In this paper, we propose a hybrid PML (H-PML) combining the normal absorption factor of convolutional PML (C-PML) with tangential absorption factor of Mutiaxial PML (M-PML). The H-PML boundary conditions can be...In this paper, we propose a hybrid PML (H-PML) combining the normal absorption factor of convolutional PML (C-PML) with tangential absorption factor of Mutiaxial PML (M-PML). The H-PML boundary conditions can better suppress the numerical instability in some extreme models, and the computational speed of finite-element method and the dynamic range are greatly increased using this HPML. We use the finite-element method with a hybrid PML to model the acoustic reflection of the interface when wireline and well logging while drilling (LWD), in a formation with a reflector outside the borehole. The simulation results suggests that the PS- and SP- reflected waves arrive at the same time when the inclination between the well and the outer interface is zero, and the difference in arrival times increases with increasing dip angle. When there are fractures outside the well, the reflection signal is clearer in the subsequent reflection waves and may be used to identify the fractured zone. The difference between the dominant wavelength and the model scale shows that LWD reflection logging data are of higher resolution and quality than wireline acoustic reflection logging.展开更多
A least-squares finite-element method (LSFEM) for the non-conservative shallow-water equations is presented. The model is capable of handling complex topography, steady and unsteady flows, subcritical and supercriti...A least-squares finite-element method (LSFEM) for the non-conservative shallow-water equations is presented. The model is capable of handling complex topography, steady and unsteady flows, subcritical and supercritical flows, and flows with smooth and sharp gradient changes. Advantages of the model include: (1) sources terms, such as the bottom slope, surface stresses and bed frictions, can be treated easily without any special treatment; (2) upwind scheme is no needed; (3) a single approximating space can be used for all variables, and its choice of approximating space is not subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) condition; and (4) the resulting system of equations is symmetric and positive-definite (SPD) which can be solved efficiently with the preconditioned conjugate gradient method. The model is verified with flow over a bump, tide induced flow, and dam-break. Computed results are compared with analytic solutions or other numerical results, and show the model is conservative and accurate. The model is then used to simulate flow past a circular cylinder. Important flow charac-teristics, such as variation of water surface around the cylinder and vortex shedding behind the cylinder are investigated. Computed results compare well with experiment data and other numerical results.展开更多
A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been deve...A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.展开更多
Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of s...Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of source terms in momentum equations, such as the bottom slope and friction of bed, compounds the difficulties further. In this paper, a least-squares finite-element method for the space discretization and θ-method for the time integration is developed for the 2D non-conservative SWE including the source terms. Advantages of the method include: the source terms can be approximated easily with interpolation functions, no upwind scheme is needed, as well as the resulting system equations is symmetric and positive-definite, therefore, can be solved efficiently with the conjugate gradient method. The method is applied to steady and unsteady flows, subcritical and transcritical flow over a bump, 1D and 2D circular dam-break, wave past a circular cylinder, as well as wave past a hump. Computed results show good C-property, conservation property and compare well with exact solutions and other numerical results for flows with weak and mild gradient changes, but lead to inaccurate predictions for flows with strong gradient changes and discontinuities.展开更多
A new method regarding mesomechanics finite-element research is proposed to predict the peak shear strength of mudded intercalation materials on a mesoscopic scale. Based on geometric and mechanical parameters, along ...A new method regarding mesomechanics finite-element research is proposed to predict the peak shear strength of mudded intercalation materials on a mesoscopic scale. Based on geometric and mechanical parameters, along with the strain failure criteria obtained by sample's deformation characteristics, uniaxial compression tests on the sample were simulated through a finite-element model, which yielded values consistent with the data from the laboratory uniaxial compression tests, implying that the method is reasonable. Based on this model, a shear test was performed to calculate the peak shear strength of the mudded intercalation, consistent with values reported in the literature, thereby providing a new approach for investigating the mechanical properties of mudded intercalation materials.展开更多
For two-dimension nonlinear convection diffusion equation, a two-grid method of characteristics finite-element solution was constructed. In this method the nonlinear iterations is only to execute on the coarse grid an...For two-dimension nonlinear convection diffusion equation, a two-grid method of characteristics finite-element solution was constructed. In this method the nonlinear iterations is only to execute on the coarse grid and the fine-grid solution can be obtained in a single linear step. For the nonlinear convection-dominated diffusion equation, this method can not only stabilize the numerical oscillation but also accelerate the convergence and improve the computational efficiency. The error analysis demonstrates if the mesh sizes between coarse-grid and fine-grid satisfy the certain relationship, the two-grid solution and the characteristics finite-element solution have the same order of accuracy. The numerical is more efficient than that of characteristics example confirms that the two-grid method finite-element method.展开更多
A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D F...A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.展开更多
In this paper,we introduce new stable mixed finite elements of any order on polytopal mesh for solving second-order elliptic problem.We establish optimal order error estimates for velocity and super convergence for pr...In this paper,we introduce new stable mixed finite elements of any order on polytopal mesh for solving second-order elliptic problem.We establish optimal order error estimates for velocity and super convergence for pressure.Numerical experiments are conducted for our mixed elements of different orders on 2D and 3D spaces that confirm the theory.展开更多
Pilot biomechanical design of biomaterials for artificial nucleus prosthesiswas carried out based on the 3D finite-element method. Two 3D models of lumbar intervertebral discrespectively with a real human nucleus and ...Pilot biomechanical design of biomaterials for artificial nucleus prosthesiswas carried out based on the 3D finite-element method. Two 3D models of lumbar intervertebral discrespectively with a real human nucleus and with the nucleus removed were developed and validatedusing published experimental and clinical data. Then the models with a stainless steel nucleusprosthesis implanted and with polymer nucleus prostheses of various properties implanted were usedfor the 3D finite-element biomechanical analysis. All the above simulation and analysis were carriedout for the L4/L5 disc under a human worst--daily compression load of 2000 N. The results show thatthe polymer materials with Young's modulus of elasticity E = 0.1-100 MPa and Poisson's ratio v=0.35-0.5 are suitable to produce artificial nucleus prosthesis in view of biomechanicalconsideration.展开更多
The structural de formation of Lu’ an mining area is characterized by a remarkable feature of zoning along E-W direction, in the east limb of Qinshui basin, Shanxi Province, China. The re gional tectonic stress field...The structural de formation of Lu’ an mining area is characterized by a remarkable feature of zoning along E-W direction, in the east limb of Qinshui basin, Shanxi Province, China. The re gional tectonic stress fields and basement tectonics are two fundamental factors to control the cover tectonic framework. This paper uses the finite-element method with a elastic-plastic pIan problem model to simulate the three periods of stress fields resulting from field geological study’ Based on these works, the formation and evolution of tectonic framework of Lu’ an mining area have been discussed.展开更多
The numerical analytic research approach of stress-strain state of anisotropic composite finite element area with different boundary conditions on the surface, is represented below. The problem is solved by using a sp...The numerical analytic research approach of stress-strain state of anisotropic composite finite element area with different boundary conditions on the surface, is represented below. The problem is solved by using a spatial model of the elasticity theory. Differential equation system in partial derivatives reduces to one-dimensional problem using spline collocation method in two coordinate directions. Boundary problem for the system of ordinary higher-order differential equation is solved by using the stable numerical technique of discrete orthogonalization.展开更多
Soils are not necessarily uniform and may present linearly varied or layered characteristics,for example the backfilled soils behind rigid retaining walls.In the presence of large lateral thrust imposed by arch bridge...Soils are not necessarily uniform and may present linearly varied or layered characteristics,for example the backfilled soils behind rigid retaining walls.In the presence of large lateral thrust imposed by arch bridge,passive soil failure is possible.A reliable prediction of passive earth pressure for the design of such wall is challenging in complicated soil strata,when adopting the conventional limit analysis method.In order to overcome the challenge for generating a kinematically admissible velocity field and a statically allowable stress field,finite element method is incorporated into limit analysis,forming finiteelement upper-bound(FEUB)and finite-element lower-bound(FELB)methods.Pseudo-static,original and modified pseudo-dynamic approaches are adopted to represent seismic acceleration inputs.After generating feasible velocity and stress fields within discretized elements based on specific criteria,FEUB and FELB formulations of seismic passive earth pressure(coefficient K_(P))can be derived from work rate balance equation and stress equilibrium.Resorting to an interior point algorithm,optimal upper and lower bound solutions are obtained.The proposed FEUB and FELB procedures are well validated by limit equilibrium as well as lower-bound and kinematic analyses.Parametric studies are carried out to investigate the effects of influential factors on seismic K_(P).Notably,true solution of K_(P) is well estimated based on less than 5%difference between FEUB and FELB solutions under such complex scenarios.展开更多
The study of tidal circulation has a long history . The numerical simulation of tidal flow has been developed greatly with the development of computer techniques in the past two decades. The generalized wave equation ...The study of tidal circulation has a long history . The numerical simulation of tidal flow has been developed greatly with the development of computer techniques in the past two decades. The generalized wave equation finite-element method is a relatively new numerical model for studying shallow water flow . This method was used to simulate tidal waves of the Gulf of St. Lawrence in Canada . The very good agreement of the numerical results with the field data indicated that the model is an effective and promising numerical method for solving two-dimensional tidal wave problems .展开更多
Voltage sag is one of the most common power quality disturbances in industry,which causes huge inrush currents in stator windings of induction motors,and adversely impacts the motor secure operation.This paper firstly...Voltage sag is one of the most common power quality disturbances in industry,which causes huge inrush currents in stator windings of induction motors,and adversely impacts the motor secure operation.This paper firstly introduces a 2D Time-Stepping multi-slice finite element method(2D T-S multi-slice FEM)which is used for calculating the magnetic field distribution in induction motors under different sag events.Then the paper deduces the transient analytical expression of stator inrush current based on the classical theory of AC motors and presents a separation method for the positive,negative and zero sequence values based on instantaneous currents.With this method,the paper studies the influences of voltage sag amplitude,phase-angle jump and initial phase angle on the stator positive-and negative-sequence peak currents of 5.5 kW and 55 kW induction motors.This paper further proposes a motor protection method under voltage sag condition with the stator negative-sequence peak currents as the protection threshold,so that the protection false trip can be avoided effectively.Finally,the calculation and analysis results are validated by the comparison of calculated and measured stator peak value of the 5.5 kW induction motor.展开更多
Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the...Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.展开更多
Because of the constraint mode of the inversion objective function in the traditional resistivity-inversion method of electromagnetic-propagation resistivity logging while drilling(EPR-LWD),obvious differences appear ...Because of the constraint mode of the inversion objective function in the traditional resistivity-inversion method of electromagnetic-propagation resistivity logging while drilling(EPR-LWD),obvious differences appear in the radial and vertical investigation characteristics between the amplitude-ratio and phase difference,which affect the practical application of EPR-LWD data.In this paper,according to the EPR-LWD data,a self-adaptive constraint resistivity-inversion method,which adopts a self-adaptive constraint weighted expression in the objective function to balance the contributions of the phase difference and amplitude attenuation,is proposed.A particle swarm optimization algorithm is also introduced to eliminate the dependence of the accuracy and convergence on the initial value of the inversion.According to the inversion results of multiple classical formation models for EPR-LWD,the differences between the adaptive constraint inversion-resistivity logs with the traditional amplitude-ratio and the phase difference of the resistivity logs are discussed in detail.The results demonstrate that the adaptive resistivity logs take into account the advantages of the amplitude-ratio logs in the radial investigation and phase difference logs in the vertical resolution.Further,it is superior in thin-layer identification and invasion-effect appraisal compared with the single-amplitude-ratio and phase difference logs.The inversion results can provide a theoretical reference for research on the resistivity-inversion method of electromagnetic wave LWD.展开更多
Better torque performance and higher reliability have long been the focus of research for slotted limited-angle torque motors(LATMs),which are primarily used to position first-stage valves in electrohydraulic servosys...Better torque performance and higher reliability have long been the focus of research for slotted limited-angle torque motors(LATMs),which are primarily used to position first-stage valves in electrohydraulic servosystems.This paper presents a high reliability axial-flux slotted LATM with quasi-Halbach array for torque performance improvement including constant torque range(CTR)and output torque.Firstly,the structure with two sets of windings and the operation principle of the proposed slotted LATM is analyzed.Secondly,a brief design procedure is presented,the structure selections of open slot and double-stator single-rotor(DSSR)interior rotor with surface mounted quasi-Halbach permanent magnet(PM)array are illustrated,and the geometric parameters are optimized to obtain the optimal design of the proposed slotted LATM.Then,3-D finite-element method(FEM)is employed to compare the proposed slotted LATM with the conventional surface mounted PM slotted LATM in terms of cogging torque,no-load back EMF,and output torque,and the results show that the proposed LATM with quasi-Halbach array has a 10%improvement in output torque and a 25%improvement in CTR.Meanwhile,the flux linkages and torque performance of the two sets of windings under various conditions verify good magnetic isolation.Finally,prototypes of two different rotor types are manufactured and a series of experiments are performed to validate the analysis.展开更多
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl...Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.展开更多
The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Lo...The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Longmaxi black shale samples using X-ray CT, we built detailed 3D digital images of cores with porosity properties and mineral contents. Next, we used finite-element (FE) methods to derive the elastic properties of the samples. The FE method can accurately model the shale mineralogy. Particular attention is paid to the derived elastic properties and their dependence on porosity and kerogen. The elastic moduli generally decrease with increasing porosity and kerogen, and there is a critical porosity (0.75) and kerogen content (ca. ≤3%) over which the elastic moduli decrease rapidly and slowly, respectively. The derived elastic moduli of gas- and oil-saturated digital cores differ little probably because of the low porosity (4.5%) of the Longmaxi black shale. Clearly, the numerical experiments demonstrated the feasibility of combining microstructure images of shale samples with elastic moduli calculations to predict shale properties.展开更多
Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography...Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.展开更多
基金supported by the National Natural Science Foundation of China(No.41204094)Science Foundation of China University of Petroleum,Beijing(No.2462015YQ0506)
文摘In this paper, we propose a hybrid PML (H-PML) combining the normal absorption factor of convolutional PML (C-PML) with tangential absorption factor of Mutiaxial PML (M-PML). The H-PML boundary conditions can better suppress the numerical instability in some extreme models, and the computational speed of finite-element method and the dynamic range are greatly increased using this HPML. We use the finite-element method with a hybrid PML to model the acoustic reflection of the interface when wireline and well logging while drilling (LWD), in a formation with a reflector outside the borehole. The simulation results suggests that the PS- and SP- reflected waves arrive at the same time when the inclination between the well and the outer interface is zero, and the difference in arrival times increases with increasing dip angle. When there are fractures outside the well, the reflection signal is clearer in the subsequent reflection waves and may be used to identify the fractured zone. The difference between the dominant wavelength and the model scale shows that LWD reflection logging data are of higher resolution and quality than wireline acoustic reflection logging.
基金the National Science Council ot Taiwan,China for funding this research(Project no.:NSC 94-2218-E-035-011)
文摘A least-squares finite-element method (LSFEM) for the non-conservative shallow-water equations is presented. The model is capable of handling complex topography, steady and unsteady flows, subcritical and supercritical flows, and flows with smooth and sharp gradient changes. Advantages of the model include: (1) sources terms, such as the bottom slope, surface stresses and bed frictions, can be treated easily without any special treatment; (2) upwind scheme is no needed; (3) a single approximating space can be used for all variables, and its choice of approximating space is not subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) condition; and (4) the resulting system of equations is symmetric and positive-definite (SPD) which can be solved efficiently with the preconditioned conjugate gradient method. The model is verified with flow over a bump, tide induced flow, and dam-break. Computed results are compared with analytic solutions or other numerical results, and show the model is conservative and accurate. The model is then used to simulate flow past a circular cylinder. Important flow charac-teristics, such as variation of water surface around the cylinder and vortex shedding behind the cylinder are investigated. Computed results compare well with experiment data and other numerical results.
基金Projects(41674080,41674079)supported by the National Natural Science Foundation of China
文摘A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.
基金the National Science Council of Taiwan for funding this research (NSC 96-2221-E-019-061).
文摘Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of source terms in momentum equations, such as the bottom slope and friction of bed, compounds the difficulties further. In this paper, a least-squares finite-element method for the space discretization and θ-method for the time integration is developed for the 2D non-conservative SWE including the source terms. Advantages of the method include: the source terms can be approximated easily with interpolation functions, no upwind scheme is needed, as well as the resulting system equations is symmetric and positive-definite, therefore, can be solved efficiently with the conjugate gradient method. The method is applied to steady and unsteady flows, subcritical and transcritical flow over a bump, 1D and 2D circular dam-break, wave past a circular cylinder, as well as wave past a hump. Computed results show good C-property, conservation property and compare well with exact solutions and other numerical results for flows with weak and mild gradient changes, but lead to inaccurate predictions for flows with strong gradient changes and discontinuities.
基金Funded by the National Natural Science Foundation of China(No.51574201)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(KLGP2015K006)the Scientific and Technical Youth Innovation Group(Southwest Petroleum University)(2015CXTD05)
文摘A new method regarding mesomechanics finite-element research is proposed to predict the peak shear strength of mudded intercalation materials on a mesoscopic scale. Based on geometric and mechanical parameters, along with the strain failure criteria obtained by sample's deformation characteristics, uniaxial compression tests on the sample were simulated through a finite-element model, which yielded values consistent with the data from the laboratory uniaxial compression tests, implying that the method is reasonable. Based on this model, a shear test was performed to calculate the peak shear strength of the mudded intercalation, consistent with values reported in the literature, thereby providing a new approach for investigating the mechanical properties of mudded intercalation materials.
文摘For two-dimension nonlinear convection diffusion equation, a two-grid method of characteristics finite-element solution was constructed. In this method the nonlinear iterations is only to execute on the coarse grid and the fine-grid solution can be obtained in a single linear step. For the nonlinear convection-dominated diffusion equation, this method can not only stabilize the numerical oscillation but also accelerate the convergence and improve the computational efficiency. The error analysis demonstrates if the mesh sizes between coarse-grid and fine-grid satisfy the certain relationship, the two-grid solution and the characteristics finite-element solution have the same order of accuracy. The numerical is more efficient than that of characteristics example confirms that the two-grid method finite-element method.
基金supported by the National Natural Science Foundation of China (51109029,51178081,51138001,and 51009020)the State Key Development Program for Basic Research of China (2013CB035905)
文摘A new finite element method (FEM) of B-spline wavelet on the interval (BSWI) is proposed. Through analyzing the scaling functions of BSWI in one dimension, the basic formula for 2D FEM of BSWI is deduced. The 2D FEM of 7 nodes and 10 nodes are constructed based on the basic formula. Using these proposed elements, the multiscale numerical model for foundation subjected to harmonic periodic load, the foundation model excited by external and internal dynamic load are studied. The results show the pro- posed finite elements have higher precision than the tradi- tional elements with 4 nodes. The proposed finite elements can describe the propagation of stress waves well whenever the foundation model excited by extemal or intemal dynamic load. The proposed finite elements can be also used to con- nect the multi-scale elements. And the proposed finite elements also have high precision to make multi-scale analysis for structure.
基金supported in part by the National Science Foundation Grant DMS-1620016supported in parts by HKSAR grant Q81Q and JRI of The Hong Kong Polytechnic University.
文摘In this paper,we introduce new stable mixed finite elements of any order on polytopal mesh for solving second-order elliptic problem.We establish optimal order error estimates for velocity and super convergence for pressure.Numerical experiments are conducted for our mixed elements of different orders on 2D and 3D spaces that confirm the theory.
文摘Pilot biomechanical design of biomaterials for artificial nucleus prosthesiswas carried out based on the 3D finite-element method. Two 3D models of lumbar intervertebral discrespectively with a real human nucleus and with the nucleus removed were developed and validatedusing published experimental and clinical data. Then the models with a stainless steel nucleusprosthesis implanted and with polymer nucleus prostheses of various properties implanted were usedfor the 3D finite-element biomechanical analysis. All the above simulation and analysis were carriedout for the L4/L5 disc under a human worst--daily compression load of 2000 N. The results show thatthe polymer materials with Young's modulus of elasticity E = 0.1-100 MPa and Poisson's ratio v=0.35-0.5 are suitable to produce artificial nucleus prosthesis in view of biomechanicalconsideration.
文摘The structural de formation of Lu’ an mining area is characterized by a remarkable feature of zoning along E-W direction, in the east limb of Qinshui basin, Shanxi Province, China. The re gional tectonic stress fields and basement tectonics are two fundamental factors to control the cover tectonic framework. This paper uses the finite-element method with a elastic-plastic pIan problem model to simulate the three periods of stress fields resulting from field geological study’ Based on these works, the formation and evolution of tectonic framework of Lu’ an mining area have been discussed.
文摘The numerical analytic research approach of stress-strain state of anisotropic composite finite element area with different boundary conditions on the surface, is represented below. The problem is solved by using a spatial model of the elasticity theory. Differential equation system in partial derivatives reduces to one-dimensional problem using spline collocation method in two coordinate directions. Boundary problem for the system of ordinary higher-order differential equation is solved by using the stable numerical technique of discrete orthogonalization.
基金The research was financially supported by National Natural Science Foundation of China(Grant Nos.52108302 and 52009046)Fundamental Research Funds for the Central Universities of Hua-qiao University(Grant No.ZQN-914).
文摘Soils are not necessarily uniform and may present linearly varied or layered characteristics,for example the backfilled soils behind rigid retaining walls.In the presence of large lateral thrust imposed by arch bridge,passive soil failure is possible.A reliable prediction of passive earth pressure for the design of such wall is challenging in complicated soil strata,when adopting the conventional limit analysis method.In order to overcome the challenge for generating a kinematically admissible velocity field and a statically allowable stress field,finite element method is incorporated into limit analysis,forming finiteelement upper-bound(FEUB)and finite-element lower-bound(FELB)methods.Pseudo-static,original and modified pseudo-dynamic approaches are adopted to represent seismic acceleration inputs.After generating feasible velocity and stress fields within discretized elements based on specific criteria,FEUB and FELB formulations of seismic passive earth pressure(coefficient K_(P))can be derived from work rate balance equation and stress equilibrium.Resorting to an interior point algorithm,optimal upper and lower bound solutions are obtained.The proposed FEUB and FELB procedures are well validated by limit equilibrium as well as lower-bound and kinematic analyses.Parametric studies are carried out to investigate the effects of influential factors on seismic K_(P).Notably,true solution of K_(P) is well estimated based on less than 5%difference between FEUB and FELB solutions under such complex scenarios.
文摘The study of tidal circulation has a long history . The numerical simulation of tidal flow has been developed greatly with the development of computer techniques in the past two decades. The generalized wave equation finite-element method is a relatively new numerical model for studying shallow water flow . This method was used to simulate tidal waves of the Gulf of St. Lawrence in Canada . The very good agreement of the numerical results with the field data indicated that the model is an effective and promising numerical method for solving two-dimensional tidal wave problems .
基金This work was supported in part by the National Natural Science Foundation of China under Grant51307050。
文摘Voltage sag is one of the most common power quality disturbances in industry,which causes huge inrush currents in stator windings of induction motors,and adversely impacts the motor secure operation.This paper firstly introduces a 2D Time-Stepping multi-slice finite element method(2D T-S multi-slice FEM)which is used for calculating the magnetic field distribution in induction motors under different sag events.Then the paper deduces the transient analytical expression of stator inrush current based on the classical theory of AC motors and presents a separation method for the positive,negative and zero sequence values based on instantaneous currents.With this method,the paper studies the influences of voltage sag amplitude,phase-angle jump and initial phase angle on the stator positive-and negative-sequence peak currents of 5.5 kW and 55 kW induction motors.This paper further proposes a motor protection method under voltage sag condition with the stator negative-sequence peak currents as the protection threshold,so that the protection false trip can be avoided effectively.Finally,the calculation and analysis results are validated by the comparison of calculated and measured stator peak value of the 5.5 kW induction motor.
基金National Natural Sciences Foundation(60474043)Henan Province Science Fund for Distinguished Young Scholars(0412002200)Henan Province Major Projects(0223025300)
文摘Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.
基金supported by the Foundation of Key Laboratory of Exploration Technology for Oil and Gas Resources of the Ministry of Education, Yangtze University, Wuhan (No. K201812)the Foundation of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing (No. PRP/open-1704)the Foundation of Education of Hubei Province, China (No. Q20171304)。
文摘Because of the constraint mode of the inversion objective function in the traditional resistivity-inversion method of electromagnetic-propagation resistivity logging while drilling(EPR-LWD),obvious differences appear in the radial and vertical investigation characteristics between the amplitude-ratio and phase difference,which affect the practical application of EPR-LWD data.In this paper,according to the EPR-LWD data,a self-adaptive constraint resistivity-inversion method,which adopts a self-adaptive constraint weighted expression in the objective function to balance the contributions of the phase difference and amplitude attenuation,is proposed.A particle swarm optimization algorithm is also introduced to eliminate the dependence of the accuracy and convergence on the initial value of the inversion.According to the inversion results of multiple classical formation models for EPR-LWD,the differences between the adaptive constraint inversion-resistivity logs with the traditional amplitude-ratio and the phase difference of the resistivity logs are discussed in detail.The results demonstrate that the adaptive resistivity logs take into account the advantages of the amplitude-ratio logs in the radial investigation and phase difference logs in the vertical resolution.Further,it is superior in thin-layer identification and invasion-effect appraisal compared with the single-amplitude-ratio and phase difference logs.The inversion results can provide a theoretical reference for research on the resistivity-inversion method of electromagnetic wave LWD.
基金supported in part by the National Nature Science Foundation of China(NSFC)under Project 52122705。
文摘Better torque performance and higher reliability have long been the focus of research for slotted limited-angle torque motors(LATMs),which are primarily used to position first-stage valves in electrohydraulic servosystems.This paper presents a high reliability axial-flux slotted LATM with quasi-Halbach array for torque performance improvement including constant torque range(CTR)and output torque.Firstly,the structure with two sets of windings and the operation principle of the proposed slotted LATM is analyzed.Secondly,a brief design procedure is presented,the structure selections of open slot and double-stator single-rotor(DSSR)interior rotor with surface mounted quasi-Halbach permanent magnet(PM)array are illustrated,and the geometric parameters are optimized to obtain the optimal design of the proposed slotted LATM.Then,3-D finite-element method(FEM)is employed to compare the proposed slotted LATM with the conventional surface mounted PM slotted LATM in terms of cogging torque,no-load back EMF,and output torque,and the results show that the proposed LATM with quasi-Halbach array has a 10%improvement in output torque and a 25%improvement in CTR.Meanwhile,the flux linkages and torque performance of the two sets of windings under various conditions verify good magnetic isolation.Finally,prototypes of two different rotor types are manufactured and a series of experiments are performed to validate the analysis.
文摘Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.
基金supported by the Chinese Academy of Sciences Strategic Leading Science and Technology projects(Grant No.XDB10010400)the China Postdoctoral Science Foundation(Grant No.2015M570142)
文摘The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Longmaxi black shale samples using X-ray CT, we built detailed 3D digital images of cores with porosity properties and mineral contents. Next, we used finite-element (FE) methods to derive the elastic properties of the samples. The FE method can accurately model the shale mineralogy. Particular attention is paid to the derived elastic properties and their dependence on porosity and kerogen. The elastic moduli generally decrease with increasing porosity and kerogen, and there is a critical porosity (0.75) and kerogen content (ca. ≤3%) over which the elastic moduli decrease rapidly and slowly, respectively. The derived elastic moduli of gas- and oil-saturated digital cores differ little probably because of the low porosity (4.5%) of the Longmaxi black shale. Clearly, the numerical experiments demonstrated the feasibility of combining microstructure images of shale samples with elastic moduli calculations to predict shale properties.
基金supported by the National Science and Technology Major Project(No.2011ZX05020-006)
文摘Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.