期刊文献+
共找到1,267篇文章
< 1 2 64 >
每页显示 20 50 100
Time-variant fragility analysis of the bridge system considering time-varying dependence among typical component seismic demands 被引量:6
1
作者 Song Shuai Qian Yongjiu +2 位作者 Liu Jing Xie Xiaorui Wu Gang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第2期363-377,共15页
This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Bas... This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Based on material deterioration mechanisms and incremental dynamic analysis, the time-evolving seismic demands of components were obtained in the form of marginal probability distributions. The time-varying dependences among bridge components were then captured with the best fitting copula function, which was selected from the commonly used copula classes by the empirical distribution based analysis method. The system time-variant fragility curves at different damage states were developed and the effects of time-varying dependences among components on the bridge system fragility were investigated. The results indicate the time-varying dependence among components significantly affects the time-variant fragility of the bridge system. The copula technique captures the nonlinear dependence among component seismic demands accurately and easily by separating the marginal distributions and the dependence among them. 展开更多
关键词 system FRAGILITY CHLORIDE corrosion time-varying DEPENDENCE COPULA function probabilistic seismic demand
下载PDF
Finite-time Prescribed Performance Time-Varying Formation Control for Second-Order Multi-Agent Systems With Non-Strict Feedback Based on a Neural Network Observer 被引量:1
2
作者 Chi Ma Dianbiao Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1039-1050,共12页
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli... This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm. 展开更多
关键词 Finite-time control multi-agent systems neural network prescribed performance control time-varying formation control
下载PDF
Complementary-Label Adversarial Domain Adaptation Fault Diagnosis Network under Time-Varying Rotational Speed and Weakly-Supervised Conditions
3
作者 Siyuan Liu Jinying Huang +2 位作者 Jiancheng Ma Licheng Jing Yuxuan Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期761-777,共17页
Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the mac... Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method. 展开更多
关键词 time-varying rotational speed weakly-supervised fault diagnosis domain adaptation
下载PDF
On the Application of Mixed Models of Probability and Convex Set for Time-Variant Reliability Analysis
4
作者 Fangyi Li Dachang Zhu Huimin Shi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1981-1999,共19页
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems... In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem. 展开更多
关键词 Mixed uncertainty probability model convex model time-variant reliability analysis
下载PDF
Semi-supervised learning based hybrid beamforming under time-varying propagation environments
5
作者 Yin Long Hang Ding Simon Murphy 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1168-1177,共10页
Hybrid precoding is considered as a promising low-cost technique for millimeter wave(mm-wave)massive Multi-Input Multi-Output(MIMO)systems.In this work,referring to the time-varying propagation circumstances,with semi... Hybrid precoding is considered as a promising low-cost technique for millimeter wave(mm-wave)massive Multi-Input Multi-Output(MIMO)systems.In this work,referring to the time-varying propagation circumstances,with semi-supervised Incremental Learning(IL),we propose an online hybrid beamforming scheme.Firstly,given the constraint of constant modulus on analog beamformer and combiner,we propose a new broadnetwork-based structure for the design model of hybrid beamforming.Compared with the existing network structure,the proposed network structure can achieve better transmission performance and lower complexity.Moreover,to enhance the efficiency of IL further,by combining the semi-supervised graph with IL,we propose a hybrid beamforming scheme based on chunk-by-chunk semi-supervised learning,where only few transmissions are required to calculate the label and all other unlabelled transmissions would also be put into a training data chunk.Unlike the existing single-by-single approach where transmissions during the model update are not taken into the consideration of model update,all transmissions,even the ones during the model update,would make contributions to model update in the proposed method.During the model update,the amount of unlabelled transmissions is very large and they also carry some information,the prediction performance can be enhanced to some extent by these unlabelled channel data.Simulation results demonstrate the spectral efficiency of the proposed method outperforms that of the existing single-by-single approach.Besides,we prove the general complexity of the proposed method is lower than that of the existing approach and give the condition under which its absolute complexity outperforms that of the existing approach. 展开更多
关键词 Hybrid beamforming time-varying environments Broad network Semi-supervised learning Online learning
下载PDF
Time-dependent model for two-phase flow in ultra-high water-cut reservoirs:Time-varying permeability and relative permeability
6
作者 Shao-Chun Wang Na Zhang +3 位作者 Zhi-Hao Tang Xue-Fei Zou Qian Sun Wei Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2536-2553,共18页
For the ultra-high water-cut reservoirs,after long-term water injection exploitation,the physical properties of the reservoir change and the heterogeneity of the reservoir becomes increasingly severe,which further agg... For the ultra-high water-cut reservoirs,after long-term water injection exploitation,the physical properties of the reservoir change and the heterogeneity of the reservoir becomes increasingly severe,which further aggravates the spatial difference of the flow field.In this study,the displacement experiments were employed to investigate the variations in core permeability,porosity,and relative permeability after a large amount of water injection.A relative permeability endpoint model was proposed by utilizing the alternating conditional expectation(ACE)transformation to describe the variation in relative permeability based on the experimental data.Based on the time dependent models for permeability and relative permeability,the traditional oil-water two-phase model was improved and discretized using the mimetic finite difference method(MFD).The two cases were launched to confirm the validation of the proposed model.The impact of time-varying physical features on reservoir production performance was studied in a real water flooding reservoir.The experimental results indicate that the overall relative permeability curve shifts to the right as water injection increases.This shift corresponds to a transition towards a more hydrophilic wettability and a decrease in residual oil saturation.The endpoint model demonstrates excellent accuracy and can be applied to time-varying simulations of reservoir physics.The impact of variations in permeability and relative permeability on the reservoir production performance yields two distinct outcomes.The time-varying permeability of the reservoir results in intensified water channeling and poor development effects.On the other hand,the time-varying relative permeability enhances the oil phase seepage capacity,facilitating oil displacement.The comprehensive time-varying behavior is the result of the combined influence of these two parameters,which closely resemble the actual conditions observed in oil field exploitation.The time-varying simulation technique of reservoir physical properties proposed in this paper can continuously and stably characterize the dynamic changes of reservoir physical properties during water drive development.This approach ensures the reliability of the simulation results regarding residual oil distribution. 展开更多
关键词 Mimetic finite difference Water flooding reservoir time-varying physical properties Numerical simulation
下载PDF
Nuclear magnetic resonance experiments on the time-varying law of oil viscosity and wettability in high-multiple waterflooding sandstone cores
7
作者 JIA Hu ZHANG Rui +2 位作者 LUO Xianbo ZHOU Zili YANG Lu 《Petroleum Exploration and Development》 SCIE 2024年第2期394-402,共9页
A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in por... A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability. 展开更多
关键词 SANDSTONE high-multiple waterflooding nuclear magnetic resonance oil viscosity rock wettability time-varying law
下载PDF
Numerical Simulation of Slurry Diffusion in Fractured Rocks Considering a Time-Varying Viscosity
8
作者 Lei Zhu Bin Liu +3 位作者 Xuewei Liu Wei Deng Wenjie Yao Ying Fan 《Fluid Dynamics & Materials Processing》 EI 2024年第2期401-427,共27页
To analyze the effects of a time-varying viscosity on the penetration length of grouting,in this study cement slur-ries with varying water-cement ratios have been investigated using the Bingham’sfluidflow equation and ... To analyze the effects of a time-varying viscosity on the penetration length of grouting,in this study cement slur-ries with varying water-cement ratios have been investigated using the Bingham’sfluidflow equation and a dis-crete element method.Afluid-solid coupling numerical model has been introduced accordingly,and its accuracy has been validated through comparison of theoretical and numerical solutions.For different fracture forms(a single fracture,a branch fracture,and a fracture network),the influence of the time-varying viscosity on the slurry length range has been investigated,considering the change in the fracture aperture.The results show that under different fracture forms and the same grouting process conditions,the influence of the time-varying viscosity on the seepage length is 0.350 m. 展开更多
关键词 time-varying viscosity binghamfluids UDEC numerical simulation grout penetration length aperture
下载PDF
Adaptive Event-Triggered Time-Varying Output Group Formation Containment Control of Heterogeneous Multiagent Systems
9
作者 Lihong Feng Bonan Huang +2 位作者 Jiayue Sun Qiuye Sun Xiangpeng Xie 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1398-1409,共12页
In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number... In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results. 展开更多
关键词 Adaptive control event-triggered mechanisms for-mation containment(FC) heterogeneous multiagent systems time-varying group formation.
下载PDF
Set-Membership Filtering Approach to Dynamic Event-Triggered Fault Estimation for a Class of Nonlinear Time-Varying Complex Networks
10
作者 Xiaoting Du Lei Zou Maiying Zhong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期638-648,共11页
The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ... The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator. 展开更多
关键词 Dynamic event-triggered mechanism(DETM) fault estimation nonlinear time-varying complex networks set-member-ship filtering unknown input observer
下载PDF
Identification of time-varying system and energy-based optimization of adaptive control in seismically excited structure
11
作者 Elham Aghabarari Fereidoun Amini Pedram Ghaderi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期227-240,共14页
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ... The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems. 展开更多
关键词 integrated online identification time-varying systems structural energy multiple forgetting factor recursive least squares optimal simple adaptive control algorithm
下载PDF
Time-varying parameters estimation with adaptive neural network EKF for missile-dual control system
12
作者 YUAN Yuqi ZHOU Di +1 位作者 LI Junlong LOU Chaofei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期451-462,共12页
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST... In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model. 展开更多
关键词 long-short-term memory(LSTM)neural network extended Kalman filter(EKF) rolling training time-varying parameters estimation missile dual control system
下载PDF
Time-Varying Mesh Stiffness Calculation and Dynamic Modeling of Spiral Bevel Gear with Spalling Defects
13
作者 Keyuan Li Baijie Qiao +2 位作者 Heng Fang Xiuyue Yang Xuefeng Chen 《Journal of Dynamics, Monitoring and Diagnostics》 2024年第2期143-155,共13页
Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteris... Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteristics of the gear system,which further increases noise and vibration.This paper aims to calculate the TVMS and establish dynamic model of SBG with spalling defect.In this study,a novel analytical model based on slice method is proposed to calculate the TVMS of SBG considering spalling defect.Subsequently,the influence of spalling defect on the TVMS is studied through a numerical simulation,and the proposed analytical model is verified by a finite element model.Besides,an 8-degrees-of-freedom dynamic model is established for SBG transmission system.Incorporating the spalling defect into TVMS,the dynamic responses of spalled SBG are analyzed.The numerical results indicate that spalling defect would cause periodic impact in time domain.Finally,an experiment is designed to verify the proposed dynamic model.The experimental results show that the spalling defect makes the response characterized by periodic impact with the rotating frequency of spalled pinion. 展开更多
关键词 dynamic modeling slice method SPALLING spiral bevel gear time-varying mesh stiffness(TVMS)
下载PDF
DAMAGE CLASSIFICATION BY PROBABILISTIC NEURAL NETWORKS BASED ON LATENT COMPONENTS FOR TIME-VARYING SYSTEM 被引量:1
14
作者 袁健 周燕 吕欣 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期259-267,共9页
A new approach to damage classification for health monitoring of a time-varylng system is presented. The functional-series time-dependent auto regressive moving average (FS-TARMA) time series model is applied to the... A new approach to damage classification for health monitoring of a time-varylng system is presented. The functional-series time-dependent auto regressive moving average (FS-TARMA) time series model is applied to the vibration signal observed in the time-varying system for estimating the TAR/TMA parameters and the innovation variance. These parameters are the functions of the time, represented by a group of projection coefficients on the certain functional subspace with specific basis functions. The estimated TAR/TMA parameters and the innovation variance are further used to calculate the latent components (LCs) as the more informative data for health monitoring evaluation, based on an eigenvalue decomposition technique. LCs are then combined and reduced to numerical values (NVs) as feature sets, which are input to a probabilistic neural network (PNN) for the damage classification. For the evaluation of the proposed method, numerical simulations of the damage classification for a tlme-varylng system are used, in which different classes of damage are modeled by the mass or stiffness reductions. It is demonstrated that the method can identify the damages in the course of operation and the change of parameters on the time-varying background of the system. 展开更多
关键词 damage detection time-varying system feature extraction/reduction probabilistic neural networks
下载PDF
New criterion for delay-dependent absolute stability of Lurie system with interval time-varying delay 被引量:1
15
作者 薛明香 费树岷 +1 位作者 李涛 潘俊涛 《Journal of Southeast University(English Edition)》 EI CAS 2011年第4期375-378,共4页
The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the rec... The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach. 展开更多
关键词 Lurie system reciprocal convex technique absolute stability interval time-varying delay linear matrix inequality (LMI)
下载PDF
Stability analysis of time-varying systems via parameter-dependent homogeneous Lyapunov functions
16
作者 张化生 张侃健 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期302-305,共4页
This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentia... This paper considers the stability analysis of linear continuous-time systems, and that the dynamic matrices are affected by uncertain time-varying parameters, which are assumed to be bounded, continuously differentiable, with bounded rates of variation. First, sufficient conditions of stability for time-varying systems are given by the commonly used parameter-dependent quadratic Lyapunov function. Moreover, the use of homogeneous polynomial Lyapunov functions for the stability analysis of the linear system subject to the time-varying parametric uncertainty is introduced. Sufficient conditions to determine the sought after Lyapunov function is derived via a suitable paramenterization of polynomial homogeneous forms. A numerical example is given to illustrate that the stability conditions are less conservative than similar tests in the literature. 展开更多
关键词 linear time-varying systems polytopic uncertainty robust stability linear matrix inequality
下载PDF
Time-varying Sliding Mode Controls in Rigid Spacecraft Attitude Tracking 被引量:19
17
作者 靳永强 刘向东 +1 位作者 邱伟 侯朝桢 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第4期352-360,共9页
To solve the problem of attitude tracking of a rigid spacecraft with an either known or measurable desired attitude trajectory, three types of time-varying sliding mode controls are introduced under consideration of c... To solve the problem of attitude tracking of a rigid spacecraft with an either known or measurable desired attitude trajectory, three types of time-varying sliding mode controls are introduced under consideration of control input constraints. The sliding surfaces of the three types initially pass arbitrary initial values of the system, and then shift or rotate to reach predetermined ones. This way, the system trajectories are always on the sliding surfaces, and the system work is guaranteed to have robustness against parameter uncertainty and external disturbances all the time. The controller parameters are optimized by means of genetic algorithm to minimize the index consisting of the weighted index of squared error (ISE) of the system and the weighted penalty term of violation of control input constraint. The stability is verified with Lyapunov method. Compared with the conventional sliding mode control, simulation results show the proposed algorithm having better robustness against inertia matrix uncertainty and external disturbance torques. 展开更多
关键词 attitude tracking control time-varying sliding mode control input constraint genetic algorithm
下载PDF
Preliminary inquiry into the causes of anomaly increase of air temperature by an impending earthquake 被引量:13
18
作者 徐秀登 徐向民 +1 位作者 马升灯 骆高远 《Acta Seismologica Sinica(English Edition)》 CSCD 1995年第1期149-154,共6页
In this paper, the causes of the occurrence of the temperature increase by an impending earthquake of low altitude atmosphere and on the ground surface have been preliminarily expounded through several simulative cont... In this paper, the causes of the occurrence of the temperature increase by an impending earthquake of low altitude atmosphere and on the ground surface have been preliminarily expounded through several simulative controlexperiments. Air polarized by the anomalous atmospheric static electric field is regarded as the primary factor tocreate air temperature increase to a large degree and over a large area in the sunlight. In addition, another causeis considered as the temperature increase effect of “polluted” air. 展开更多
关键词 impending earthquake anomaly atmospheric electric field
下载PDF
Regional Prediction of Impending Debris Flow Based on Doppler Weather Radar 被引量:3
19
作者 JIANG Yuhong WEI Fangqiang +3 位作者 ZHANG Jinghong GU Linkang DENG Bo LIU Hongjiang 《Wuhan University Journal of Natural Sciences》 CAS 2007年第4期627-632,共6页
Debris flow prediction is one of the important means to reduce the loss caused by debris flow. This paper built a regional prediction model of impending debris flow based on regional environmental background (includi... Debris flow prediction is one of the important means to reduce the loss caused by debris flow. This paper built a regional prediction model of impending debris flow based on regional environmental background (including topography, geology, land use, and etc.), rainfall and debris flow data. A system of regional prediction of impending debris flow was set up on ArcGIS 9.0 platform according to the model. The system used forecast precipitation data of Doppler weather radar and observational precipitation data as its input data. It could provide a prediction about the possibility of debris flow one to three hours before it happened, and was put into use in Liangshan Meteorological Observatory in Sichuan province in the monsoon of 2006. 展开更多
关键词 Doppler weather radar debris flow impending PREDICTION
下载PDF
Gearbox Fault Diagnosis using Adaptive Zero Phase Time-varying Filter Based on Multi-scale Chirplet Sparse Signal Decomposition 被引量:16
20
作者 WU Chunyan LIU Jian +2 位作者 PENG Fuqiang YU Dejie LI Rong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期831-838,共8页
When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To o... When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion. 展开更多
关键词 zero phase time-varying filter MULTI-SCALE CHIRPLET sparse signal decomposition speed-changing gearbox fault diagnosis
下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部