analysis Residual life prediction model
下载PDF
Advancing Malaria Prediction in Uganda through AI and Geospatial Analysis Models
19
作者 Maria Assumpta Komugabe Richard Caballero +1 位作者 Itamar Shabtai Simon Peter Musinguzi 《Journal of Geographic Information System》 2024年第2期115-135,共21页
The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication e... The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication efforts, malaria remains a serious threat, particularly in regions like Africa. This study explores how integrating Gregor’s Type IV theory with Geographic Information Systems (GIS) improves our understanding of disease dynamics, especially Malaria transmission patterns in Uganda. By combining data-driven algorithms, artificial intelligence, and geospatial analysis, the research aims to determine the most reliable predictors of Malaria incident rates and assess the impact of different factors on transmission. Using diverse predictive modeling techniques including Linear Regression, K-Nearest Neighbor, Neural Network, and Random Forest, the study found that;Random Forest model outperformed the others, demonstrating superior predictive accuracy with an R<sup>2</sup> of approximately 0.88 and a Mean Squared Error (MSE) of 0.0534, Antimalarial treatment was identified as the most influential factor, with mosquito net access associated with a significant reduction in incident rates, while higher temperatures correlated with increased rates. Our study concluded that the Random Forest model was effective in predicting malaria incident rates in Uganda and highlighted the significance of climate factors and preventive measures such as mosquito nets and antimalarial drugs. We recommended that districts with malaria hotspots lacking Indoor Residual Spraying (IRS) coverage prioritize its implementation to mitigate incident rates, while those with high malaria rates in 2020 require immediate attention. By advocating for the use of appropriate predictive models, our research emphasized the importance of evidence-based decision-making in malaria control strategies, aiming to reduce transmission rates and save lives. 展开更多
关键词 MALARIA predictive modeling Geospatial Analysis Climate Factors Preventive Measures
下载PDF
Quantitative prediction model for the depth limit of oil accumulation in the deep carbonate rocks:A case study of Lower Ordovician in Tazhong area of Tarim Basin
20
作者 Wen-Yang Wang Xiong-Qi Pang +3 位作者 Ya-Ping Wang Zhang-Xin Chen Fu-Jie Jiang Ying Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期115-124,共10页
With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can b... With continuous hydrocarbon exploration extending to deeper basins,the deepest industrial oil accumulation was discovered below 8,200 m,revealing a new exploration field.Hence,the extent to which oil exploration can be extended,and the prediction of the depth limit of oil accumulation(DLOA),are issues that have attracted significant attention in petroleum geology.Since it is difficult to characterize the evolution of the physical properties of the marine carbonate reservoir with burial depth,and the deepest drilling still cannot reach the DLOA.Hence,the DLOA cannot be predicted by directly establishing the relationship between the ratio of drilling to the dry layer and the depth.In this study,by establishing the relationships between the porosity and the depth and dry layer ratio of the carbonate reservoir,the relationships between the depth and dry layer ratio were obtained collectively.The depth corresponding to a dry layer ratio of 100%is the DLOA.Based on this,a quantitative prediction model for the DLOA was finally built.The results indicate that the porosity of the carbonate reservoir,Lower Ordovician in Tazhong area of Tarim Basin,tends to decrease with burial depth,and manifests as an overall low porosity reservoir in deep layer.The critical porosity of the DLOA was 1.8%,which is the critical geological condition corresponding to a 100%dry layer ratio encountered in the reservoir.The depth of the DLOA was 9,000 m.This study provides a new method for DLOA prediction that is beneficial for a deeper understanding of oil accumulation,and is of great importance for scientific guidance on deep oil drilling. 展开更多
关键词 Deep layer Tarim Basin Hydrocarbon accumulation Depth limit of oil accumulation prediction model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部