To address the optimization problem of communication topology for persistent formation in the case of communication faults such as link interruption,transmitter failure,and receiver failure a two-stage model including...To address the optimization problem of communication topology for persistent formation in the case of communication faults such as link interruption,transmitter failure,and receiver failure a two-stage model including fast reconstruction of communication topology and re-optimization of communication topology is constructed.Then,a fast reconstruction algorithm of communication topology for persistent formation(FRA-CT-PF),based on optimally rigid graph,arc addition operation,and path reversal operation,is proposed,which can quickly generate a feasible reconstructed communication topology after communication faults,thus ensuring the safety of the agents and maintaining the formation shape of persistent formation.Furthermore,a re-optimization algorithm of communication topology for persistent formation(ROA-CTPF),based on agent position exchange,is proposed,which can further obtain a reoptimized communication topology to minimize the formation communication cost while still maintaining the formation shape of persistent formation.The time complexities of these two algorithms are also analyzed.Finally,the effectiveness of the above algorithms is verified by numerical experiments.Compared with existing algorithms,FRA-CT-PF can always obtain feasible reconstructed communication topology in much less time under all communication fault scenarios,and ROA-CT-PF can obtain a reoptimized communication topology to further reduce the formation communication cost in a shorter time.展开更多
The cooperative localization(CL)is affected by the communication topology among the platforms.Based on the unscented Kalman filtering,the distributed CL(DCL)oriented to the unpredicted communication topology is invest...The cooperative localization(CL)is affected by the communication topology among the platforms.Based on the unscented Kalman filtering,the distributed CL(DCL)oriented to the unpredicted communication topology is investigated.To improve the adaptability,the character of the look-up Cholesky decomposition is exploited for the covariance matrix decomposing.Then,the distributed U transformation can be dynamically implemented according to the available communication topology.In the proposed algorithm,the global information is not required for the individual,and only the available information from the neighbor is used.Each platform’s state can be estimated independently.The error covariance of the state estimates can be updated in the single platform.The algorithm is adaptive to any serial communication topologies where the measuring to the measured platform is a starting path.The applicability of the proposed algorithm to unpredicted communication topology is improved,remaining equivalent localization performance to free connection communication.展开更多
This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed c...This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.展开更多
This paper investigates limited-budget consensus design and analysis problems of general high-order multiagent systems with intermittent communications and switching topologies.The main contribution of this paper is t...This paper investigates limited-budget consensus design and analysis problems of general high-order multiagent systems with intermittent communications and switching topologies.The main contribution of this paper is that the tradeoff design between the energy consumption and the consensus performance can be realized while achieving leaderless or leaderfollowing consensus,under constraints of limited budgets and intermittent communications.Firstly,a new intermittent limitedbudget consensus control protocol with a practical trade-off design index is proposed,where the total budget of the whole multiagent system is limited.Then,leaderless limited-budget consensus design and analysis criteria are derived,in which the matrix variables of linear matrix inequalities are determined according to the total budget and the practical trade-off design parameters.Meanwhile,an explicit formulation of the consensus function is derived to describe the consensus state trajectory of the whole system.Moreover,a new two-stage transformation strategy is utilized for leader-following cases,by which the dynamics decomposition of leaderless and leader-following cases can be converted into a unified framework,and sufficient conditions of the leader-following limited-budget consensus design and analysis are determined via those of the leaderless cases.Finally,numerical simulations are given to illustrate theoretical results.展开更多
This paper addresses the problem of distributed secondary control for islanded AC microgrids with external disturbances.By using a full-order sliding-mode(FOSM)approach,voltage regulation and frequency restoration are...This paper addresses the problem of distributed secondary control for islanded AC microgrids with external disturbances.By using a full-order sliding-mode(FOSM)approach,voltage regulation and frequency restoration are achieved in finite time.For voltage regulation,a distributed observer is proposed for each distributed generator(DG)to estimate a reference voltage level.Different from some conventional observers,the reference voltage level in this paper is accurately estimated under directed communication topologies.Based on the observer,a new nonlinear controller is designed in a backstepping manner such that an FOSM surface is reached in finite time.On the surface,the voltages of DGs are regulated to the reference level in finite time.For frequency restoration,a distributed controller is further proposed such that a constructed FOSM surface is reached in finite time,on which the frequencies of DGs are restored to a reference level in finite time under directed communication topologies.Finally,case studies on a modified IEEE 37-bus test system are conducted to demonstrate the effectiveness,the robustness against load changes,and the plug-and-play capability of the proposed controllers.展开更多
The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple li...The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time- varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method.展开更多
This paper studies the multi-agent tracking problem of a third-order maneuvering target under uncertain communication environments. Each tracking agent is assumed to be a third-order system and can only use its own an...This paper studies the multi-agent tracking problem of a third-order maneuvering target under uncertain communication environments. Each tracking agent is assumed to be a third-order system and can only use its own and neighbors' position, velocity, and acceleration information to design its control input. In this work, the uncertain communication environments are modelled by a finite number of constant Laplacian matrices together with their corresponding scheduling functions. Sufficient conditions for the existence of a tracking strategy have been expressed in terms of the solvability of linear matrix inequalities. Finally, a numerical example is employed to demonstrate the effectiveness of the proposed tracking strategy.展开更多
Due to the limited bandwidth and transmission congestion of the vehicle platoon's communication,it is inevitable to induce time delay,which significantly degrades the control performance of the vehicle platoon,eve...Due to the limited bandwidth and transmission congestion of the vehicle platoon's communication,it is inevitable to induce time delay,which significantly degrades the control performance of the vehicle platoon,even resulting in instability.This paper focuses on analyzing the internal stability under generic communication topologies and presents a method of computing the exact time delay margin(ETDM).The proposed method can offer a necessary and sufficient internal stability condition with no conservatism.Firstly,to reduce the analytical complexity and computational burden elegantly,we decompose the closed-loop platoon dynamics into a set of individual subsystems via similarity transformation and matrix factorization.This decomposition approach is applicable for any general communication topology.Secondly,an explicit formula is deduced to compute the ETDM by surveying the characteristic roots'distribution of all these individual subsystems.It is further demonstrated that only the positive purely imaginary roots need to be considered to compute the ETDM.Finally,simulations are conducted to demonstrate the effectiveness of the theoretical claims.展开更多
The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of...The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of service(QoS) in terms of delay,reliability and security.Furthermore,the 5G network shall also incorporate high mobility requirements as an integral part,providing satisfactory service to users travelling at a speed up to 500 km/h.This paper provides a survey of potential high mobility wireless communication(HMWC) techniques for 5G network.After discussing the typical requirements and challenges of HMWC,key techniques to cope with the challenges are reviewed,including transmission techniques under the fast timevarying channels,network architecture with mobility support,and mobility management.Finally,future research directions on 5G high mobility communications are given.展开更多
The consensus problems of multi-agents with time-varying delays and switching topologies are studied. First, assume that an agent receives state information from its neighbors with fixed communication delays and proce...The consensus problems of multi-agents with time-varying delays and switching topologies are studied. First, assume that an agent receives state information from its neighbors with fixed communication delays and processes its own state information with time-varying self-delay respectively. The state time-delay feedback is introduced into the existing consensus protocol to begenerate an improved protocol. Then a sufficient condition is derived which can make the system with time-varying self-delays achieve the consensus. On this basis, a specific form of consensus equilibrium influenced by the initial states of agents, time-delays and state feedback intensity is figured out. In addition, the multi-agent consensus is considered with time-varying topologies. Finally, simulations are presented to il ustrate the validity of theoretical results.展开更多
In recent years cooperative diversity has been widely used in wireless networks. In particular, cooperative communication with a single relay is a simple, practical technology for wireless sensor networks. In this pap...In recent years cooperative diversity has been widely used in wireless networks. In particular, cooperative communication with a single relay is a simple, practical technology for wireless sensor networks. In this paper, we analyze several simple network topologies. Under the condition of equal power allocating, the optimum relay location of each network topology are respectively made sure by using symbol error rate (SER) formula. And these types of topologies are compared, the analysis results show that, linear network topology has the best system performance, the system performance of isosceles triangle topology is better than that of equilateral triangle topology.展开更多
This paper investigates the time-varying formation problem for general linear multi-agent systems using distributed event-triggered control strategy.Different from the previous works,to achieve the desired time-varyin...This paper investigates the time-varying formation problem for general linear multi-agent systems using distributed event-triggered control strategy.Different from the previous works,to achieve the desired time-varying formation,a distributed control scheme is designed in an event-triggered way,in which for each agent the controller is triggered only at its own event times.The interaction topology among agents is assumed to be switching.The common Lyapunov function as well as Riccati inequality is applied to solve the time-varying formation problem.Moreover,the Zeno behavior of triggering time sequences can be excluded for each agent.Finally,a simulation example is presented to illustrate the effectiveness of the theoretical results.展开更多
The 802.15.4 Wireless Sensor Networks (WSN) becomes more economical, feasible and sustainable for new generation communication environment, however their limited resource constraints such as limited power capacity mak...The 802.15.4 Wireless Sensor Networks (WSN) becomes more economical, feasible and sustainable for new generation communication environment, however their limited resource constraints such as limited power capacity make them difficult to detect and defend themselves against variety of attacks. The radio interference attacks that generate for WSN at the Physical Layer cannot be defeated through conventional security mechanisms proposed for 802.15.4 standards. The first section introduces the deployment model of two-tier hierarchical cluster topology architecture and investigates different jamming techniques proposed for WSN by creating specific classification of different types of jamming attacks. The following sections expose the mitigation techniques and possible built-in mechanisms to mitigate the link layer jamming attacks on proposed two-tier hierarchical clustered WSN topology. The two-tier hierarchical cluster based topology is investigated based on contention based protocol suite through OPNET simulation scenarios.展开更多
This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynami...This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.展开更多
The long delay spreads and significant Doppler effects of underwater acoustic(UWA)channels make the design of the UWA communication system more challenging.In this paper,we propose a learning-based end-to-end framewor...The long delay spreads and significant Doppler effects of underwater acoustic(UWA)channels make the design of the UWA communication system more challenging.In this paper,we propose a learning-based end-to-end framework for UWA communications,leveraging a double feature extraction network(DFEN)for data preprocessing.The DFEN consists of an attentionbased module and a mixer-based module for channel feature extraction and data feature extraction,respectively.Considering the diverse nature of UWA channels,we propose a stack-network with a two-step training strategy to enhance generalization.By avoiding the use of pilot information,the proposed network can learn data mapping that is robust to UWA channels.Evaluation results show that our proposed algorithm outperforms the baselines by at least 2 dB under bit error rate(BER)10^(−2)on the simulation channel,and surpasses the compared neural network by at least 5 dB under BER 5×10^(−2)on the experiment channels.展开更多
There are many interesting flocking phenomena in nature,such as joint predation and group migration,and the intrinsic communication patterns of flocking are essential for studying group behavior.Traditional models of ...There are many interesting flocking phenomena in nature,such as joint predation and group migration,and the intrinsic communication patterns of flocking are essential for studying group behavior.Traditional models of communication such as the pigeon flock model and the wolf pack model define all agents within a perceptual distance as the neighborhoods,and some models have fixed communicating numbers.There is a significant impact on the quality of the flocking formation when encountering poor initial state of the flocking,multiple obstacles,or loss of certain agents.To solve this problem,this paper proposes a local communication model with nearest agents in four directions.Based on this model and behavioral method,two distributed flocking formation algorithms are designed in this paper for different scenarios,namely the flocking algorithm and the circular formation algorithm.Numerical simulation results show that the flocking can pass through the obstacle area and re-formation smoothly,and also the formation quality of the flocking is better compared with the traditional communication model.展开更多
A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communicat...A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communication topologies and time-varying delays among the underwater sensors is investigated.This is accomplished by first dividing the communication topology into two different switching parts,i.e.,velocity and position,to reduce the data capacity per data package sent between the multi-AUVs in the ocean.Then,the state feedback linearization is used to simplify and rewrite the complex nonlinear and coupled mathematical model of the AUVs into a double-integrator dynamic model.Consequently,coordinate control of the multi-AUVs is regarded as an approximating consensus problem with various time-varying delays and velocity and position topologies.Considering these factors,sufficient conditions of consensus control are proposed and analyzed and the stability of the multi-AUVs is proven by Lyapunov-Krasovskii theorem.Finally,simulation results that validate the theoretical results are presented.展开更多
In this paper, a distributed control scheme has been developed for consensus of single integrator multi-agent systems with directed fixed communication topology for arbitrarily large constant, time-varying or distribu...In this paper, a distributed control scheme has been developed for consensus of single integrator multi-agent systems with directed fixed communication topology for arbitrarily large constant, time-varying or distributed communication delays. It is proved that the closed loop control system can reach consensus with an exponential convergence rate if and only if the topology is quasi-strongly connected. Simulation results are also provided to demonstrate the effectiveness of the proposed controller.展开更多
Compared with traditional consensus,this paper studies the generalized consensus problem for discrete-time multi-agent systems with directed topology and communication delay.Novel distributed consensus protocols with ...Compared with traditional consensus,this paper studies the generalized consensus problem for discrete-time multi-agent systems with directed topology and communication delay.Novel distributed consensus protocols with and without communication delay are designed.Based on the analysis of error dynamical system and graph theory,the generalized consensus is globally asymptotically achieved under suitable conditions without changing the zero row-sums property of Laplacian matrix in networks.Moreover,the sufficient conditions for generalized consensus of communication delay are obtained under directed connections.Finally,some simulations have been provided to verify the theoretical results.展开更多
A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stoc...A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stochastic multi-hop timevarying delays,and actuator faults are considered,which may lead to system performance degradation or on certain occasions even cause system instability.Firstly,the estimator of actuator faults for the following vehicle is designed to identify the actuator faults under a fixed topology.Then the CDFT control protocol and trajectory following error are derived by the relevant content of Lyapunov stability theory,the graph theory,and the matrix theory.The CDFT control protocol is proposed in the same manner,where a more realistic scenario is considered,in which the maximum trajectory following error and information on the switching topologies during the cooperative attack are available.Finally,numerical simulation are carried out to indicate that the proposed distributed fault-tolerant(DFT)control law is effective.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71871079,72271076,71971075,and 71671059)the Anhui Provincial Natural Science Foundation,China(Grant No.1808085MG213).
文摘To address the optimization problem of communication topology for persistent formation in the case of communication faults such as link interruption,transmitter failure,and receiver failure a two-stage model including fast reconstruction of communication topology and re-optimization of communication topology is constructed.Then,a fast reconstruction algorithm of communication topology for persistent formation(FRA-CT-PF),based on optimally rigid graph,arc addition operation,and path reversal operation,is proposed,which can quickly generate a feasible reconstructed communication topology after communication faults,thus ensuring the safety of the agents and maintaining the formation shape of persistent formation.Furthermore,a re-optimization algorithm of communication topology for persistent formation(ROA-CTPF),based on agent position exchange,is proposed,which can further obtain a reoptimized communication topology to minimize the formation communication cost while still maintaining the formation shape of persistent formation.The time complexities of these two algorithms are also analyzed.Finally,the effectiveness of the above algorithms is verified by numerical experiments.Compared with existing algorithms,FRA-CT-PF can always obtain feasible reconstructed communication topology in much less time under all communication fault scenarios,and ROA-CT-PF can obtain a reoptimized communication topology to further reduce the formation communication cost in a shorter time.
文摘The cooperative localization(CL)is affected by the communication topology among the platforms.Based on the unscented Kalman filtering,the distributed CL(DCL)oriented to the unpredicted communication topology is investigated.To improve the adaptability,the character of the look-up Cholesky decomposition is exploited for the covariance matrix decomposing.Then,the distributed U transformation can be dynamically implemented according to the available communication topology.In the proposed algorithm,the global information is not required for the individual,and only the available information from the neighbor is used.Each platform’s state can be estimated independently.The error covariance of the state estimates can be updated in the single platform.The algorithm is adaptive to any serial communication topologies where the measuring to the measured platform is a starting path.The applicability of the proposed algorithm to unpredicted communication topology is improved,remaining equivalent localization performance to free connection communication.
基金supported by the National Natural Science Foundation of China(No.60674050,60736022,10972002,60774089,60704039)
文摘This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.
基金supported by the National Natural Science Foundation of China(62003363,61703411)China Postdoctoral Science Foundation(271004)+1 种基金Science Foundation for Distinguished Youth of Shaanxi Province(2021JC-35)Youth Science Foundation of Shaanxi Province(2021JQ-375)。
文摘This paper investigates limited-budget consensus design and analysis problems of general high-order multiagent systems with intermittent communications and switching topologies.The main contribution of this paper is that the tradeoff design between the energy consumption and the consensus performance can be realized while achieving leaderless or leaderfollowing consensus,under constraints of limited budgets and intermittent communications.Firstly,a new intermittent limitedbudget consensus control protocol with a practical trade-off design index is proposed,where the total budget of the whole multiagent system is limited.Then,leaderless limited-budget consensus design and analysis criteria are derived,in which the matrix variables of linear matrix inequalities are determined according to the total budget and the practical trade-off design parameters.Meanwhile,an explicit formulation of the consensus function is derived to describe the consensus state trajectory of the whole system.Moreover,a new two-stage transformation strategy is utilized for leader-following cases,by which the dynamics decomposition of leaderless and leader-following cases can be converted into a unified framework,and sufficient conditions of the leader-following limited-budget consensus design and analysis are determined via those of the leaderless cases.Finally,numerical simulations are given to illustrate theoretical results.
基金supported in part by the Australian Research Council Discovery Project(DP160103567)the program of Jiangsu Specially-Appointed Professor(RK043STP19001)+1 种基金the fund of high-level talents at NJUPT(XK0430919039)the fund of scientific and technological innovation projects for overseas students in Nanjing(RK043NLX19004)。
文摘This paper addresses the problem of distributed secondary control for islanded AC microgrids with external disturbances.By using a full-order sliding-mode(FOSM)approach,voltage regulation and frequency restoration are achieved in finite time.For voltage regulation,a distributed observer is proposed for each distributed generator(DG)to estimate a reference voltage level.Different from some conventional observers,the reference voltage level in this paper is accurately estimated under directed communication topologies.Based on the observer,a new nonlinear controller is designed in a backstepping manner such that an FOSM surface is reached in finite time.On the surface,the voltages of DGs are regulated to the reference level in finite time.For frequency restoration,a distributed controller is further proposed such that a constructed FOSM surface is reached in finite time,on which the frequencies of DGs are restored to a reference level in finite time under directed communication topologies.Finally,case studies on a modified IEEE 37-bus test system are conducted to demonstrate the effectiveness,the robustness against load changes,and the plug-and-play capability of the proposed controllers.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60904046, 60972164, 60974071, and 60804006)the Special Fund for Basic Scientific Research of Central Colleges, Northeastern University, China (Grant No. 090604005)+2 种基金the Science and Technology Program of Shenyang (Grant No. F11-264-1-70)the Program for Liaoning Excellent Talents in University (Grant No. LJQ2011137)the Program for Liaoning Innovative Research Team in University (Grant No. LT2011019)
文摘The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time- varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method.
基金supported by the National Natural Science Foundation of China(Grant No.61104086)the Scientific Research,Postgraduate Training Joint-Build Project(Grant No.20120639002)the China Scholarship Council(Grant No.201306030027)
文摘This paper studies the multi-agent tracking problem of a third-order maneuvering target under uncertain communication environments. Each tracking agent is assumed to be a third-order system and can only use its own and neighbors' position, velocity, and acceleration information to design its control input. In this work, the uncertain communication environments are modelled by a finite number of constant Laplacian matrices together with their corresponding scheduling functions. Sufficient conditions for the existence of a tracking strategy have been expressed in terms of the solvability of linear matrix inequalities. Finally, a numerical example is employed to demonstrate the effectiveness of the proposed tracking strategy.
基金supported in by National Natural Science Foundation of China(No.62003054,52372406)Key Research and Development Program of Shaanxi Province(Nos.2023-YBGY398)Fundamental Research Funds for the Central Universities(No.300102320109)。
文摘Due to the limited bandwidth and transmission congestion of the vehicle platoon's communication,it is inevitable to induce time delay,which significantly degrades the control performance of the vehicle platoon,even resulting in instability.This paper focuses on analyzing the internal stability under generic communication topologies and presents a method of computing the exact time delay margin(ETDM).The proposed method can offer a necessary and sufficient internal stability condition with no conservatism.Firstly,to reduce the analytical complexity and computational burden elegantly,we decompose the closed-loop platoon dynamics into a set of individual subsystems via similarity transformation and matrix factorization.This decomposition approach is applicable for any general communication topology.Secondly,an explicit formula is deduced to compute the ETDM by surveying the characteristic roots'distribution of all these individual subsystems.It is further demonstrated that only the positive purely imaginary roots need to be considered to compute the ETDM.Finally,simulations are conducted to demonstrate the effectiveness of the theoretical claims.
基金supported by the National Basic Research Program of China (973 Program No.2012CB316100)
文摘The fifth generation(5G) network is expected to support significantly large amount of mobile data traffic and huge number of wireless connections,to achieve better spectrum- and energy-efficiency,as well as quality of service(QoS) in terms of delay,reliability and security.Furthermore,the 5G network shall also incorporate high mobility requirements as an integral part,providing satisfactory service to users travelling at a speed up to 500 km/h.This paper provides a survey of potential high mobility wireless communication(HMWC) techniques for 5G network.After discussing the typical requirements and challenges of HMWC,key techniques to cope with the challenges are reviewed,including transmission techniques under the fast timevarying channels,network architecture with mobility support,and mobility management.Finally,future research directions on 5G high mobility communications are given.
基金supported by the National Natural Science Foundation of China(6087405361034006)
文摘The consensus problems of multi-agents with time-varying delays and switching topologies are studied. First, assume that an agent receives state information from its neighbors with fixed communication delays and processes its own state information with time-varying self-delay respectively. The state time-delay feedback is introduced into the existing consensus protocol to begenerate an improved protocol. Then a sufficient condition is derived which can make the system with time-varying self-delays achieve the consensus. On this basis, a specific form of consensus equilibrium influenced by the initial states of agents, time-delays and state feedback intensity is figured out. In addition, the multi-agent consensus is considered with time-varying topologies. Finally, simulations are presented to il ustrate the validity of theoretical results.
文摘In recent years cooperative diversity has been widely used in wireless networks. In particular, cooperative communication with a single relay is a simple, practical technology for wireless sensor networks. In this paper, we analyze several simple network topologies. Under the condition of equal power allocating, the optimum relay location of each network topology are respectively made sure by using symbol error rate (SER) formula. And these types of topologies are compared, the analysis results show that, linear network topology has the best system performance, the system performance of isosceles triangle topology is better than that of equilateral triangle topology.
基金Project supported by the National Natural Science Foundation of China(Grant No.11701138)the Natural Science Foundation of Hebei Province,China(Grant Nos.F2017202009 and F2018202075)
文摘This paper investigates the time-varying formation problem for general linear multi-agent systems using distributed event-triggered control strategy.Different from the previous works,to achieve the desired time-varying formation,a distributed control scheme is designed in an event-triggered way,in which for each agent the controller is triggered only at its own event times.The interaction topology among agents is assumed to be switching.The common Lyapunov function as well as Riccati inequality is applied to solve the time-varying formation problem.Moreover,the Zeno behavior of triggering time sequences can be excluded for each agent.Finally,a simulation example is presented to illustrate the effectiveness of the theoretical results.
文摘The 802.15.4 Wireless Sensor Networks (WSN) becomes more economical, feasible and sustainable for new generation communication environment, however their limited resource constraints such as limited power capacity make them difficult to detect and defend themselves against variety of attacks. The radio interference attacks that generate for WSN at the Physical Layer cannot be defeated through conventional security mechanisms proposed for 802.15.4 standards. The first section introduces the deployment model of two-tier hierarchical cluster topology architecture and investigates different jamming techniques proposed for WSN by creating specific classification of different types of jamming attacks. The following sections expose the mitigation techniques and possible built-in mechanisms to mitigate the link layer jamming attacks on proposed two-tier hierarchical clustered WSN topology. The two-tier hierarchical cluster based topology is investigated based on contention based protocol suite through OPNET simulation scenarios.
基金supported in part by the National Natural Science Foundation of China(51939001,61976033,62273072)the Natural Science Foundation of Sichuan Province (2022NSFSC0903)。
文摘This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China under Grant U23A20281 and Grant 62271427Key Science and Technology Project of Fujian Province under Grant 2023H0001the Natural Science Foundation of Xiamen under Grant 3502Z20227177.
文摘The long delay spreads and significant Doppler effects of underwater acoustic(UWA)channels make the design of the UWA communication system more challenging.In this paper,we propose a learning-based end-to-end framework for UWA communications,leveraging a double feature extraction network(DFEN)for data preprocessing.The DFEN consists of an attentionbased module and a mixer-based module for channel feature extraction and data feature extraction,respectively.Considering the diverse nature of UWA channels,we propose a stack-network with a two-step training strategy to enhance generalization.By avoiding the use of pilot information,the proposed network can learn data mapping that is robust to UWA channels.Evaluation results show that our proposed algorithm outperforms the baselines by at least 2 dB under bit error rate(BER)10^(−2)on the simulation channel,and surpasses the compared neural network by at least 5 dB under BER 5×10^(−2)on the experiment channels.
基金Jilin Province Development and Reform Commission under Grant[2020C018-2]Jilin Province Key R&D Plan Project under Grant[20200401113GX].
文摘There are many interesting flocking phenomena in nature,such as joint predation and group migration,and the intrinsic communication patterns of flocking are essential for studying group behavior.Traditional models of communication such as the pigeon flock model and the wolf pack model define all agents within a perceptual distance as the neighborhoods,and some models have fixed communicating numbers.There is a significant impact on the quality of the flocking formation when encountering poor initial state of the flocking,multiple obstacles,or loss of certain agents.To solve this problem,this paper proposes a local communication model with nearest agents in four directions.Based on this model and behavioral method,two distributed flocking formation algorithms are designed in this paper for different scenarios,namely the flocking algorithm and the circular formation algorithm.Numerical simulation results show that the flocking can pass through the obstacle area and re-formation smoothly,and also the formation quality of the flocking is better compared with the traditional communication model.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51679057,51309067,and 51609048)the Outstanding Youth Science Foundation of Heilongjiang Providence of China(Grant No.JC2016007)the Natural Science Foundation of Heilongjiang Province,China(Grant No.E2016020)
文摘A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communication topologies and time-varying delays among the underwater sensors is investigated.This is accomplished by first dividing the communication topology into two different switching parts,i.e.,velocity and position,to reduce the data capacity per data package sent between the multi-AUVs in the ocean.Then,the state feedback linearization is used to simplify and rewrite the complex nonlinear and coupled mathematical model of the AUVs into a double-integrator dynamic model.Consequently,coordinate control of the multi-AUVs is regarded as an approximating consensus problem with various time-varying delays and velocity and position topologies.Considering these factors,sufficient conditions of consensus control are proposed and analyzed and the stability of the multi-AUVs is proven by Lyapunov-Krasovskii theorem.Finally,simulation results that validate the theoretical results are presented.
文摘In this paper, a distributed control scheme has been developed for consensus of single integrator multi-agent systems with directed fixed communication topology for arbitrarily large constant, time-varying or distributed communication delays. It is proved that the closed loop control system can reach consensus with an exponential convergence rate if and only if the topology is quasi-strongly connected. Simulation results are also provided to demonstrate the effectiveness of the proposed controller.
基金the National Science Foundation of China under Grant No.61772013the Natural Science Foundation of Jiangsu Province under Grant No.BK20181342。
文摘Compared with traditional consensus,this paper studies the generalized consensus problem for discrete-time multi-agent systems with directed topology and communication delay.Novel distributed consensus protocols with and without communication delay are designed.Based on the analysis of error dynamical system and graph theory,the generalized consensus is globally asymptotically achieved under suitable conditions without changing the zero row-sums property of Laplacian matrix in networks.Moreover,the sufficient conditions for generalized consensus of communication delay are obtained under directed connections.Finally,some simulations have been provided to verify the theoretical results.
基金supported by the National Natural Science Foundation of China(61773387)the China Postdoctoral Fund(2016M5909712017T100770)。
文摘A consensus-distributed fault-tolerant(CDFT)control law is proposed for a class of leader-following multi-vehicle cooperative attack(MVCA)systems in this paper.In particular,the switching communication topologies,stochastic multi-hop timevarying delays,and actuator faults are considered,which may lead to system performance degradation or on certain occasions even cause system instability.Firstly,the estimator of actuator faults for the following vehicle is designed to identify the actuator faults under a fixed topology.Then the CDFT control protocol and trajectory following error are derived by the relevant content of Lyapunov stability theory,the graph theory,and the matrix theory.The CDFT control protocol is proposed in the same manner,where a more realistic scenario is considered,in which the maximum trajectory following error and information on the switching topologies during the cooperative attack are available.Finally,numerical simulation are carried out to indicate that the proposed distributed fault-tolerant(DFT)control law is effective.