期刊文献+
共找到1,875篇文章
< 1 2 94 >
每页显示 20 50 100
Multiscale Finite Element Method for Coupling Analysis of Heterogeneous Magneto-Electro-Elastic Structures in Thermal Environment
1
作者 Xinyue Li Xiaolin Li Hangran Yang 《Journal of Applied Mathematics and Physics》 2024年第9期3099-3113,共15页
Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditiona... Magneto-electro-elastic (MEE) materials, a new type of composite intelligent materials, exhibit excellent multifield coupling effects. Due to the heterogeneity of the materials, it is challenging to use the traditional finite element method (FEM) for mechanical analysis. Additionally, the MEE materials are often in a complex service environment, especially under the influence of the thermal field with thermoelectric and thermomagnetic effects, which affect its mechanical properties. Therefore, this paper proposes the efficient multiscale computational method for the multifield coupling problem of heterogeneous MEE structures under the thermal environment. The method constructs a multi-physics field with numerical base functions (the displacement, electric potential, and magnetic potential multiscale base functions). It equates a single cell of heterogeneous MEE materials to a macroscopic unit and supplements the macroscopic model with a microscopic model. This allows the problem to be solved directly on a macroscopic scale. Finally, the numerical simulation results demonstrate that compared with the traditional FEM, the multiscale finite element method (MsFEM) can achieve the purpose of ensuring accuracy and reducing the degree of freedom, and significantly improving the calculation efficiency. 展开更多
关键词 Multiscale finite element method MAGNETO-ELECTRO-ELASTIC Multifield coupling Numerical Base Functions
下载PDF
Circuit-field coupled finite element analysis method for an electromagnetic acoustic transducer under pulsed voltage excitation 被引量:1
2
作者 郝宽胜 黄松岭 +1 位作者 赵伟 王珅 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期490-497,共8页
This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs i... This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied. 展开更多
关键词 electromagnetic acoustic transducer nondestructive testing circuit-field coupling finite element method
下载PDF
THE COUPLING OF BOUNDARY ELEMENT AND FINITE ELEMENT METHODS FOR THE EXTERIOR NONSTATIONARY NAVIER-STOKES EQUATIONS 被引量:2
3
作者 何银年 李开泰 《Acta Mathematica Scientia》 SCIE CSCD 1991年第2期190-207,共18页
In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variat... In this paper, we represent a new numerical method for solving the nonstationary Stokes equations in an unbounded domain. The technique consists in coupling the boundary integral and finite element methods. The variational formulation and well posedness of the coupling method are obtained. The convergence and optimal estimates for the approximation solution are provided. 展开更多
关键词 THE coupling OF BOUNDARY element AND finite element methodS FOR THE EXTERIOR NONSTATIONARY NAVIER-STOKES EQUATIONS
下载PDF
Calculation of the Coupling Coefficient of Twin-Core Fiber Based on the Supermode Theory with Finite Element Method 被引量:1
4
作者 Tianhao Zhao Wenhua Ren +1 位作者 Tingya Yin Fan Wang 《Optics and Photonics Journal》 2021年第8期402-411,共10页
<div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important app... <div style="text-align:justify;"> Currently, coupled mode theory (CMT) is widely used for calculating the coupling coefficient of twin-core fibers (TCFs) that are used in a broad range of important applications. This approach is highly accurate for scenarios with weak coupling between the cores but shows significant errors in the strong coupling scenarios, necessitating the use of a more accurate method for coupling coefficient calculations. Therefore, in this work, we calculate the coupling coefficients of TCFs using the supermode theory with finite element method (FEM) that has higher accuracy than CMT, particularly for the strong coupling TCF. To investigate the origin of the differences between the results obtained by these two methods, the modal field distributions of the supermodes of TCF are simulated and analyzed in detail. </div> 展开更多
关键词 coupling Coefficient Twin-Core Fiber Supermode Theory finite element method coupled Mode Theory
下载PDF
ANALYSIS OF COMPOSITE LAMINATE BEAMS USING COUPLING CROSS-SECTION FINITE ELEMENT METHOD
5
作者 姜文光 John L.Henshall 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第12期1709-1718,共10页
Beams and plates manufactured from laminates of composite materials have distinct advantages in a significant number of applications. However, the anisotropy arising from these materials adds a significant degree of c... Beams and plates manufactured from laminates of composite materials have distinct advantages in a significant number of applications. However, the anisotropy arising from these materials adds a significant degree of complexity, and thus time, to the stress and deformation analyses of such components, even using numerical approaches such as finite elements. The analysis of composite laminate beams subjected to uniform extension, bending, and/or twisting loads was performed by a novel implementation of the usual finite element method. Due to the symmetric features of the deformations, only a thin slice of the beam to be analysed needs to be modelled. Conventional threedimensional solid finite elements were used for the structural discretization. The accurate deformation relationships were formulated and implemented through the coupling of nodal translational degrees of freedom in the numerical analysis. A sample solution for a rectangular composite laminate beam is presented to show the validity and accuracy of the proposed method. 展开更多
关键词 composite material beam coupling equation finite element method extension BENDING TORSION
下载PDF
NEW ALGORITHM OF COUPLING ELEMENT-FREE GALERKIN WITH FINITE ELEMENT METHOD
6
作者 ZHAO Guang-ming(赵光明) SONG Shun-cheng(宋顺成) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第8期982-988,共7页
Through the construction of a new ramp function, the element-flee Galerkin method and finite element coupling method were applied to the whole field, and was made fit for the structure of element nodes within the inte... Through the construction of a new ramp function, the element-flee Galerkin method and finite element coupling method were applied to the whole field, and was made fit for the structure of element nodes within the interface regions, both satisfying the essential boundary conditions and deploying meshless nodes and finite elements in a convenient and flexible way, which can meet the requirements of computation for complicated field. The comparison between the results of the present study and the corresponding analytical solutions shows this method is feasible and effective. 展开更多
关键词 element-free Galerkin method coupling ramp function finite element
下载PDF
An explicit finite element method for dynamic analysis in three-medium coupling system and its application
7
作者 赵成刚 李伟华 +1 位作者 王进廷 李亮 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第3期272-282,共11页
In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on ... In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on the bounda-ries among fluid saturated porous medium, elastic single-phase medium and ideal fluid medium. This method is a very effective one with the characteristic of high calculating speed and small memory needed because the formulae for this explicit finite element method have the characteristic of decoupling, and which does not need to solve sys-tem of linear equations. The method is applied to analyze the dynamic response of a reservoir with considering the dynamic interactions among water, dam, sediment and basement rock. The vertical displacement at the top point of the dam is calculated and some conclusions are given. 展开更多
关键词 fluid saturated porous medium-elastic single-phase medium-ideal fluid medium coupled system dynamic response analysis explicit finite element method
下载PDF
ANALYSES ON NONLINEAR COUPLING OF MAGNETO-THERMO-ELASTICITY OF FERROMAGNETIC THIN SHELL—II:FINITE ELEMENT MODELING AND APPLICATION 被引量:2
8
作者 Xingzhe Wang Xiaojing Zheng 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第3期197-205,共9页
Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I... Based on the generalized vaxiational principle of magneto-thermo-elasticity of a ferromagnetic thin shell established (see, Analyses on nonlinear coupling of magneto-thermo- elasticity of ferromagnetic thin shell--I), the present paper developed a finite element modeling for the mechanical-magneto-thermal multi-field coupling of a ferromagnetic thin shell. The numerical modeling composes of finite element equations for three sub-systems of magnetic, thermal and deformation fields, as well as iterative methods for nonlinearities of the geometrical large-deflection and the multi-field coupling of the ferromagnetic shell. As examples, the numerical simulations on magneto-elastic behaviors of a ferromagnetic cylindrical shell in an applied magnetic field, and magneto-thermo-elastic behaviors of the shell in applied magnetic and thermal fields are carried out. The results are in good agreement with the experimental ones. 展开更多
关键词 ferromagnetic thin shell magneto-thermo-elasticity nonlinear coupling finite element method
下载PDF
A DOMAIN DECOMPOSITION ALGORITHM WITH FINITE ELEMENT-BOUNDARY ELEMENT COUPLING
9
作者 严波 杜娟 +1 位作者 胡宁 关根英树 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第4期519-525,共7页
A domain decomposition algorithm coupling the finite element and the boundary element was presented. It essentially involves subdivision of the analyzed domain into sub-regions being independently modeled by two metho... A domain decomposition algorithm coupling the finite element and the boundary element was presented. It essentially involves subdivision of the analyzed domain into sub-regions being independently modeled by two methods, i.e., the finite element method (FEM) and the boundary element method (BEM). The original problem was restored with continuity and equilibrium conditions being satisfied on the interface of the two sub-regions using an iterative algorithm. To speed up the convergence rate of the iterative algorithm, a dynamically changing relaxation parameter during iteration was introduced. An advantage of the proposed algorithm is that the locations of the nodes on the interface of the two sub-domains can be inconsistent. The validity of the algorithm is demonstrated by the consistence of the results of a numerical example obtained by the proposed method and those by the FEM, the BEM and a present finite element-boundary element (FE-BE) coupling method. 展开更多
关键词 finite element method boundary element method finite element-boundary element coupling domain decomposition
下载PDF
A Finite Element Procedure for Analysis of Chemo-Mechanical Coupling Behavior of Hydrogels
10
作者 Wei Wei Qingsheng Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2016年第7期33-58,共26页
Chemo-mechanical coupling behavior of materials is a transformation process between mechanical and chemical energy.In this paper,based on the coupled chemo-mechanical constitutive equations and governing equations dur... Chemo-mechanical coupling behavior of materials is a transformation process between mechanical and chemical energy.In this paper,based on the coupled chemo-mechanical constitutive equations and governing equations during isothermal process,the equivalent integral forms of chemo-mechanical coupling governing equations and corresponding finite element procedure are obtained by using Hamilton’s principle.An isoparametric plane element for chemo-mechanical coupling is associated into ABAQUS finite element package through user element subroutine UEL.The numerical examples exhibit that the ionic concentration variation can cause mechanical deformation and mechanical action can produce redistribution of ionic concentration for hydrogels.It is proved that the present developed chemo-mechanical coupling finite element procedure can be utilized to model the coupling behavior of hydrogels effectively. 展开更多
关键词 HYDROGEL Chemo-mechanical coupling Hamilton’s PRINCIPLE coupled finite element method
下载PDF
ANALYSIS OF THE THERMOPHYSICAL PARAMETERS OF MOIST WOOD PARTICLE MATERIAL IN A COUPLED HEAT AND MASS TRANSFER PROCESS OF FREEZING BY USING FINITE ELEMENT METHOD
11
作者 Shang DekuNortheast Forestry University 《Journal of Northeast Forestry University》 SCIE CAS CSCD 1991年第2期69-76,共8页
The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element met... The coupled heat and moisture transfer in a freezing process of wood particle material was mathematically modeled in the paper. The models were interactively solved by using the numerical method(the finite element method and the finite difference method). By matching the theoretical calculation to an experiment, the nonlinear problem was analyzed and the variable thermophysical parameters concerned was evaluated. The analysis procedure and the evaluation of the parameters were presented in detail. The result of the study showed that by using the method as described in the paper, it was possible to determine the variable (with respect to temperature, moisture content and freezing state) thermophysical parameters which were unknown or difficult to measure as long as the governing equations for a considered process were available. The method can significantly reduces the experiment efforts for determining thermophysical parameters which arc very complicated to measure. The determined variable of the effective heat conductivity of wood particle material was given in the paper. The error of the numerical calculation was also estimated by the comparison with a matched experiment. 展开更多
关键词 finite element method Freezing process coupled heat and mass transfer Variable thermophysical parameters
下载PDF
Numerical analysis of coupled finite element with element-free Galerkin in sheet flexible-die forming 被引量:7
12
作者 王忠金 袁斌先 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期462-469,共8页
A numerical method for coupled deformation between sheet metal and flexible-die was proposed. Based on the updated Lagrangian (UL) formulation, the elastoplastic deformation of sheet metal was analyzed with finite e... A numerical method for coupled deformation between sheet metal and flexible-die was proposed. Based on the updated Lagrangian (UL) formulation, the elastoplastic deformation of sheet metal was analyzed with finite element method (FEM) and the bulk deformation of flexible-die was analyzed with element-free Galerkin method (EFGM). The frictional contact between sheet metal and flexible-die was treated by the penalty function method. The sheet elastic flexible-die bulging process was analyzed with the FEM-EFGM program for coupled deformation between sheet metal and bulk flexible-die, called CDSB-FEM-EFGM for short. Compared with finite element code DEFORM-2D and experiment results, the CDSB-FEM-EFGM program is feasible. This method provides a suitable numerical method to analyze sheet flexible-die forming. 展开更多
关键词 sheet flexible-die forming finite element method element-free Galerkin method coupling aluminum alloy
下载PDF
A New Unified Stabilized Mixed Finite Element Method of the Stokes-Darcy Coupled Problem: Isotropic Discretization
13
作者 Houédanou Koffi Wilfrid 《Journal of Applied Mathematics and Physics》 2021年第7期1673-1706,共34页
In this paper, we develop an a-priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in R<sup><em>N</em></sup>, <em>N<... In this paper, we develop an a-priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in R<sup><em>N</em></sup>, <em>N</em> ∈ {2,3}, on isotropic meshes. Flows are governed by the Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. The approach utilizes a modification of the Darcy problem which allows us to apply a variant nonconforming Crouzeix-Raviart finite element to the whole coupled Stokes-Darcy problem. The well-posedness of the finite element scheme and its convergence analysis are derived. Finally, the numerical experiments are presented, which confirm the excellent stability and accuracy of our method. 展开更多
关键词 coupled Stokes and Darcy Flows Nonconforming finite element method Crouzeix-Raviart element
下载PDF
Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method 被引量:3
14
作者 王艳 谢英才 +1 位作者 张淑仪 兰晓东 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期468-473,共6页
Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass ... Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k^2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k^2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k^2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates. 展开更多
关键词 surface acoustic wave ZnO films electromechanical coupling coefficient temperature coefficientof frequency 3D finite element method
下载PDF
Influence of radial forging process on strain inhomogeneity of hollow gear shaft using finite element method and orthogonal design 被引量:3
15
作者 LI Hong-xu WANG Kai +5 位作者 LUO Rong ZHU Zi-zong DENG Shuai LUO Rong ZHANG Jing-yi FANG Fei-song 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第6期1666-1677,共12页
Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mecha... Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mechanical model,radial forging process of a hollow stepped gear shaft for automobile was simulated.The optimal combination of three process parameters including initial temperature,rotation rate and radial reduction was also selected using orthogonal design method.To examine the strain inhomogeneity of the forging workpiece,the strain inhomogeneity factor was introduced.The results reveal that the maximum effective strain and the minimum effective strain appeared in the outermost and innermost zones of different cross sections for the hollow stepped gear shaft,respectively.Optimal forging parameters are determined as a combination of initial temperature of 780°C,rotation rate of 21°/stroke and radial reduction of 3 mm. 展开更多
关键词 radial forging process strain inhomogeneity orthogonal design coupled thermo-mechanical analysis finite element method
下载PDF
Membrane finite element method for simulating fluid flow in porous medium 被引量:1
16
作者 Mei-li ZHAN Wen-jie ZHANG Jin-chang SHENG Jian-hui LI Shu-yuan HE 《Water Science and Engineering》 EI CAS 2009年第2期43-51,共9页
A new membrane finite element method for modeling fluid flow in a porous medium is presented in order to quickly and accurately simulate the geo-membrane fabric used in civil engineering. It is based on discontinuous ... A new membrane finite element method for modeling fluid flow in a porous medium is presented in order to quickly and accurately simulate the geo-membrane fabric used in civil engineering. It is based on discontinuous finite element theory, and can be easily coupled with the normal Galerkin finite element method. Based on the saturated seepage equation, the element coefficient matrix of the membrane element method is derived, and a geometric transform relation for the membrane element between a global coordinate system and a local coordinate system is obtained. A method for the determination of the fluid flux conductivity of the membrane element is presented. This method provides a basis for determining discontinuous parameters in discontinuous finite element theory. An anti-seepage problem regarding the foundation of a building is analyzed by coupling the membrane finite element method with the normal Galerkin finite element method. The analysis results demonstrate the utility and superiority of the membrane finite element method in fluid flow analysis of a porous medium. 展开更多
关键词 membrane finite element normal Galerkin finite element method coupling fluidflow in porous medium
下载PDF
FINITE ELEMENT SOLUTION TO COUPLED THERMO-ELASTICCONTACT STRESS AND IMPACTRESPONSE OF MESHING GEARS 被引量:3
17
作者 Li Runfang Ou Hengan (Chongqing University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1994年第1期63-67,共17页
A mixed finite element solution of contact stresses in meshing gears is investigated with the consideration of coupled thermo-elastic deformation and impact behavior. A simulation procedure of finite element solution ... A mixed finite element solution of contact stresses in meshing gears is investigated with the consideration of coupled thermo-elastic deformation and impact behavior. A simulation procedure of finite element solution of meshing gears is developed. The versatility of the procedure for both numerical accuracy and computational efficiency is verified by numerical analysis of meshing gear teeth. 展开更多
关键词 finite element method coupled problem Therrno-elastic deformation Meshing gear
全文增补中
Modeling and finite element analysis of transduction process of electromagnetic acoustic transducers for nonferromagnetic metal material testing 被引量:13
18
作者 郝宽胜 黄松岭 +2 位作者 赵伟 段汝娇 王珅 《Journal of Central South University》 SCIE EI CAS 2011年第3期749-754,共6页
Facing the problems lack of considering the non-uniform distribution of the static bias magnetic field and computing the panicle displacements in the simulation model of electromagnetic acoustic transducer (EMAT), a... Facing the problems lack of considering the non-uniform distribution of the static bias magnetic field and computing the panicle displacements in the simulation model of electromagnetic acoustic transducer (EMAT), a multi-field coupled model was established and the finite element method (FEM) was presented to calculate the entire transduction process. The multi-field coupled model included the static magnetic field, pulsed eddy current field and mechanical field. The FEM equations of the three fields were derived by Garlerkin FEM method. Thus, the entire transduction process of the EMAT was calculated through sequentially coupling the three fields. The transduction process of a Lamb wave EMAT was calculated according to the present model and method. The results show that, by the present method, it is valid to calculate the particle displacement under the given excitation signal and non-uniformly distributed static magnetic field. Calculation error will be brought about if the non-uniform distribution of the static bias magnetic field is neglected. 展开更多
关键词 metal material nondestructive testing electromagnetic acoustic transducer multi-field coupling Garlerkin method finite element
下载PDF
Validation and application of three-dimensional discontinuous deformation analysis with tetrahedron finite element meshed block 被引量:4
19
作者 Jun Liu Zheng Nan Ping Yi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第6期1602-1616,共15页
In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a ... In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a linear displacement function to describe the block movement and deformation, which would cause block expansion under rigid body rotation and thus limit its capability to model block de- formation. In this paper, 3D DDA is coupled with tetrahe- dron finite elements to tackle these two problems. Tetrahe- dron is the simplest in the 3D domain and makes it easy to implement automatic discretization, even for complex topol- ogy shape. Furthermore, element faces will remain planar and element edges will remain straight after deformation for tetrahedron finite elements and polyhedral contact detection schemes can be used directly. The matrices of equilibrium equations for this coupled method are given in detail and an effective contact searching algorithm is suggested. Valida- tion is conducted by comparing the results of the proposed coupled method with that of physical model tests using one of the most common failure modes, i.e., wedge failure. Most of the failure modes predicted by the coupled method agree with the physical model results except for 4 cases out of the total 65 cases. Finally, a complex rockslide example demon- strates the robustness and versatility of the coupled method. 展开更多
关键词 Three-dimensional discontinuous deformation analysis finite element method coupled method Valida-tion
下载PDF
Analysis of the electromechanical behavior of ferroelectric ceramics based on a nonlinear finite element model 被引量:3
20
作者 Daining Fang Faxin Li +1 位作者 A. K. Soh Tieqi Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第3期294-304,共11页
A nonlinear finite element (FE) model based on domain switching was proposed to study the electromechanical behavior of ferroelectric ceramics. The incremental FE formulation was improved to avoid any calculation in... A nonlinear finite element (FE) model based on domain switching was proposed to study the electromechanical behavior of ferroelectric ceramics. The incremental FE formulation was improved to avoid any calculation instability. The problems of mesh sensitivity and convergence, and the efficiency of the proposed nonlinear FE technique have been assessed to illustrate the versatility and potential accuracy of the said technique. The nonlinear electromechanical behavior, such as the hysteresis loops and butterfly curves, of ferroelectric ceramics subjected to both a uniform electric field and a point electric potential has been studied numerically. The results obtained are in good agreement with those of the corresponding theoretical and experimental analyses. Furthermore, the electromechanical coupling fields near (a) the boundary of a circular hole, (b) the boundary of an elliptic hole and (c) the tip of a crack, have been analyzed using the proposed nonlinear finite element method (FEM). The proposed nonlinear electromechanically coupled FEM is useful for the analysis of domain switching, deformation and fracture of ferroelectric ceramics. 展开更多
关键词 Ferroelectric material Domain switching finite element method Nonlinear electromechanical coupling Crack and fracture
下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部