A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, appli...A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, applied force analysis was completed in detail, and single or double tooth meshing states of two gear pairs at any timing were determined according to the meshing characteristic of anti-backlash gear. The influences of friction and variations of damping ratio on dynamic transmission error were analyzed finally by numerical calculation and the results show that anti-backlash gear can increase the composite mesh stiffness comparing with the mesh stiffness of the normal gear pair. At the pitch points where the frictions change their signs, additional impulsive effects are observed. The width of impulsive in the same value of center frequency is wider than that without friction, and the amplitude is lower. When gear pairs mesh in and out, damping can reduce the vibration and impact.展开更多
Deployable/retractable damped cantilever beams are a class of time-varying parametric structures which have attracted considerable research interest due to their many potential applications in the intelligent robot fi...Deployable/retractable damped cantilever beams are a class of time-varying parametric structures which have attracted considerable research interest due to their many potential applications in the intelligent robot field and aerospace.In the present work,the dynamic characteristics of a deployable/retractable damped cantilever beam are investigated experimentally and theoretically.The time-varying damping,as a function of the beam length,is obtained by both the enveloped fitting method and the period decrement method.Furthermore,the governing equation of the deployable/retractable damped cantilever beam is derived by introducing the time-varying damping parameter,and the corresponding closed-form solution and vibration principles are investigated based on the averaged method.The theoretical predictions for transient dynamic responses are in good agreement with the experimental results.The dynamic mechanism analysis on time-varying damping offers flexible technology in mechanical and aerospace fields.展开更多
In this study,we focus on the controllability of fractional-order damped systems in linear and nonlinear cases with multiple time-varying delays in control.For the linear system based on the Mittag-Leffler matrix func...In this study,we focus on the controllability of fractional-order damped systems in linear and nonlinear cases with multiple time-varying delays in control.For the linear system based on the Mittag-Leffler matrix function,we define a controllability Gramian matrix,which is useful in judging whether the system is controllable or not.Furthermore,in two special cases,we present serval equivalent controllable conditions which are easy to verify.For the nonlinear system,under the controllability of its corresponding linear system,we obtain a sufficient condition on the nonlinear term to ensure that the system is controllable.Finally,two examples are given to illustrate the theory.展开更多
A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can ...A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can easily be got by directly solving linear matrixequations rather than structure motion differential equations. Moreover, in order to solve thecorresponding linear matrix equations, the numerical integration fast algorithm is presented. Thenaccording to the results, dynamic design and life-span estimation can be done. Besides, the newalgorithm can solve non-proportion damp structure response.展开更多
The paper demonstrates the possibility to enhance the damping of inter-area oscillations using Wide Area Measurement (WAM) based adaptive supervisory controller (ASC) which considers the wide-area signal transmission ...The paper demonstrates the possibility to enhance the damping of inter-area oscillations using Wide Area Measurement (WAM) based adaptive supervisory controller (ASC) which considers the wide-area signal transmission delays. The paper uses an LMI-based iterative nonlinear optimization algorithm to establish a method of designing state-feedback controllers for power systems with a time-varying delay. This method is based on the delay-dependent stabilization conditions obtained by the improved free weighting matrix (IFWM) approach. In the stabilization conditions, the upper bound of feedback signal’s transmission delays is taken into consideration. Combining theoriesof state feedback control and state observer, the ASC is designed and time-delay output feedback robust controller is realized for power system. The ASC uses the input information from Phase Measurement Units (PMUs) in the system and dispatches supplementary control signals to the available local controllers. The design of the ASC is explained in detail and its performance validated by time domain simulations on a New England test power system (NETPS).展开更多
A time-delay-dependent wide-area damping controller synthesis approach,based on Jensen’s integral inequality and evolution algorithm,is developed to suppress the adverse effect of time delay on the supplemental contr...A time-delay-dependent wide-area damping controller synthesis approach,based on Jensen’s integral inequality and evolution algorithm,is developed to suppress the adverse effect of time delay on the supplemental control of high-voltage direct current(DC)transmission systems.Initially,the state-space model of hybrid AC/DC systems with time delay is derived and the delay-dependent criteria for the stability of the closed-loop system are provided based on Jensen’s integral inequality.Subsequently,initial solutions are randomly generated to overcome the difficulty of solving the nonlinear matrix inequality.Finally,the time-delay stability upper bound of the controller is optimized using the differential evolution algorithm.In comparison to popular time-delay stable controller design methods,such as the free-weighting-matrix approach,the proposed method based on output feedback realization requires fewer decision variables and is more suitable for large-scale hybrid AC/DC systems.Three examples are introduced to verify the effectiveness of the proposed method.展开更多
基金Project(51175505)supported by the National Natural Science Foundation of China
文摘A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, applied force analysis was completed in detail, and single or double tooth meshing states of two gear pairs at any timing were determined according to the meshing characteristic of anti-backlash gear. The influences of friction and variations of damping ratio on dynamic transmission error were analyzed finally by numerical calculation and the results show that anti-backlash gear can increase the composite mesh stiffness comparing with the mesh stiffness of the normal gear pair. At the pitch points where the frictions change their signs, additional impulsive effects are observed. The width of impulsive in the same value of center frequency is wider than that without friction, and the amplitude is lower. When gear pairs mesh in and out, damping can reduce the vibration and impact.
基金Project supported by the National Natural Science Foundation of China(Nos.11672007 and 11832002)the Graduate Technological Innovation Project of Beijing Institute of Technology(No.2017CX10037)。
文摘Deployable/retractable damped cantilever beams are a class of time-varying parametric structures which have attracted considerable research interest due to their many potential applications in the intelligent robot field and aerospace.In the present work,the dynamic characteristics of a deployable/retractable damped cantilever beam are investigated experimentally and theoretically.The time-varying damping,as a function of the beam length,is obtained by both the enveloped fitting method and the period decrement method.Furthermore,the governing equation of the deployable/retractable damped cantilever beam is derived by introducing the time-varying damping parameter,and the corresponding closed-form solution and vibration principles are investigated based on the averaged method.The theoretical predictions for transient dynamic responses are in good agreement with the experimental results.The dynamic mechanism analysis on time-varying damping offers flexible technology in mechanical and aerospace fields.
基金Project supported by the National Natural Science Foundation of China(No.61803386)the Natural Science Foundation of Shanghai,China(No.19ZR1400500)。
文摘In this study,we focus on the controllability of fractional-order damped systems in linear and nonlinear cases with multiple time-varying delays in control.For the linear system based on the Mittag-Leffler matrix function,we define a controllability Gramian matrix,which is useful in judging whether the system is controllable or not.Furthermore,in two special cases,we present serval equivalent controllable conditions which are easy to verify.For the nonlinear system,under the controllability of its corresponding linear system,we obtain a sufficient condition on the nonlinear term to ensure that the system is controllable.Finally,two examples are given to illustrate the theory.
基金This project is supported by National Natural Science Foundation of China (No.59805001)
文摘A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can easily be got by directly solving linear matrixequations rather than structure motion differential equations. Moreover, in order to solve thecorresponding linear matrix equations, the numerical integration fast algorithm is presented. Thenaccording to the results, dynamic design and life-span estimation can be done. Besides, the newalgorithm can solve non-proportion damp structure response.
文摘The paper demonstrates the possibility to enhance the damping of inter-area oscillations using Wide Area Measurement (WAM) based adaptive supervisory controller (ASC) which considers the wide-area signal transmission delays. The paper uses an LMI-based iterative nonlinear optimization algorithm to establish a method of designing state-feedback controllers for power systems with a time-varying delay. This method is based on the delay-dependent stabilization conditions obtained by the improved free weighting matrix (IFWM) approach. In the stabilization conditions, the upper bound of feedback signal’s transmission delays is taken into consideration. Combining theoriesof state feedback control and state observer, the ASC is designed and time-delay output feedback robust controller is realized for power system. The ASC uses the input information from Phase Measurement Units (PMUs) in the system and dispatches supplementary control signals to the available local controllers. The design of the ASC is explained in detail and its performance validated by time domain simulations on a New England test power system (NETPS).
基金supported by the National Key Research and Development Program of China(2016YFB0901001).
文摘A time-delay-dependent wide-area damping controller synthesis approach,based on Jensen’s integral inequality and evolution algorithm,is developed to suppress the adverse effect of time delay on the supplemental control of high-voltage direct current(DC)transmission systems.Initially,the state-space model of hybrid AC/DC systems with time delay is derived and the delay-dependent criteria for the stability of the closed-loop system are provided based on Jensen’s integral inequality.Subsequently,initial solutions are randomly generated to overcome the difficulty of solving the nonlinear matrix inequality.Finally,the time-delay stability upper bound of the controller is optimized using the differential evolution algorithm.In comparison to popular time-delay stable controller design methods,such as the free-weighting-matrix approach,the proposed method based on output feedback realization requires fewer decision variables and is more suitable for large-scale hybrid AC/DC systems.Three examples are introduced to verify the effectiveness of the proposed method.