期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
On the Application of Mixed Models of Probability and Convex Set for Time-Variant Reliability Analysis
1
作者 Fangyi Li Dachang Zhu Huimin Shi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1981-1999,共19页
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems... In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem. 展开更多
关键词 Mixed uncertainty probability model convex model time-variant reliability analysis
下载PDF
Time-Varying Mesh Stiffness Calculation and Dynamic Modeling of Spiral Bevel Gear with Spalling Defects
2
作者 Keyuan Li Baijie Qiao +2 位作者 Heng Fang Xiuyue Yang Xuefeng Chen 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第2期143-155,共13页
Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteris... Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteristics of the gear system,which further increases noise and vibration.This paper aims to calculate the TVMS and establish dynamic model of SBG with spalling defect.In this study,a novel analytical model based on slice method is proposed to calculate the TVMS of SBG considering spalling defect.Subsequently,the influence of spalling defect on the TVMS is studied through a numerical simulation,and the proposed analytical model is verified by a finite element model.Besides,an 8-degrees-of-freedom dynamic model is established for SBG transmission system.Incorporating the spalling defect into TVMS,the dynamic responses of spalled SBG are analyzed.The numerical results indicate that spalling defect would cause periodic impact in time domain.Finally,an experiment is designed to verify the proposed dynamic model.The experimental results show that the spalling defect makes the response characterized by periodic impact with the rotating frequency of spalled pinion. 展开更多
关键词 dynamic modeling slice method SPALLING spiral bevel gear time-varying mesh stiffness(TVMS)
下载PDF
Optimal zero-crossing group selection method of the absolute gravimeter based on improved auto-regressive moving average model
3
作者 牟宗磊 韩笑 胡若 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期347-354,共8页
An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency... An absolute gravimeter is a precision instrument for measuring gravitational acceleration, which plays an important role in earthquake monitoring, crustal deformation, national defense construction, etc. The frequency of laser interference fringes of an absolute gravimeter gradually increases with the fall time. Data are sparse in the early stage and dense in the late stage. The fitting accuracy of gravitational acceleration will be affected by least-squares fitting according to the fixed number of zero-crossing groups. In response to this problem, a method based on Fourier series fitting is proposed in this paper to calculate the zero-crossing point. The whole falling process is divided into five frequency bands using the Hilbert transformation. The multiplicative auto-regressive moving average model is then trained according to the number of optimal zero-crossing groups obtained by the honey badger algorithm. Through this model, the number of optimal zero-crossing groups determined in each segment is predicted by the least-squares fitting. The mean value of gravitational acceleration in each segment is then obtained. The method can improve the accuracy of gravitational measurement by more than 25% compared to the fixed zero-crossing groups method. It provides a new way to improve the measuring accuracy of an absolute gravimeter. 展开更多
关键词 absolute gravimeter laser interference fringe Fourier series fitting honey badger algorithm mul-tiplicative auto-regressive moving average(MARMA)model
下载PDF
Analytical Modeling and Mechanism Analysis of Time-Varying Excitation for Surface Defects in Rolling Element Bearings 被引量:1
4
作者 Laihao Yang Yu Sun +2 位作者 Ruobin Sun Lixia Gao Xuefeng Chen 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第2期89-101,共13页
Surface defects,including dents,spalls,and cracks,for rolling element bearings are the most common faults in rotating machinery.The accurate model for the time-varying excitation is the basis for the vibration mechani... Surface defects,including dents,spalls,and cracks,for rolling element bearings are the most common faults in rotating machinery.The accurate model for the time-varying excitation is the basis for the vibration mechanism analysis and fault feature extraction.However,in conventional investigations,this issue is not well and fully addressed from the perspective of theoretical analysis and physical derivation.In this study,an improved analytical model for time-varying displacement excitations(TVDEs)caused by surface defects is theoretically formulated.First and foremost,the physical mechanism for the effect of defect sizes on the physical process of rolling element-defect interaction is revealed.According to the physical interaction mechanism between the rolling element and different types of defects,the relationship between time-varying displacement pulse and defect sizes is further analytically derived.With the obtained time-varying displacement pulse,the dynamic model for the deep groove bearings considering the internal excitation caused by the surface defect is established.The nonlinear vibration responses and fault features induced by surface defects are analyzed using the proposed TVDE model.The results suggest that the presence of surface defects may result in the occurrence of the dual-impulse phenomenon,which can serve as indexes for surface-defect fault diagnosis. 展开更多
关键词 analytical model rolling bearings surface defects time-varying excitation vibration mechanism
下载PDF
Time-varying gravity field model of Sichuan-Yunnan region based on the equivalent mass source model
5
作者 Xiaozhen Hou Shi Chen +2 位作者 Linhai Wang Jiancheng Han Dong Ma 《Geodesy and Geodynamics》 EI CSCD 2023年第6期566-572,共7页
High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system.Compared to the satellite gravity meas... High-precision time-varying gravity field is an effective way to study the internal mass movement and understanding the spatio-temporal evolution process of the geodynamic system.Compared to the satellite gravity measurement,the repeated terrestrial gravity observation can provide a more high-order signal related to the shallow crust and subsurface.However,the suitable and unified method for gravity model estimation is a key problem for further applications.In this study,we introduce the spherical hexahedron element to simulate the field source mass and forward model the change of gravity field located at the Sichuan-Yunnan region(99—104°E,23—29°N)in the four epochs from 2015 to 2017.Compared to the experimental results based on Slepian or spherical harmonics frequency domain method,this alternative approach is suitable for constructing the equivalent mass source model of regional-scale gravity data,by introducing the first-order smooth prior condition of gravity time-varying signal to suppress the high-frequency component of the signal.The results can provide a higher spatial resolution reference for regional gravity field modeling in the Sichuan-Yunnan region. 展开更多
关键词 Gravity change Equivalent source model time-varying gravity model Gravity field INVERSION
下载PDF
Application of Seasonal Auto-regressive Integrated Moving Average Model in Forecasting the Incidence of Hand-foot-mouth Disease in Wuhan,China 被引量:16
6
作者 彭颖 余滨 +3 位作者 汪鹏 孔德广 陈邦华 杨小兵 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第6期842-848,共7页
Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful ... Outbreaks of hand-foot-mouth disease(HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average(ARIMA) model for time series analysis was designed in this study. Eighty-four-month(from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination(R^2), normalized Bayesian Information Criterion(BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as(1,0,1)(0,1,1)12, with the largest coefficient of determination(R^2=0.743) and lowest normalized BIC(BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations(P_(Box-Ljung(Q))=0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly. 展开更多
关键词 hand-foot-mouth disease forecast surveillance modeling auto-regressive integrated moving average(ARIMA)
下载PDF
A Study of Wind Statistics Through Auto-Regressive and Moving-Average (ARMA) Modeling 被引量:1
7
作者 John Z.YIM(尹彰) +1 位作者 ChunRen CHOU(周宗仁) 《China Ocean Engineering》 SCIE EI 2001年第1期61-72,共12页
Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simu... Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made. 展开更多
关键词 auto-regressive and Moving-Average (ARMA) modeling probability distributions extreme wind speeds
下载PDF
Parametric SNR Estimation Based on Auto-Regressive Model in AWGN Channels 被引量:1
8
作者 Dan-Ping Bai Qun Wan Xian-Sheng Guo Yan Wang 《Journal of Electronic Science and Technology of China》 2008年第1期21-24,共4页
Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the ... Signal-to-noise ratio(SNR)estimation for signal which can be modeled by Auto-regressive(AR)process is studied in this paper.First,the conventional frequency domain method is introduced to estimate the SNR for the received signal in additive white Gauss noise(AWGN)channel.Then a parametric SNR estimation algorithm is proposed by taking advantage of the AR model information of the received signal.The simulation results show that the proposed parametric method has better performance than the conventional frequency doma in method in case of AWGN channel. 展开更多
关键词 auto-regressive model AWGN channel model information SNR (Signal-to-noise ratio) estimation.
下载PDF
Robust Parameter Identification Method of Adhesion Model for Heavy Haul Trains
9
作者 Shuai Qian Lingshuang Kong Jing He 《Journal of Transportation Technologies》 2024年第1期53-63,共11页
A robust parameter identification method based on Kiencke model was proposed to solve the problem of the parameter identification accuracy being affected by the rail environment change and noise interference for heavy... A robust parameter identification method based on Kiencke model was proposed to solve the problem of the parameter identification accuracy being affected by the rail environment change and noise interference for heavy-duty trains. Firstly, a Kiencke stick-creep identification model was constructed, and the parameter identification task was transformed into a quadratic programming problem. Secondly, an iterative algorithm was constructed to solve the problem, into which a time-varying forgetting factor was added to track the change of the rail environment, and to solve the uncertainty problem of the wheel-rail environment. The Granger causality test was adopted to detect the interference, and then the weights of the current data were redistributed to solve the problem of noise interference in parameter identification. Finally, simulations were carried out and the results showed that the proposed method could track the change of the track environment in time, reduce the noise interference in the identification process, and effectively identify the adhesion performance parameters. 展开更多
关键词 Heavy-Duty Train Kiencke model Quadratic Programming time-varying Forgetting Factor Granger Causality Test
下载PDF
Application of Auto-regressive Linear Model in Understanding the Effect of Climate on Malaria Vectors Dynamics in the Three Gorges Reservoir
10
作者 WANG Duo Quan GU Zheng Cheng +2 位作者 ZHENG Xiang GUO Yun TANG Lin Hua 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2014年第10期811-814,共4页
It is important to understand the dynamics of malaria vectors in implementing malaria control strategies. Six villages were selected from different sections in the Three Gorges Reservoir fc,r exploring the relationshi... It is important to understand the dynamics of malaria vectors in implementing malaria control strategies. Six villages were selected from different sections in the Three Gorges Reservoir fc,r exploring the relationship between the climatic |:actors and its malaria vector density from 1997 to 2007 using the auto-regressive linear model regressi^n method. The result indicated that both temperature and precipitation were better modeled as quadratic rather than linearly related to the density of Anopheles sinensis. 展开更多
关键词 Application of auto-regressive Linear model in Understanding the Effect of Climate on Malaria Vectors Dynamics in the Three Gorges Reservoir AUTO
下载PDF
Neural Network and GBSM Based Time-Varying and Stochastic Channel Modeling for 5G Millimeter Wave Communications 被引量:7
11
作者 Xiongwen Zhao Fei Du +4 位作者 Suiyan Geng Ningyao Sun Yu Zhang Zihao Fu Guangjian Wang 《China Communications》 SCIE CSCD 2019年第6期80-90,共11页
In this work,a frame work for time-varying channel modeling and simulation is proposed by using neural network(NN)to overcome the shortcomings in geometry based stochastic model(GBSM)and simulation approach.Two NN mod... In this work,a frame work for time-varying channel modeling and simulation is proposed by using neural network(NN)to overcome the shortcomings in geometry based stochastic model(GBSM)and simulation approach.Two NN models are developed for modeling of path loss together with shadow fading(SF)and joint small scale channel parameters.The NN models can predict path loss plus SF and small scale channel parameters accurately compared with measurement at 26 GHz performed in an outdoor microcell.The time-varying path loss and small scale channel parameters generated by the NN models are proposed to replace the empirical path loss and channel parameter random numbers in GBSM-based framework to playback the measured channel and match with its environment.Moreover,the sparse feature of clusters,delay and angular spread,channel capacity are investigated by a virtual array measurement at 28 GHz in a large waiting hall. 展开更多
关键词 time-varying CHANNEL NEURAL network CLUSTER CHANNEL modeling VIRTUAL array measurement 5G
下载PDF
Optimal Iterative Learning Control for Batch Processes Based on Linear Time-varying Perturbation Model 被引量:9
12
作者 熊智华 ZHANG Jie 董进 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第2期235-240,共6页
A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for produc... A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for product quality around the nominal trajectories. To address problems of model-plant mismatches, model prediction errors in the previous batch run are added to the model predictions for the current batch run. Then tracking error transition models can be built, and the ILC law with direct error feedback is explicitly obtained, A rigorous theorem is proposed, to prove the convergence of tracking error under ILC, The proposed methodology is illustrated on a typical batch reactor and the results show that the performance of trajectory tracking is gradually improved by the ILC. 展开更多
关键词 iterative learning control linear time-varying perturbation model batch process
下载PDF
Parameter Estimation of Time-Varying ARMA Model 被引量:3
13
作者 王文华 韩力 王文星 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期131-134,共4页
The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedbac... The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method. 展开更多
关键词 auto-regressive moving-average (ARMA) model feedback linear estimation basis time-varying function spectral estimation
下载PDF
Settlement Prediction for Buildings Surrounding Foundation Pits Based on a Stationary Auto-regression Model 被引量:3
14
作者 TIAN Lin-ya HUA Xi-sheng 《Journal of China University of Mining and Technology》 EI 2007年第1期78-81,共4页
To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitori... To ensure the safety of buildings surrounding foundation pits, a study was made on a settlement monitoring and trend prediction method. A statistical testing method for analyzing the stability of a settlement monitoring datum has been discussed. According to a comprehensive survey, data of 16 stages at operating control point, were verified by a standard t test to determine the stability of the operating control point. A stationary auto-regression model, AR(p), used for the observation point settlement prediction has been investigated. Given the 16 stages of the settlement data at an observation point, the applicability of this model was analyzed. Settlement of last four stages was predicted using the stationary auto-regression model AR (1); the maximum difference between predicted and measured values was 0.6 mm, indicating good prediction results of the model. Hence, this model can be applied to settlement predictions for buildings surrounding foundation pits. 展开更多
关键词 foundation pit BUILDING settlement monitoring datum stability stationary auto-regression model settlement prediction
下载PDF
Comparison of Cox proportional hazards model,Cox proportional hazards with time-varying coefficients model,and lognormal accelerated failure time model:Application in time to event analysis of melioidosis patients 被引量:1
15
作者 Kamaruddin Mardhiah Nadiah Wan-Arfah +2 位作者 Nyi Nyi Naing Muhammad Radzi Abu Hassan Huan-Keat Chan 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2022年第3期128-134,共7页
Objective:To compare the prognostic factors of mortality among melioidosis patients between lognormal accelerated failure time(AFT),Cox proportional hazards(PH),and Cox PH with time-varying coefficient(TVC)models.Meth... Objective:To compare the prognostic factors of mortality among melioidosis patients between lognormal accelerated failure time(AFT),Cox proportional hazards(PH),and Cox PH with time-varying coefficient(TVC)models.Methods:A retrospective study was conducted from 2014 to 2019 among 453 patients who were admitted to Hospital Sultanah Bahiyah,Kedah and Hospital Tuanku Fauziah,Perlis in Northern Malaysia due to confirmed-cultured melioidosis.The prognostic factors of mortality from melioidosis were obtained from AFT survival analysis,and Cox’s models and the findings were compared by using the goodness of fit methods.The analyses were done by using Stata SE version 14.0.Results:A total of 242 patients(53.4%)survived.In this study,the median survival time of melioidosis patients was 30.0 days(95%CI 0.0-60.9).Six significant prognostic factors were identified in the Cox PH model and Cox PH-TVC model.In AFT survival analysis,a total of seven significant prognostic factors were identified.The results were found to be only a slight difference between the identified prognostic factors among the models.AFT survival showed better results compared to Cox's models,with the lowest Akaike information criteria and best fitted Cox-snell residuals.Conclusions:AFT survival analysis provides more reliable results and can be used as an alternative statistical analysis for determining the prognostic factors of mortality in melioidosis patients in certain situations. 展开更多
关键词 Cox proportional hazards TIME-DEPENDENT time-varying Accelerated failure time survival analysis LOGNORMAL Parametric model TIME-TO-EVENT MELIOIDOSIS Mortality
下载PDF
Deep learning-based time-varying channel estimation with basis expansion model for MIMO-OFDM system 被引量:1
16
作者 HU Bo YANG Lihua +1 位作者 REN Lulu NIE Qian 《High Technology Letters》 EI CAS 2022年第3期288-294,共7页
For high-speed mobile MIMO-OFDM system,a low-complexity deep learning(DL) based timevarying channel estimation scheme is proposed.To reduce the number of estimated parameters,the basis expansion model(BEM) is employed... For high-speed mobile MIMO-OFDM system,a low-complexity deep learning(DL) based timevarying channel estimation scheme is proposed.To reduce the number of estimated parameters,the basis expansion model(BEM) is employed to model the time-varying channel,which converts the channel estimation into the estimation of the basis coefficient.Specifically,the initial basis coefficients are firstly used to train the neural network in an offline manner,and then the high-precision channel estimation can be obtained by small number of inputs.Moreover,the linear minimum mean square error(LMMSE) estimated channel is considered for the loss function in training phase,which makes the proposed method more practical.Simulation results show that the proposed method has a better performance and lower computational complexity compared with the available schemes,and it is robust to the fast time-varying channel in the high-speed mobile scenarios. 展开更多
关键词 MIMO-OFDM high-speed mobile time-varying channel deep learning(DL) basis expansion model(BEM)
下载PDF
Markov-Switching Time-Varying Copula Modeling of Dependence Structure between Oil and GCC Stock Markets 被引量:1
17
作者 Heni Boubaker Nadia Sghaier 《Open Journal of Statistics》 2016年第4期565-589,共25页
This paper proposes a Markov-switching copula model to examine the presence of regime change in the time-varying dependence structure between oil price changes and stock market returns in six GCC countries. The margin... This paper proposes a Markov-switching copula model to examine the presence of regime change in the time-varying dependence structure between oil price changes and stock market returns in six GCC countries. The marginal distributions are assumed to follow a long-memory model while the copula parameters are supposed to evolve according to the Markov-switching process. Furthermore, we estimate the Value-at-Risk (VaR) based on the proposed approach. The empirical results provide evidence of three regime changes, representing precrisis, financial crisis and post-crisis, in the dependence structure between energy and GCC stock markets. In particular, in the pre- and post-crisis regimes, there is no dependence, while in the crisis regime, there is significant tail dependence. For OPEC countries, we find lower tail dependence whereas in non-OPEC countries, we see upper tail dependence. VaR experiments show that the Markov-switching time- varying copula model performs better than the time-varying copula model. 展开更多
关键词 time-varying Copulas Markov-Switching model Oil Price Changes GCC Stock Markets VAR
下载PDF
An Improved Dynamic Modelling for Exploring Ball Bearing Vibrations from Time-Varying Oil Film 被引量:1
18
作者 Minmin Xu Zhenzhen Song +3 位作者 Xiaoxi Ding Guoxing Li Yimin Shao James Xi Gu 《Journal of Dynamics, Monitoring and Diagnostics》 2022年第2期93-102,共10页
Bearings are key components in rotating machinery,which is widely used in many fields,such as CNC machines,wind turbines and induction machines.The increasingly harsh operation environment can lead to wear and tear on... Bearings are key components in rotating machinery,which is widely used in many fields,such as CNC machines,wind turbines and induction machines.The increasingly harsh operation environment can lead to wear and tear on raceways and reduce the precision and reliability of bearing or even machinery.Lubrication could relieve the wear to some degree,which is benefit to prolong the bearing’s life.Thus,investigation on the vibration responses under the influence of oil film is of great significance.However,for mechanism analysis,how to include the oil film into the bearing dynamic model affects the result and efficiency of solution.To address this problem,this study proposed a fast algorithm through load distribution and interpolation when calculating oil film stiffness and thickness during the solution of bearing vibration model.Analysis of oil film on vibration is carried out and a bearing test rig is designed to verify the proposed model.Numerical simulation result shows that rotational speed and load have vital effect on oil film and vibration.The experimental result is consistent with the simulation,which shows that the proposed model has a better performance on modeling bearing vibration and the method of considering oil film is reasonable. 展开更多
关键词 dynamic modeling fault diagnosis LUBRICATION rolling elements bearing time-varying oil film
下载PDF
ICA Based Identification of Time-Varying Linear Causal Model
19
作者 Hongxia Chen Jimin Ye 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第4期32-40,共9页
Recently, several approaches have been proposed to discover the causality of the time-independent or fixed causal model. However, in many realistic applications, especially in economics and neuroscience, causality amo... Recently, several approaches have been proposed to discover the causality of the time-independent or fixed causal model. However, in many realistic applications, especially in economics and neuroscience, causality among variables might be time-varying. A time-varying linear causal model with non-Gaussian noise is considered and the estimation of the causal model from observational data is focused. Firstly, an independent component analysis(ICA) based two stage method is proposed to estimate the time-varying causal coefficients. It shows that, under appropriate assumptions, the time varying coefficients in the proposed model can be estimated by the proposed approach, and results of experiment on artificial data show the effectiveness of the proposed approach. And then, the granger causality test is used to ascertain the causal direction among the variables. Finally, the new approach is applied to the real stock data to identify the causality among three stock indices and the result is consistent with common sense. 展开更多
关键词 time-varying CAUSAL model independent component analysis(ICA) GRANGER CAUSALITY test CAUSALITY INFERENCE
下载PDF
ADDITIVE HAZARDS MODEL WITH TIME-VARYING REGRESSION COEFFICIENTS
20
作者 黄彬 《Acta Mathematica Scientia》 SCIE CSCD 2010年第4期1318-1326,共9页
This article discusses regression analysis of failure time under the additive hazards model, when the regression coefficients are time-varying. The regression coefficients are estimated locally based on the pseudo-sco... This article discusses regression analysis of failure time under the additive hazards model, when the regression coefficients are time-varying. The regression coefficients are estimated locally based on the pseudo-score function [12] in a window around each time point. The proposed method can be easily implemented, and the resulting estimators are shown to be consistent and asymptotically normal with easily estimated variances. The simulation studies show that our estimation procedure is reliable and useful. 展开更多
关键词 Additive hazards model time-varying coefficients weighted local pseudoscore function asymptotic property
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部