期刊文献+
共找到2,388篇文章
< 1 2 120 >
每页显示 20 50 100
Asymptotic normality of error density estimator in stationary and explosive autoregressive models
1
作者 WU Shi-peng YANG Wen-zhi +1 位作者 GAO Min HU Shu-he 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期140-158,共19页
In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity... In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity assumptions,some asymptotic normality results of the residual density estimator are obtained when the autoregressive models are stationary process and explosive process.In order to illustrate these results,some simulations such as con dence intervals and mean integrated square errors are provided in this paper.It shows that the residual density estimator can replace the density\estimator"which contains errors. 展开更多
关键词 explosive autoregressive models residual density estimator asymptotic distribution association sequence
下载PDF
On the Application of Mixed Models of Probability and Convex Set for Time-Variant Reliability Analysis
2
作者 Fangyi Li Dachang Zhu Huimin Shi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1981-1999,共19页
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems... In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem. 展开更多
关键词 Mixed uncertainty probability model convex model time-variant reliability analysis
下载PDF
JUMP DETECTION BY WAVELET IN NONLINEAR AUTOREGRESSIVE MODELS 被引量:2
3
作者 李元 谢衷洁 《Acta Mathematica Scientia》 SCIE CSCD 1999年第3期261-271,共11页
Wavelets are applied to detection of the jump points of a regression function in nonlinear autoregressive model x(t) = T(x(t-1)) + epsilon t. By checking the empirical wavelet coefficients of the data,which have signi... Wavelets are applied to detection of the jump points of a regression function in nonlinear autoregressive model x(t) = T(x(t-1)) + epsilon t. By checking the empirical wavelet coefficients of the data,which have significantly large absolute values across fine scale levels, the number of the jump points and locations where the jumps occur are estimated. The jump heights are also estimated. All estimators are shown to be consistent. Wavelet method ia also applied to the threshold AR(1) model(TAR(1)). The simple estimators of the thresholds are given,which are shown to be consistent. 展开更多
关键词 jump points nonlinear autoregressive models WAVELETS
下载PDF
SOME LEAST SQUARES ESTIMATES OF THE AUTOREGRESSIVE MODELS
4
作者 林正华 盛中平 王嘉松 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1999年第1期113-124,共12页
In this paper, we present some iterative methods for solving lth order autoregressive models, prove global convergence for l=1 case, and the numerical results of new algorithms seem to be more efficient than the ones ... In this paper, we present some iterative methods for solving lth order autoregressive models, prove global convergence for l=1 case, and the numerical results of new algorithms seem to be more efficient than the ones of Cochrane-Orcutt iterative method. 展开更多
关键词 autoregressive model ITERATIVE METHOD convergence.
下载PDF
PC-VAR Estimation of Vector Autoregressive Models
5
作者 Claudio Morana 《Open Journal of Statistics》 2012年第3期251-259,共9页
In this paper PC-VAR estimation of vector autoregressive models (VAR) is proposed. The estimation strategy successfully lessens the curse of dimensionality affecting VAR models, when estimated using sample sizes typic... In this paper PC-VAR estimation of vector autoregressive models (VAR) is proposed. The estimation strategy successfully lessens the curse of dimensionality affecting VAR models, when estimated using sample sizes typically available in quarterly studies. The procedure involves a dynamic regression using a subset of principal components extracted from a vector time series, and the recovery of the implied unrestricted VAR parameter estimates by solving a set of linear constraints. PC-VAR and OLS estimation of unrestricted VAR models show the same asymptotic properties. Monte Carlo results strongly support PC-VAR estimation, yielding gains, in terms of both lower bias and higher efficiency, relatively to OLS estimation of high dimensional unrestricted VAR models in small samples. Guidance for the selection of the number of components to be used in empirical studies is provided. 展开更多
关键词 VECTOR autoregressive model Principal COMPONENTS Analysis STATISTICAL REDUCTION Techniques
下载PDF
Noise reduction of acoustic Doppler velocimeter data based on Kalman filtering and autoregressive moving average models
6
作者 Chuanjiang Huang Fangli Qiao Hongyu Ma 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第12期106-113,共8页
Oceanic turbulence measurements made by an acoustic Doppler velocimeter(ADV)suffer from noise that potentially affects the estimates of turbulence statistics.This study examines the abilities of Kalman filtering and a... Oceanic turbulence measurements made by an acoustic Doppler velocimeter(ADV)suffer from noise that potentially affects the estimates of turbulence statistics.This study examines the abilities of Kalman filtering and autoregressive moving average models to eliminate noise in ADV velocity datasets of laboratory experiments and offshore observations.Results show that the two methods have similar performance in ADV de-noising,and both effectively reduce noise in ADV velocities,even in cases of high noise.They eliminate the noise floor at high frequencies of the velocity spectra,leading to a longer range that effectively fits the Kolmogorov-5/3 slope at midrange frequencies.After de-noising adopting the two methods,the values of the mean velocity are almost unchanged,while the root-mean-square horizontal velocities and thus turbulent kinetic energy decrease appreciably in these experiments.The Reynolds stress is also affected by high noise levels,and de-noising thus reduces uncertainties in estimating the Reynolds stress. 展开更多
关键词 noise Kalman filtering autoregressive moving average model TURBULENCE acoustic Doppler velocimeter
下载PDF
Asymptotic Normality of Pseudo-LS Estimator of Error Variance in Partly Linear Autoregressive Models
7
作者 WU Xin-qian TIAN Zheng JU Yan-wei 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第4期617-622,共6页
Consider the model Yt = βYt-1+g(Yt-2)+εt for 3 〈 t 〈 T. Hereg is anunknown function, β is an unknown parameter, εt are i.i.d, random errors with mean 0 andvariance σ2 and the fourth moment α4, and α4 are ... Consider the model Yt = βYt-1+g(Yt-2)+εt for 3 〈 t 〈 T. Hereg is anunknown function, β is an unknown parameter, εt are i.i.d, random errors with mean 0 andvariance σ2 and the fourth moment α4, and α4 are independent of Y8 for all t ≥ 3 and s = 1, 2.Pseudo-LS estimators σ, σ2T α4τ and D2T of σ^2,α4 and Var(ε2↑3) are respectively constructedbased on piecewise polynomial approximator of g. The weak consistency of α4T and D2T are proved. The asymptotic normality of σ2T is given, i.e., √T(σ2T -σ^2)/DT converges indistribution to N(0, 1). The result can be used to establish large sample interval estimatesof σ^2 or to make large sample tests for σ^2. 展开更多
关键词 partly linear autoregressive model error variance piecewise polynomial pseudo-LS estimation weak consistency asymptotic normality
下载PDF
Partial Time-Varying Coefficient Regression and Autoregressive Mixed Model
8
作者 Hui Li Zhiqiang Cao 《Open Journal of Statistics》 2023年第4期514-533,共20页
Regression and autoregressive mixed models are classical models used to analyze the relationship between time series response variable and other covariates. The coefficients in traditional regression and autoregressiv... Regression and autoregressive mixed models are classical models used to analyze the relationship between time series response variable and other covariates. The coefficients in traditional regression and autoregressive mixed models are constants. However, for complicated data, the coefficients of covariates may change with time. In this article, we propose a kind of partial time-varying coefficient regression and autoregressive mixed model and obtain the local weighted least-square estimators of coefficient functions by the local polynomial technique. The asymptotic normality properties of estimators are derived under regularity conditions, and simulation studies are conducted to empirically examine the finite-sample performances of the proposed estimators. Finally, we use real data about Lake Shasta inflow to illustrate the application of the proposed model. 展开更多
关键词 Regression and autoregressive Time Series Partial time-varying Coefficient Local Polynomial
下载PDF
Partial Time-Varying Coefficient Regression and Autoregressive Mixed Model
9
作者 Hui Li Zhiqiang Cao 《Open Journal of Endocrine and Metabolic Diseases》 2023年第4期514-533,共20页
Regression and autoregressive mixed models are classical models used to analyze the relationship between time series response variable and other covariates. The coefficients in traditional regression and autoregressiv... Regression and autoregressive mixed models are classical models used to analyze the relationship between time series response variable and other covariates. The coefficients in traditional regression and autoregressive mixed models are constants. However, for complicated data, the coefficients of covariates may change with time. In this article, we propose a kind of partial time-varying coefficient regression and autoregressive mixed model and obtain the local weighted least-square estimators of coefficient functions by the local polynomial technique. The asymptotic normality properties of estimators are derived under regularity conditions, and simulation studies are conducted to empirically examine the finite-sample performances of the proposed estimators. Finally, we use real data about Lake Shasta inflow to illustrate the application of the proposed model. 展开更多
关键词 Regression and autoregressive Time Series Partial time-varying Coefficient Local Polynomial
下载PDF
River channel flood forecasting method of coupling wavelet neural network with autoregressive model 被引量:1
10
作者 李致家 周轶 马振坤 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期90-94,共5页
Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN.... Based on analyzing the limitations of the commonly used back-propagation neural network (BPNN), a wavelet neural network (WNN) is adopted as the nonlinear river channel flood forecasting method replacing the BPNN. The WNN has the characteristics of fast convergence and improved capability of nonlinear approximation. For the purpose of adapting the timevarying characteristics of flood routing, the WNN is coupled with an AR real-time correction model. The AR model is utilized to calculate the forecast error. The coefficients of the AR real-time correction model are dynamically updated by an adaptive fading factor recursive least square(RLS) method. The application of the flood forecasting method in the cross section of Xijiang River at Gaoyao shows its effectiveness. 展开更多
关键词 river channel flood forecasting wavel'et neural network autoregressive model recursive least square( RLS) adaptive fading factor
下载PDF
AUTOREGRESSIVE MODEL AND POWER SPECTRUM CHARATERISTICS OF CURRENT SIGNAL IN HIGH FREQUENCY GROUP PULSE MICRO-ELECTROCHEMICAL MACHINING 被引量:3
11
作者 TANG Xinglun ZHANG Zhijing +1 位作者 ZHOU Zhaoying YANG Xiaodong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期260-264,共5页
The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing acros... The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing across the cathode and the anode are created under different situations with different processing parameters and inter-electrode gap size. The AR model based on the current signals indicates that the order of the AR model is obviously different relating to the different processing conditions and the inter-electrode gap size; Moreover, it is different about the stability of the dynamic system, i.e. the white noise response of the Green's function of the dynamic system is diverse. In addition, power spectrum method is used in the analysis of the dynamic time series about the current signals with different inter-electrode gap size, the results show that there exists a strongest power spectrum peak, characteristic power spectrum(CPS), to the current signals related to the different inter-electrode gap size in the range of 0~5 kHz. Therefore, the CPS of current signals can implement the identification of the inter-electrode gap. 展开更多
关键词 Electrochemical machining Inter-electrode gap autoregressive(AR) model Power spectrum
下载PDF
Empirical likelihood for first-order mixed integer-valued autoregressive model 被引量:1
12
作者 YANG Yan-qiu WANG De-hui ZHAO Zhi-wen 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2018年第3期313-322,共10页
In this paper, we not only construct the confidence region for parameters in a mixed integer-valued autoregressive process using the empirical likelihood method, but also establish the empirical log-likelihood ratio s... In this paper, we not only construct the confidence region for parameters in a mixed integer-valued autoregressive process using the empirical likelihood method, but also establish the empirical log-likelihood ratio statistic and obtain its limiting distribution. And then, via simulation studies we give coverage probabilities for the parameters of interest. The results show that the empirical likelihood method performs very well. 展开更多
关键词 mixed integer-valued autoregressive model empirical likelihood asymptotic distribution confidence region
下载PDF
Examining spatiotemporal distribution and CPUE-environment relationships for the jumbo flying squid Dosidicus gigas offshore Peru based on spatial autoregressive model 被引量:2
13
作者 FENG Yongjiu CHEN Xinjun LIU Yang 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2018年第3期942-955,共14页
The spatiotemporal distribution and relationship between nominal catch-per-unit-ef fort(CPUE) and environment for the jumbo flying squid( Dosidicus gigas) were examined in of fshore Peruvian waters during 2009–2013. ... The spatiotemporal distribution and relationship between nominal catch-per-unit-ef fort(CPUE) and environment for the jumbo flying squid( Dosidicus gigas) were examined in of fshore Peruvian waters during 2009–2013. Three typical oceanographic factors aff ecting the squid habitat were investigated in this research, including sea surface temperature(SST), sea surface salinity(SSS) and sea surface height(SSH). We studied the CPUE-environment relationships for D. gigas using a spatially-lagged version of spatial autoregressive(SAR) model and a generalized additive model(GAM), with the latter for auxiliary and comparative purposes. The annual fishery centroids were distributed broadly in an area bounded by 79.5°–82.7°W and 11.9°–17.1°S, while the monthly fishery centroids were spatially close and lay in a smaller area bounded by 81.0°–81.2°W and 14.3°–15.4°S. Our results show that the preferred environmental ranges for D. gigas offshore Peru were 20.9°–21.9°C for SST, 35.16–35.32 for SSS and 27.2–31.5 cm for SSH in the areas bounded by 78°–80°W/82–84°W and 15°–18°S. Monthly spatial distributions during October to December were predicted using the calibrated GAM and SAR models and general similarities were found between the observed and predicted patterns for the nominal CPUE of D. gigas. The overall accuracies for the hotspots generated by the SAR model were much higher than those produced by the GAM model for all three months. Our results contribute to a better understanding of the spatiotemporal distributions of D. gigas off shore Peru, and off er a new SAR modeling method for advancing fishery science. 展开更多
关键词 Dosidicus gigas spatiotemporal distribution generalized additive model (GAM) spatial autoregressive(SAR) model offshore Peru
下载PDF
PARTICLE FILTERING BASED AUTOREGRESSIVE CHANNEL PREDICTION MODEL 被引量:1
14
作者 Dong Chunli Dong Yuning +2 位作者 Wang Li Yang Zhen Zhang Hui 《Journal of Electronics(China)》 2010年第3期316-320,共5页
A particle filtering based AutoRegressive (AR) channel prediction model is presented for cognitive radio systems. Firstly, this paper introduces the particle filtering and the system model. Secondly, the AR model of o... A particle filtering based AutoRegressive (AR) channel prediction model is presented for cognitive radio systems. Firstly, this paper introduces the particle filtering and the system model. Secondly, the AR model of order p is used to approximate the flat Rayleigh fading channels; its stability is discussed, and an algorithm for solving the AR model parameters is also given. Finally, an AR channel prediction model based on particle filtering and second-order AR model is presented. Simulation results show that the performance of the proposed AR channel prediction model based on particle filtering is better than that of Kalman filtering. 展开更多
关键词 Cognitive radio Rayleigh fading channel autoregressive (AR) model Particle filtering
下载PDF
Multivariate Generalized Autoregressive Conditional Heteroscedastic Model 被引量:1
15
作者 史宁中 刘继春 《Northeastern Mathematical Journal》 CSCD 2001年第3期323-332,共10页
In this paper, by making use of the Hadamard product of matrices, a natural and reasonable generalization of the univariate GARCH (Generalized Autoregressive Conditional heteroscedastic) process introduced by Bollersl... In this paper, by making use of the Hadamard product of matrices, a natural and reasonable generalization of the univariate GARCH (Generalized Autoregressive Conditional heteroscedastic) process introduced by Bollerslev (J. Econometrics 31(1986), 307-327) to the multivariate case is proposed. The conditions for the existence of strictly stationary and ergodic solutions and the existence of higher-order moments for this class of parametric models are derived. 展开更多
关键词 generalized autoregressive conditional heteroscedastic model strict stationarity Hadamard product
下载PDF
Study of Feature Extraction Based on Autoregressive Modeling in ECG Automatic Diagnosis 被引量:3
16
作者 GE Ding-Fei HOU Bei-Ping XIANG Xin-Jian 《自动化学报》 EI CSCD 北大核心 2007年第5期462-466,共5页
This article explores the ability of multivariate autoregressive model(MAR)and scalar AR model to extract the features from two-lead electrocardiogram signals in order to classify certain cardiac arrhythmias.The class... This article explores the ability of multivariate autoregressive model(MAR)and scalar AR model to extract the features from two-lead electrocardiogram signals in order to classify certain cardiac arrhythmias.The classification performance of four different ECG feature sets based on the model coefficients are shown.The data in the analysis including normal sinus rhythm, atria premature contraction,premature ventricular contraction,ventricular tachycardia,ventricular fibrillation and superventricular tachyeardia is obtained from the MIT-BIH database.The classification is performed using a quadratic diacriminant function.The results show the MAR coefficients produce the best results among the four ECG representations and the MAR modeling is a useful classification and diagnosis tool. 展开更多
关键词 自动诊断 多元自回归模型 特征提取 心电图
下载PDF
Time-Varying Mesh Stiffness Calculation and Dynamic Modeling of Spiral Bevel Gear with Spalling Defects
17
作者 Keyuan Li Baijie Qiao +2 位作者 Heng Fang Xiuyue Yang Xuefeng Chen 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第2期143-155,共13页
Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteris... Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteristics of the gear system,which further increases noise and vibration.This paper aims to calculate the TVMS and establish dynamic model of SBG with spalling defect.In this study,a novel analytical model based on slice method is proposed to calculate the TVMS of SBG considering spalling defect.Subsequently,the influence of spalling defect on the TVMS is studied through a numerical simulation,and the proposed analytical model is verified by a finite element model.Besides,an 8-degrees-of-freedom dynamic model is established for SBG transmission system.Incorporating the spalling defect into TVMS,the dynamic responses of spalled SBG are analyzed.The numerical results indicate that spalling defect would cause periodic impact in time domain.Finally,an experiment is designed to verify the proposed dynamic model.The experimental results show that the spalling defect makes the response characterized by periodic impact with the rotating frequency of spalled pinion. 展开更多
关键词 dynamic modeling slice method SPALLING spiral bevel gear time-varying mesh stiffness(TVMS)
下载PDF
The First Order Autoregressive Model with Coefficient Contains Non-Negative Random Elements: Simulation and Esimation
18
作者 Pham Van Khanh 《Open Journal of Statistics》 2012年第5期498-503,共6页
This paper considered an autoregressive time series where the slope contains random components with non-negative values. The authors determine the stationary condition of the series to estimate its parameters by the q... This paper considered an autoregressive time series where the slope contains random components with non-negative values. The authors determine the stationary condition of the series to estimate its parameters by the quasi-maximum likelihood method. The authors also simulates and estimates the coefficients of the simulation chain. In this paper, we consider modeling and forecasting gold chain on the free market in Hanoi, Vietnam. 展开更多
关键词 Random COEFFICIENT autoregressive model Quasi-Maximum LIKELIHOOD CONSISTENCY
下载PDF
Threshold autoregression models for forecasting El Nino events
19
作者 Pu Shuzhen and Yu Huiling First Institute of Oceanography, State Oceanic Administration, Qingdao, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1990年第1期61-67,共7页
-In this paper, monthly mean SST data in a large area are used. After the spacial average of the data is carried out and the secular monthly means are substracted, a time series (Jan. 1951-Dec. 1985) of SST anomalies ... -In this paper, monthly mean SST data in a large area are used. After the spacial average of the data is carried out and the secular monthly means are substracted, a time series (Jan. 1951-Dec. 1985) of SST anomalies of the cold tongue water area in the eastern tropical Pacific Ocean is obtained. On the basis of the time series, an autoregression model, a self-exciting threshold autoregression model and an open loop autoregression model are developed respectively. The interannual variations are simulated by means of those models. The simulation results show that all the three models have made very good hindcasting for the nine El Nino events since 1951. In order to test the reliability of the open loop threshold model, extrapolated forecast was made for the period of Jan. 1986-Feb. 1987. It can be seen from the forecasting that the model could forecast well the beginning and strengthening stages of the recent El Nino event (1986-1987). Correlation coefficients of the estimations to observations are respectively 0. 84, 0. 88 and 0. 89. It is obvious that all the models work well and the open loop threshold one is the best. So the open loop threshold autoregression model is a useful tool for monitoring the SSTinterannual variation of the cold tongue water area in the Eastern Equatorial Pacific Ocean and for estimating the El Nino strength. 展开更多
关键词 Nino EI SSTA Threshold autoregression models for forecasting El Nino events EL
下载PDF
The m-delay Autoregressive Model with Application
20
作者 Manlika Ratchagit BenchawanWiwatanapataphee Nikolai Dokuchaev 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第2期487-504,共18页
The classical autoregressive(AR)model has been widely applied to predict future data usingmpast observations over five decades.As the classical AR model required m unknown parameters,this paper implements the AR model... The classical autoregressive(AR)model has been widely applied to predict future data usingmpast observations over five decades.As the classical AR model required m unknown parameters,this paper implements the AR model by reducing m parameters to two parameters to obtain a new model with an optimal delay called as the m-delay AR model.We derive the m-delay AR formula for approximating two unknown parameters based on the least squares method and develop an algorithm to determine optimal delay based on a brute-force technique.The performance of them-delay AR model was tested by comparing with the classical AR model.The results,obtained from Monte Carlo simulation using the monthly mean minimum temperature in PerthWestern Australia from the Bureau of Meteorology,are no significant difference compared to those obtained from the classical AR model.This confirms that the m-delay AR model is an effective model for time series analysis. 展开更多
关键词 Delay autoregressive model least squares method brute-force technique.
下载PDF
上一页 1 2 120 下一页 到第
使用帮助 返回顶部