The exposed area of intertidal zone varies with tidal water level changes, If intercomparisons of satellite images are adopted as a method to determine geomorphological changes of the intertidal zone in response to ac...The exposed area of intertidal zone varies with tidal water level changes, If intercomparisons of satellite images are adopted as a method to determine geomorphological changes of the intertidal zone in response to accretion or erosion processes, then the effect of water level variations must be evaluated. In this study, two Landsat TM images overpassing the central Jiangsu coastal waters on 2 January and 7 March 2002, respectively, were treated by the changing detection analysis using Image Differencing and Post-classification Comparison. The simultaneous tide level data from four tide gauge stations along the coast were used for displaying the spatial variations of water levels and determining the elevations of waterlines. The results show that the spatial variations of water levels are highly significant in the central Jiangsu coastal waters. The huge differences of tidal land exposure patterns between the two imaging times are related mainly to the spatial variations of tidal water levels, which are controlled by the differences in tidal phases for different imaging times and the spatial variations of water level over the study area at each imaging time. Under complex tidal conditions, e.g., those of the central Jiangsu coastal waters, the tide-surge model should be used to eliminate effectively the effects of water level variations on remote sensing interpretation of geomorphological changes in the intertidal zone.展开更多
Based on the well water level data in Majiagou Mine in Tangshan City since 2000,it is suggested that the water level rise from 2008-2014 is possibly associated with reduced infiltration caused by less precipitation,to...Based on the well water level data in Majiagou Mine in Tangshan City since 2000,it is suggested that the water level rise from 2008-2014 is possibly associated with reduced infiltration caused by less precipitation,together with the effect of less groundwater exploitation. However,the water level rise from 1992-1998 cannot be interpreted properly if we extend the data source back to 1991. After comparing the data with long-term water level data of five wells with different hydro-geological units in Tangshan and Qinhuangdao, the study indicates that the long-term water level variation cannot be only attributed to the effect of less precipitation and the control of groundwater exploitation,but also with the influence of regional stress field change.With the support of regional geological and tectonic information,combined with the comprehensive analysis of CBM data obtained from the coal field,new understandings of the dynamic characteristics of annual variation are obtained.展开更多
The effective recovery of water level is a crucial measure of the success of comprehensive groundwater over-exploitation management actions in North China.However,traditional evaluation method do not directly capture ...The effective recovery of water level is a crucial measure of the success of comprehensive groundwater over-exploitation management actions in North China.However,traditional evaluation method do not directly capture the relationship between mining and other equilibrium elements.This study presents an innovative evaluation method to assess the water level recovery resulting from mining reduction based on the relationship between variation in exploitation and recharge.Firstly,the recharge variability of source and sink terms for both the base year and evaluation year is calculated and the coefficient of recharge variationβis introduced,which is then used to calculate the effective mining reduction and solve the water level recovery value caused by the effective mining reduction,and finally the water level recovery contribution by mining reduction is calculated by combining with the actual volume of mining reduction in the evaluation area.This research focuses on Baoding and Shijiazhuang Plain area,which share similar hydrogeological conditions but vary in groundwater exploitation and utilization.As the effect of groundwater level recovery with mining reduction was evaluated in these two areas as case study.In 2018,the results showed an effective water level recovery of 0.17 m and 0.13 m in the shallow groundwater of Shijiazhuang and Baoding Plain areas,respectively.The contributions of recovery from mining reduction were 76%and 57.98%for these two areas,respectively.It was notable that the water level recovery was most prominent in the foothill plain regions.From the evaluation results,it is evident that water level recovery depends not only on the intensity of groundwater mining reduction,but also on its effectiveness.The value of water level recovery alone cannot accurately indicate the intensity of mining reduction,as recharge variation significantly influences water level changes.Therefore,in practice,it is crucial to comprehensively assess the impact of mining reduction on water level recovery by combining the coefficient of recharge variation with the contribution of water level recovery from mining reduction.This integrated approach provide a more reasonable and scientifically supported basis,offering essential data support for groundwater management and conservation.To improve the accuracy and reliability of evaluation results,future work will focus on the standardizing and normalizing raw data processing.展开更多
Tidal waves in the East China Sea are simulated numerically with POM(Princeton Ocean Model) model for normal mean sea level, 30 cm higher, 60 cm higher, and 100 cm higher, respectively, and the simulated result is com...Tidal waves in the East China Sea are simulated numerically with POM(Princeton Ocean Model) model for normal mean sea level, 30 cm higher, 60 cm higher, and 100 cm higher, respectively, and the simulated result is compared with the harmonic analysis result of hourly sea level data from 19 tide gauges for more than 19 years. It is indicated that the long-term mean sea level variation affects notably tidal waves in this region. Generally, the tidal amplitude increases when the mean sea level rises, but this relationship may be inverse for some sea areas. The maximal variation of tidal amplitude takes place in the zones near the Fujian coast and the Zhejiang coast, rather than the shallowest Bohai Sea. The maximum increase of M2 amplitude can exceed about 15 cm corresponding to the 60 cm rise of the mean sea level along the Fujian coast. The other regions with large variations of tidal amplitude are those along the Jiangsu coast, the south-east coast of Shandong, and the south-east coast of Dalian. The propagation of tidal waves is also related to mean sea level variation, and the tidal phase-lag decreases generally when the mean sea level rises. Almost all the regions where the tidal phase-lag increases with rising mean sea level are close to amphidromic points, meanwhile the spatial area of such regions is very small. Because the influence of mean sea level variation upon tidal waves is spatially marked, such spatial effect should be considered in calculation of the tidal characteristic value and engineering water level. In the region where the amplitudes of the major tidal constituents increase, the probable maximum high water level becomes higher, the probable maximum low water level becomes lower, and both design water level andcheck water level increase obviously. For example, the design water level at Xiamen increases by 13.5 cm due to the variation of tidal waves when the mean sea level rises 60 cm, the total increase of design water level being 73.5 cm.展开更多
Regional sea level variability is linked to regional terrestrial water and the El Ni?o-Southern Oscillation(ENSO).This study assessed the relationships between the sea level variations in the South China Sea(SCS)and E...Regional sea level variability is linked to regional terrestrial water and the El Ni?o-Southern Oscillation(ENSO).This study assessed the relationships between the sea level variations in the South China Sea(SCS)and ENSO,the impact of terrestrial water storage(TWS)on non-steric sea level(NSSL),and the contributions of steric sea level(SSL)and NSSL to sea level anomaly(SLA),respectively.From 2003 to 2015,the SLAs exhibited a long-term trend of 6.65±0.78 mm/yr,which was primarily attributed to the SSLs.Additionally,during 2003-2015,ENSO events alternating with varying intensities might also be responsible for the unusually high SLA trend.Compared to the SSLs,the NSSLs contributed the seasonal signals to the SLAs,while the NSSLs changes were largely explained by the TWS in the Mekong River Basin at the seasonal scale and in the Pearl River Basin and Red River Basin at other time scales.In contrast to the TWS,the contributions of precipitation and evapotranspiration were relatively minor.A negative correlation between the sea level variations and ENSO was also found,with cross-correlation coefficients between the oceanic Ni?o index and SLAs/SSLs/NSSLs of -0.36/-0.37/-0.62 with lags of 2/3/2 months,respectively.These findings systematically reassessed the contributions of different components to the sea level variations.This study provided a benchmark for in-depth analysis of the impacts of terrestrial water and other potential causes on sea level rise in the SCS.展开更多
Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend an...Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.展开更多
Coseismic water level changes which may have been induced by the Wenchuan Ms8.0 earthquake and its 15 larger aftershocks (Ms〉5.4) have been observed at Tangshan well. We analyze the correlation between coseismic pa...Coseismic water level changes which may have been induced by the Wenchuan Ms8.0 earthquake and its 15 larger aftershocks (Ms〉5.4) have been observed at Tangshan well. We analyze the correlation between coseismic parameters (maximum amplitude, duration, coseismic step and the time when the coseismic reach its maximum amplitude) and earthquake parameters (magnitude, well-epicenter distance and depth), and then compare the time when the coseismic oscillation reaches its maximum amplitude with the seismogram from Douhe seismic station which is about 16.3 km away from Tangshan well. The analysis indicates that magnitude is the main factor influencing the induced coseismic water level changes, and that the well-epicenter distance and depth have less influence. Ms magnitude has the strongest correlation with the coseismic water level changes comparing to Mw and ML magnitudes. There exists strong correlation between the maximum amplitude, step size and the oscillation duration. The water level oscillation and step are both caused by dynamic strain sourcing from seismic waves. Most of the times when the oscillations reach their maximum amplitudes are between S and Rayleigh waves. The coseismic water level changes are due to the co-effect of seismic waves and hydro-geological environments.展开更多
According to the characteristics of frequent water level step-variation in the Wanquan Well, the step-variation frequency change on the time axis can be regarded as a sequence of step-variation. A study of the relati...According to the characteristics of frequent water level step-variation in the Wanquan Well, the step-variation frequency change on the time axis can be regarded as a sequence of step-variation. A study of the relationship between the process of development and evolution of the sequential step-variation and the regional seismicity indicated that the sequential step-variation anomalies are rather better in coincidence with the time, magnitude and frequency of regional seismic activities, which may predict the seismicity trend in months. Furthermore, on this basis, if the water level changes in a characteristic manner, the seismic regime during the time period from several days to 20 days or more may be evaluated. By using the method presented in this paper we had a prediction about the Baotou ML=6.6 earthquake on May 3, 1996. This event occurred within the predicted time span but with a less magnitude and a little location deviation.展开更多
Urmia Lake in northwest of Iran, through the recent years has been extremely faced with the water crisis. Climate variations and anthropogenic impacts could be two main affiliated factors in this regard. We considered...Urmia Lake in northwest of Iran, through the recent years has been extremely faced with the water crisis. Climate variations and anthropogenic impacts could be two main affiliated factors in this regard. We considered the long term data series of precipitation, temperature and evaporation in monthly and yearly scales in order to compare to water-level values of Urmia Lake. The statistics approaches such as: standard deviation, trend analysis, T test, Pearson and Spearman correlations, liner regression are used to analyze all variables. The results released that the water-level of Urmia Lake along with the precipitation and temperature of the lake’s basin have experienced the periodic changes through 1961 to 2010, as there are some gradual dryness trends on the study area according to precipitation and temperature variations. Urmia Lake periodic water-level fluctuations show more significant correlation to temperature than the precipitation. Whiles, the water-level’s decreasing behavior especially through 1998 to 2010 is more harsh and different than the rate that is considered for precipitation’s decrease and temperature’s increase. Thus, there could be some anthropogenic factors in the basin which produced some supplementary causes to shrink Urmia Lake. Extracting the double precipitation over the basin through introducing and categorizing of atmospheric synoptic systems in order to cloud seeding operation could be one of urgent and innovative solutions to mitigate water crisis in the basin.展开更多
本文以分布于枝江关洲岛的濒危物种疏花水柏枝(Myricaria laxiflora(Franch.)P.Y.Zhang et Y.J.Zhang)为研究对象,调查其种群开花和结果性状沿高程的变化,分析该残存种群有性繁殖的时空变化规律;同时结合三峡大坝-葛洲坝水利水电工程修...本文以分布于枝江关洲岛的濒危物种疏花水柏枝(Myricaria laxiflora(Franch.)P.Y.Zhang et Y.J.Zhang)为研究对象,调查其种群开花和结果性状沿高程的变化,分析该残存种群有性繁殖的时空变化规律;同时结合三峡大坝-葛洲坝水利水电工程修建所引起生境地水位消涨节律的变化,分析其对残存种群有性繁殖的影响。结果显示,残存疏花水柏枝种群的有性繁殖在不同高程之间存在显著差异。消涨带上部植株的每株花枝数、每枝花朵数、每株花朵数分别比消涨带中部植株高66.09%、50.14%和98.63%,比消涨带下部植株高79.50%、283.33%和461.05%。消涨带上部植株的每株果枝数、每枝结果数、每株结果数、每果种子数和种子发芽率分别比消涨带中部高60.17%、25.26%、88.05%、6.96%和30.69%,比消涨带下部高97.39%、82.45%、208.31%、19.12%和45.91%。相关性分析结果表明,植株的开花结果特性与高程、出露时期、土壤含水量以及温度变化极显著相关。环境因子对有性繁殖的影响强度依次为出露时间>高程>日均温度>土壤含水量。上游水利水电工程对疏花水柏枝残存种群的有性繁殖具有一定的影响。展开更多
湖泊是陆地生态系统的一个重要的组成部分,湖泊水域的变化对环境和人类的生产活动都有着重大的影响。鄱阳湖作为中国第一大淡水湖,近年来多次出现洪旱灾害现象,因此对鄱阳湖进行动态监测意义重大。文章以2000—2021年鄱阳湖175期Landsa...湖泊是陆地生态系统的一个重要的组成部分,湖泊水域的变化对环境和人类的生产活动都有着重大的影响。鄱阳湖作为中国第一大淡水湖,近年来多次出现洪旱灾害现象,因此对鄱阳湖进行动态监测意义重大。文章以2000—2021年鄱阳湖175期Landsat影像作为数据源,对比分析了归一化差异水体指数(normalized difference water index,NDWI)、改进的归一化差异水体指数(modified normalized difference water index,MNDWI)、自动水体提取指数(automated water extraction index,AWEI)、谱间关系法(spectrum photometric method,SPM)这4种水体提取方法,优选最适宜鄱阳湖的水体提取模型;利用175期面积数据分析了鄱阳湖2000—2021年面积的年际变化趋势,分析年内季节变化特征,同时结合2009—2013年和2017—2018年同时期的50组水位数据,建立面积-水位关系模型。结果表明:①AWEI模型提取水体精度优于其他3种,该文最终选用AWEI进行鄱阳湖水体提取;②鄱阳湖面积存在明显的季节性变化,且丰水季面积年际波动大,枯水季较平缓;③棠荫水位站湖泊面积-水位分段线性模型为最佳模型,从而可以根据鄱阳湖区域的实时水位观测值对水体覆盖面积进行预测,以弥补云雨天气时利用可见光遥感手段难以监测到湖泊水体淹没情况的不足。展开更多
基金The Ministry of Science and Technology of China under contract No. 2006CB708410the National Natural Science Foundation of China (NSFC) under contract No. 40706027
文摘The exposed area of intertidal zone varies with tidal water level changes, If intercomparisons of satellite images are adopted as a method to determine geomorphological changes of the intertidal zone in response to accretion or erosion processes, then the effect of water level variations must be evaluated. In this study, two Landsat TM images overpassing the central Jiangsu coastal waters on 2 January and 7 March 2002, respectively, were treated by the changing detection analysis using Image Differencing and Post-classification Comparison. The simultaneous tide level data from four tide gauge stations along the coast were used for displaying the spatial variations of water levels and determining the elevations of waterlines. The results show that the spatial variations of water levels are highly significant in the central Jiangsu coastal waters. The huge differences of tidal land exposure patterns between the two imaging times are related mainly to the spatial variations of tidal water levels, which are controlled by the differences in tidal phases for different imaging times and the spatial variations of water level over the study area at each imaging time. Under complex tidal conditions, e.g., those of the central Jiangsu coastal waters, the tide-surge model should be used to eliminate effectively the effects of water level variations on remote sensing interpretation of geomorphological changes in the intertidal zone.
基金sponsored by the Key Project of Spark Program of Earthquake Sciences of Hebei Province Tectonic Characteristics of the Northern Section of Tangshan Fault and Its Relation with Earthquakes(DZ20190424079)。
文摘Based on the well water level data in Majiagou Mine in Tangshan City since 2000,it is suggested that the water level rise from 2008-2014 is possibly associated with reduced infiltration caused by less precipitation,together with the effect of less groundwater exploitation. However,the water level rise from 1992-1998 cannot be interpreted properly if we extend the data source back to 1991. After comparing the data with long-term water level data of five wells with different hydro-geological units in Tangshan and Qinhuangdao, the study indicates that the long-term water level variation cannot be only attributed to the effect of less precipitation and the control of groundwater exploitation,but also with the influence of regional stress field change.With the support of regional geological and tectonic information,combined with the comprehensive analysis of CBM data obtained from the coal field,new understandings of the dynamic characteristics of annual variation are obtained.
基金supported by National Natural Science Foundation of China(41972262)Hebei Natural Science Foundation for Excellent Young Scholars(D2020504032).
文摘The effective recovery of water level is a crucial measure of the success of comprehensive groundwater over-exploitation management actions in North China.However,traditional evaluation method do not directly capture the relationship between mining and other equilibrium elements.This study presents an innovative evaluation method to assess the water level recovery resulting from mining reduction based on the relationship between variation in exploitation and recharge.Firstly,the recharge variability of source and sink terms for both the base year and evaluation year is calculated and the coefficient of recharge variationβis introduced,which is then used to calculate the effective mining reduction and solve the water level recovery value caused by the effective mining reduction,and finally the water level recovery contribution by mining reduction is calculated by combining with the actual volume of mining reduction in the evaluation area.This research focuses on Baoding and Shijiazhuang Plain area,which share similar hydrogeological conditions but vary in groundwater exploitation and utilization.As the effect of groundwater level recovery with mining reduction was evaluated in these two areas as case study.In 2018,the results showed an effective water level recovery of 0.17 m and 0.13 m in the shallow groundwater of Shijiazhuang and Baoding Plain areas,respectively.The contributions of recovery from mining reduction were 76%and 57.98%for these two areas,respectively.It was notable that the water level recovery was most prominent in the foothill plain regions.From the evaluation results,it is evident that water level recovery depends not only on the intensity of groundwater mining reduction,but also on its effectiveness.The value of water level recovery alone cannot accurately indicate the intensity of mining reduction,as recharge variation significantly influences water level changes.Therefore,in practice,it is crucial to comprehensively assess the impact of mining reduction on water level recovery by combining the coefficient of recharge variation with the contribution of water level recovery from mining reduction.This integrated approach provide a more reasonable and scientifically supported basis,offering essential data support for groundwater management and conservation.To improve the accuracy and reliability of evaluation results,future work will focus on the standardizing and normalizing raw data processing.
文摘Tidal waves in the East China Sea are simulated numerically with POM(Princeton Ocean Model) model for normal mean sea level, 30 cm higher, 60 cm higher, and 100 cm higher, respectively, and the simulated result is compared with the harmonic analysis result of hourly sea level data from 19 tide gauges for more than 19 years. It is indicated that the long-term mean sea level variation affects notably tidal waves in this region. Generally, the tidal amplitude increases when the mean sea level rises, but this relationship may be inverse for some sea areas. The maximal variation of tidal amplitude takes place in the zones near the Fujian coast and the Zhejiang coast, rather than the shallowest Bohai Sea. The maximum increase of M2 amplitude can exceed about 15 cm corresponding to the 60 cm rise of the mean sea level along the Fujian coast. The other regions with large variations of tidal amplitude are those along the Jiangsu coast, the south-east coast of Shandong, and the south-east coast of Dalian. The propagation of tidal waves is also related to mean sea level variation, and the tidal phase-lag decreases generally when the mean sea level rises. Almost all the regions where the tidal phase-lag increases with rising mean sea level are close to amphidromic points, meanwhile the spatial area of such regions is very small. Because the influence of mean sea level variation upon tidal waves is spatially marked, such spatial effect should be considered in calculation of the tidal characteristic value and engineering water level. In the region where the amplitudes of the major tidal constituents increase, the probable maximum high water level becomes higher, the probable maximum low water level becomes lower, and both design water level andcheck water level increase obviously. For example, the design water level at Xiamen increases by 13.5 cm due to the variation of tidal waves when the mean sea level rises 60 cm, the total increase of design water level being 73.5 cm.
基金supported by the Natural Science Foundation of Hubei Province,China(Grant No.2022CFB064)the National Natural Science Foundation of China(Grant Nos.41974003&41674007)。
文摘Regional sea level variability is linked to regional terrestrial water and the El Ni?o-Southern Oscillation(ENSO).This study assessed the relationships between the sea level variations in the South China Sea(SCS)and ENSO,the impact of terrestrial water storage(TWS)on non-steric sea level(NSSL),and the contributions of steric sea level(SSL)and NSSL to sea level anomaly(SLA),respectively.From 2003 to 2015,the SLAs exhibited a long-term trend of 6.65±0.78 mm/yr,which was primarily attributed to the SSLs.Additionally,during 2003-2015,ENSO events alternating with varying intensities might also be responsible for the unusually high SLA trend.Compared to the SSLs,the NSSLs contributed the seasonal signals to the SLAs,while the NSSLs changes were largely explained by the TWS in the Mekong River Basin at the seasonal scale and in the Pearl River Basin and Red River Basin at other time scales.In contrast to the TWS,the contributions of precipitation and evapotranspiration were relatively minor.A negative correlation between the sea level variations and ENSO was also found,with cross-correlation coefficients between the oceanic Ni?o index and SLAs/SSLs/NSSLs of -0.36/-0.37/-0.62 with lags of 2/3/2 months,respectively.These findings systematically reassessed the contributions of different components to the sea level variations.This study provided a benchmark for in-depth analysis of the impacts of terrestrial water and other potential causes on sea level rise in the SCS.
基金supported by the National Natural Science Foundation of China(Grant No.51709021)the Open Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2016491111)
文摘Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.
基金supported by National Natural Science Foundation of China (No. 40574020)Basic Research item of Institute of Earthquake Science, China Earthquake Administration (No. 0207690236).
文摘Coseismic water level changes which may have been induced by the Wenchuan Ms8.0 earthquake and its 15 larger aftershocks (Ms〉5.4) have been observed at Tangshan well. We analyze the correlation between coseismic parameters (maximum amplitude, duration, coseismic step and the time when the coseismic reach its maximum amplitude) and earthquake parameters (magnitude, well-epicenter distance and depth), and then compare the time when the coseismic oscillation reaches its maximum amplitude with the seismogram from Douhe seismic station which is about 16.3 km away from Tangshan well. The analysis indicates that magnitude is the main factor influencing the induced coseismic water level changes, and that the well-epicenter distance and depth have less influence. Ms magnitude has the strongest correlation with the coseismic water level changes comparing to Mw and ML magnitudes. There exists strong correlation between the maximum amplitude, step size and the oscillation duration. The water level oscillation and step are both caused by dynamic strain sourcing from seismic waves. Most of the times when the oscillations reach their maximum amplitudes are between S and Rayleigh waves. The coseismic water level changes are due to the co-effect of seismic waves and hydro-geological environments.
文摘According to the characteristics of frequent water level step-variation in the Wanquan Well, the step-variation frequency change on the time axis can be regarded as a sequence of step-variation. A study of the relationship between the process of development and evolution of the sequential step-variation and the regional seismicity indicated that the sequential step-variation anomalies are rather better in coincidence with the time, magnitude and frequency of regional seismic activities, which may predict the seismicity trend in months. Furthermore, on this basis, if the water level changes in a characteristic manner, the seismic regime during the time period from several days to 20 days or more may be evaluated. By using the method presented in this paper we had a prediction about the Baotou ML=6.6 earthquake on May 3, 1996. This event occurred within the predicted time span but with a less magnitude and a little location deviation.
文摘Urmia Lake in northwest of Iran, through the recent years has been extremely faced with the water crisis. Climate variations and anthropogenic impacts could be two main affiliated factors in this regard. We considered the long term data series of precipitation, temperature and evaporation in monthly and yearly scales in order to compare to water-level values of Urmia Lake. The statistics approaches such as: standard deviation, trend analysis, T test, Pearson and Spearman correlations, liner regression are used to analyze all variables. The results released that the water-level of Urmia Lake along with the precipitation and temperature of the lake’s basin have experienced the periodic changes through 1961 to 2010, as there are some gradual dryness trends on the study area according to precipitation and temperature variations. Urmia Lake periodic water-level fluctuations show more significant correlation to temperature than the precipitation. Whiles, the water-level’s decreasing behavior especially through 1998 to 2010 is more harsh and different than the rate that is considered for precipitation’s decrease and temperature’s increase. Thus, there could be some anthropogenic factors in the basin which produced some supplementary causes to shrink Urmia Lake. Extracting the double precipitation over the basin through introducing and categorizing of atmospheric synoptic systems in order to cloud seeding operation could be one of urgent and innovative solutions to mitigate water crisis in the basin.
文摘本文以分布于枝江关洲岛的濒危物种疏花水柏枝(Myricaria laxiflora(Franch.)P.Y.Zhang et Y.J.Zhang)为研究对象,调查其种群开花和结果性状沿高程的变化,分析该残存种群有性繁殖的时空变化规律;同时结合三峡大坝-葛洲坝水利水电工程修建所引起生境地水位消涨节律的变化,分析其对残存种群有性繁殖的影响。结果显示,残存疏花水柏枝种群的有性繁殖在不同高程之间存在显著差异。消涨带上部植株的每株花枝数、每枝花朵数、每株花朵数分别比消涨带中部植株高66.09%、50.14%和98.63%,比消涨带下部植株高79.50%、283.33%和461.05%。消涨带上部植株的每株果枝数、每枝结果数、每株结果数、每果种子数和种子发芽率分别比消涨带中部高60.17%、25.26%、88.05%、6.96%和30.69%,比消涨带下部高97.39%、82.45%、208.31%、19.12%和45.91%。相关性分析结果表明,植株的开花结果特性与高程、出露时期、土壤含水量以及温度变化极显著相关。环境因子对有性繁殖的影响强度依次为出露时间>高程>日均温度>土壤含水量。上游水利水电工程对疏花水柏枝残存种群的有性繁殖具有一定的影响。
文摘湖泊是陆地生态系统的一个重要的组成部分,湖泊水域的变化对环境和人类的生产活动都有着重大的影响。鄱阳湖作为中国第一大淡水湖,近年来多次出现洪旱灾害现象,因此对鄱阳湖进行动态监测意义重大。文章以2000—2021年鄱阳湖175期Landsat影像作为数据源,对比分析了归一化差异水体指数(normalized difference water index,NDWI)、改进的归一化差异水体指数(modified normalized difference water index,MNDWI)、自动水体提取指数(automated water extraction index,AWEI)、谱间关系法(spectrum photometric method,SPM)这4种水体提取方法,优选最适宜鄱阳湖的水体提取模型;利用175期面积数据分析了鄱阳湖2000—2021年面积的年际变化趋势,分析年内季节变化特征,同时结合2009—2013年和2017—2018年同时期的50组水位数据,建立面积-水位关系模型。结果表明:①AWEI模型提取水体精度优于其他3种,该文最终选用AWEI进行鄱阳湖水体提取;②鄱阳湖面积存在明显的季节性变化,且丰水季面积年际波动大,枯水季较平缓;③棠荫水位站湖泊面积-水位分段线性模型为最佳模型,从而可以根据鄱阳湖区域的实时水位观测值对水体覆盖面积进行预测,以弥补云雨天气时利用可见光遥感手段难以监测到湖泊水体淹没情况的不足。