Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as...Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources.展开更多
Under the background of new infrastructure,the Yellow River Basin’s superior growth cannot be separated originating with the synergistic effect of scientific and technological inventiveness and ecological civilizatio...Under the background of new infrastructure,the Yellow River Basin’s superior growth cannot be separated originating with the synergistic effect of scientific and technological inventiveness and ecological civilization construction.In light of the coupling coordination analysis of the coordination effect of provincial high-tech industry agglomeration and resource carrying capacity in the Yellow River Basin from 2009 to 2021,The evolution of the geographical and temporal pattern of development was investigated using the Moran index and kernel density estimation.The results show that the agglomeration of high-tech industries in the Yellow River Basin presents a development trend of seek improvement in stability,and there is a good coupling and coordination throughout the progression of scientific and technological innovation and the loading capacity of the resource,from the viewpoint of a time series.From the perspective of spatial pattern distribution,the whole basin aims at the lower reaches,accelerates the optimization of digital industry and promotes Yellow River Basin development of superior quality through innovation support and increase of input,and based on policy guidance.展开更多
The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We pro...The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency.展开更多
Accessibility and capacity of medical resources are key for the health care and emergency response, while the efficiency of the medical resources is very much limited by hypoxia in Tibet, China.Through introducing exe...Accessibility and capacity of medical resources are key for the health care and emergency response, while the efficiency of the medical resources is very much limited by hypoxia in Tibet, China.Through introducing exercise efficiency, this study explores the accessibility of township residence to county-ship medical resources in Tibet using weighted mean travel time(WMT), and evaluates the medical capacity accordingly.The results show that: 1) the average travel time of township residence to county-level hospital is around2 h by motor vehicle in Tibet.More than half of the population can not reach the county-ship hospital within 1 h, 33.24% of the population can not reach within 2 h, and 3.75% of the population can not reach within 6 h.2) When considering the catchment of the medical resources and the population size, the WMT of the county-ship medical resources ranges from 0.25 h to 10.92 h.3) After adjusted by travel time and exercise efficiency, the county-ship medical capacity became more unequal, with 38 out of 74 counties could not meet the national guideline of 1.8 medical beds per 1000.4) In total, there are 17 counties with good WMT and sufficient medical resources,while 13 counties having very high WMT and low capacity of medical resources in Tibet.In the end, suggestions on medical resources relocation and to improve the capacity are provided.This study provides a method to incorporate exercise efficiency to access the accessibility and evaluate medical capacity that can be applied in high altitude ranges.展开更多
As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically ev...As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically evaluate the water resources carrying capacity is the premise to improve the regional water resources carrying capacity and ensure the regional water security.The Gansu section of the Yellow River basin is an important water conservation and recharge area.Whether the water resources in this area can ensure the normal operation of the ecosystem and whether it can carry the sustainable development of social economy is the key to realize the high-quality development of the Yellow River basin.In this study,from the three dimensions of water consumption per capita,water consumption of 10000 yuan GDP and ecological water use rate,by constructing the evaluation index system and index grading standard of water resources carrying capacity,the fuzzy comprehensive evaluation model was used to evaluate the water resources carrying capacity of Gansu section of the Yellow River Basin,in order to provide theoretical decision-making basis for the comprehensive development,utilization and planning management of water resources in Gansu section of the Yellow River basin and even the whole basin,and help the high-quality development of the Yellow River basin.展开更多
[Objective] The research aimed to assess the water resources carrying capacity in Guizhou Province based on the cosine vector included angle method. [Method] By using the cosine vector included angle method, the index...[Objective] The research aimed to assess the water resources carrying capacity in Guizhou Province based on the cosine vector included angle method. [Method] By using the cosine vector included angle method, the index weight was determined. The projection value of water resources carrying capacity in Guizhou Province was counted by using the multi-objective gray relational projection method. Moreover, the projection value which was counted by the index weight determined by the mean-variance method was as the control. [Result] The projection values which were obtained by two kinds of methods were very close, and the ordering result was consistent. [Conclusion] In the assessment of water resources carrying capacity, it was feasible to use the cosine vector included angle method to determine the index weight.展开更多
[Objective] The aim was to study on RBF model about evaluation on carrying capacity of water resources based on standardized indices. [Method] The indices were transformed and the averages of standard values in differ...[Objective] The aim was to study on RBF model about evaluation on carrying capacity of water resources based on standardized indices. [Method] The indices were transformed and the averages of standard values in different levels were taken as the standardized values of components of central vectors for basic functions of RBF hidden nodes. Hence, the basic functions are suitable for most indices, simplifying expression and calculation of basic functions. [Result] RBF models concluded through Monkey-king Genetic Algorithm with weights optimization are used in evaluation on water carrying capacity in three districts in Changwu County in Shaanxi Province, which were in consistent with that through fuzzy evaluation. [Conclusion] RBF, simple and practical, is universal and popular.展开更多
Based on analysis of the development potential of rangeland resources in China's mountain areas, the paper makes analysis and forecast in human carrying capacity of rangeland resources. It provides some reference for...Based on analysis of the development potential of rangeland resources in China's mountain areas, the paper makes analysis and forecast in human carrying capacity of rangeland resources. It provides some reference for drawing up the development strategy in mountain areas.展开更多
This paper, in the context of resources and environmental carrying capaci-ty, systematic reviewed resources and environmental carrying capacity in monitoring, evaluation and early warning, and then putted forward the ...This paper, in the context of resources and environmental carrying capaci-ty, systematic reviewed resources and environmental carrying capacity in monitoring, evaluation and early warning, and then putted forward the development direction for promoting the sustainable development of China’s social and economic environment.展开更多
This paper explores the method of comprehensive evaluation of water resources carrying capacity and sets up an evaluation model applying the fuzzy comprehensive evaluation method. Based on the data of nature,society,e...This paper explores the method of comprehensive evaluation of water resources carrying capacity and sets up an evaluation model applying the fuzzy comprehensive evaluation method. Based on the data of nature,society,economics and water resources of the Tarim River Basin in 2002,we evaluated the water resources carrying capacity of the basin by means of the model. The results show that the comprehensive grades are 0.438 and 0.454 for Aksu and Kashi prefectures respectively,where the current water resources exploitation and utilization has reached a relative high degree and there is only a very limited water carrying capacity,0.620 for Kizilsu Kirgiz Autonomous Prefecture,where water resources carrying capacity is much higher,and in between for Hotan Prefecture and Bayingolin Mongo-lian Autonomous Prefecture. As a whole,the comprehensive grade of the Tarim River Basin is 0.508 and the current water resources exploitation and utilization has reached a relative high degree. Thus,we suggest that the integrated management of the water resources in the basin should be strengthened in order to utilize water resources scientifically and sustainably.展开更多
This study identifies the carrying state and value of Tibet’s resource and environmental carrying capacity.A new theoretical framework is proposed for exploring the resource and environmental carrying capacity based ...This study identifies the carrying state and value of Tibet’s resource and environmental carrying capacity.A new theoretical framework is proposed for exploring the resource and environmental carrying capacity based on two perspectives of“growth limit”and“stability of Human-Earth relationship system”.On this basis,an ideal growth model that accords with the“short board”effect is established to predict the population limitation.Analytical results show that the holistic state of resource and environmental carrying capacity in Tibet is in jeopardy.From 2010 to 2016,Tibet’s carrying state continued to decline,moreover,the negative forces still overwhelm the positive forces.Although the resource reserves still have room for more population,the environmental capacity and ecological capacity have been overloaded.Meanwhile,the Human-Earth relationship system is in an unstable stage.Three scenarios that respond to different socioeconomic developments are implemented to predict the population limitation of resource and environmental carrying capacity in Tibet;thus,authors argue that Tibet should keep its population size within 4 million around 2025.This research will provide reference for sustainable development and resources and environmental conservation in Tibet.展开更多
Based on the regional water resources carrying capacity(WRCC)evaluation principles and evaluation index system in the National Technical Outline of Water Resources Carrying Capacity Monitoring and Early Warning(hereaf...Based on the regional water resources carrying capacity(WRCC)evaluation principles and evaluation index system in the National Technical Outline of Water Resources Carrying Capacity Monitoring and Early Warning(hereafter referred to as the Technical Outline),this paper elaborates on the collection and sorting of the basic data of water resources conditions,water resources development and utilization status,social and economic development in basins,analysis and examination of integrity,consistency,normativeness,and rationality of the basic data,and the necessity of WRCC evaluation.This paper also describes the technique of evaluating the WRCC in prefecture-level cities and city-level administrative divisions in the District of the Taihu Lake Basin,which is composed of the Taihu Lake Basin and the Southeastern River Basin.The evaluation process combines the binary index evaluation method and reduction index evaluation method.The former,recommended by the Technical Outline,uses the total water use and the amount of exploited groundwater as evaluation indices,showing stronger operability,while the latter is developed by simplifying and optimizing the comprehensive index system with greater systematicness and completeness.The mutual validation and adjustment of the results of the above-mentioned two evaluation methods indicate that the WRCC of the District of the Taihu Lake Basin is overloaded in general because some prefecture-level cities and city-level administrative divisions in the Taihu Lake Basin and the Southeastern River Basin are in a severely overloaded state.In order to explain this conclusion,this paper analyzes the causes of WRCC overloading from the aspects of basin water environment,water resources development and utilization,water resources regulation and control ability,water resources utilization efficiency,and water resources management.展开更多
A model of Suzhou water resources carrying capacity (WRCC) was set up using the method of system dynamics (SD). In the model, three different water resources utilization programs were adopted: (1) continuity of...A model of Suzhou water resources carrying capacity (WRCC) was set up using the method of system dynamics (SD). In the model, three different water resources utilization programs were adopted: (1) continuity of existing water utilization, (2) water conservation/saving, and (3) water exploitation. The dynamic variation of the Suzhou WRCC was simulated with the supply-decided principle for the time period of 2001 to 2030, and the results were characterized based on socio-economic factors. The corresponding Suzhou WRCC values for several target years were calculated by the model. Based on these results, proper ways to improve the Suzhou WRCC are proposed. The model also produced an optimized plan, which can provide a scientific basis for the sustainable utilization of Suzhou water resources and for the coordinated development of the society, economy, and water resources.展开更多
Evaluations of resources and environmental carrying capacities (GRECC)are the premise of land space planning and use control.Resource allocations and environmental capacity are the basic conditions that restrict devel...Evaluations of resources and environmental carrying capacities (GRECC)are the premise of land space planning and use control.Resource allocations and environmental capacity are the basic conditions that restrict development in a region.In this paper,based on a systematic review of China's geological environment,groundwater resources,mineral resources,other geological resources and the environmental carrying capacity research status,the relationship between the natural resource environmental system and the socio-economic system is studied.Then a "coordination theory of resources and environmental carrying"is proposed.Next,on the basis of an evaluation experiment performed at different scales and for different types of regions,the technical methods for an evaluation of the geological resources and environmental carrying capacity at the regional (inter-provincial)and provincial scales in China are established for the first time.This paper presents a standardized method based on technical ideas, evaluation methods,and index systems for geological resource and environmental carrying capacity evaluation.Finally,an evaluation of the groundwater resource carrying capacity in China is used as an example for the demonstration of the groundwater resource background and use of state evaluation methods.展开更多
Blind numbers of evaluation indices about groundwater resources carrying capacity are defined from the concomitancy of randomness, fuzziness, grey property and unascertainment of groundwater system. Based on fuzzy the...Blind numbers of evaluation indices about groundwater resources carrying capacity are defined from the concomitancy of randomness, fuzziness, grey property and unascertainment of groundwater system. Based on fuzzy theory, a comprehensive evaluation model on groundwater resources carrying capacity is constructed with blind information. Then a risk assessment model of surcharge about groundwater resources carrying capacity is established on blind reliability theory. The probable value "*" matrix of fuzzy membership degree about carrying capacity corresponding to each judgment level can be obtained with the aid of blind algorithm as well as the subjective reliability "×" matrix. And then a graph of "groundwater carrying capacity v.s. accumulative reliability" can be gained Based on the graph, fuzzy membership degree of groundwater resources carrying capacity to each judgment level under different risk probability can be got. Thus, a comparatively reasonable judgment to groundwater resources carrying capacity might be obtained, with comprehensive analysis to the state of society, economy technology and ecology.展开更多
Studying the carrying capacity of resources and environment of city clusters in the central China has important practical guidance significance for promoting the healthy, sustainable and stable development of this reg...Studying the carrying capacity of resources and environment of city clusters in the central China has important practical guidance significance for promoting the healthy, sustainable and stable development of this region. According to their influencing factors and reciprocity mechanism, using system dynamics approaches, this paper built a SD model for measuring the carrying capacity of resources and environment of the city clusters in the central China, and through setting different development models, the comprehensive measurement analysis on the carrying capacity was carried out. The results show that the model of promoting socio-economic development under the protection of resources and environment is the optimal model for promoting the harmony development of resources, environment, society and economy in the city clusters. According to this model, the optimum population scale of the city clusters in 2020 is 42.80×106 persons, and the moderate economic development scale is 22.055×1012 yuan (RMB). In 1996-2020, the carrying capacity of resources and environment in the city clusters took on obvious phase-change characteristics. During the studied period, it is basically at the initial development stage, and will come through the development process from slow development to speedup development.展开更多
To achieve the higher resource efficiency, Coverage and Capacity Optimization(CCO) as an important role of the network self-healing and self-optimization, has become a focus topic in wireless Self-Organized Network(SO...To achieve the higher resource efficiency, Coverage and Capacity Optimization(CCO) as an important role of the network self-healing and self-optimization, has become a focus topic in wireless Self-Organized Network(SON). In this paper, a novel CCO scheme is proposed to maximize utility function of the integrated coverage and capacity. It starts with the analysis on the throughput proportional fairness(PF) algorithm and then proposes the novel Coverage and Capacity Proportional Fairness(CCPF) allocation algorithm along with a proof of the algorithms convergence. This proposed algorithm is applied in a coverage capacity optimization scheme which can guarantee the reasonable network capacity by the coverage range accommodation. Next, we simulate the proposed CCO scheme based on telecom operators' real network data and compare with three typical resource allocation algorithms: round robin(RR), proportional fairness(PF) and max C/I. In comparison of the PF algorithm, the numerical results show that our algorithm increases the average throughput by 1.54 and 1.96 times with constructed theoretical data and derived real network data respectively.展开更多
As demands on limited water resources intensify, concerns are being raised about water resources carrying capacity(WRCC), which is defined as the maximum sustainable socioeconomic scale that can be supported by avai...As demands on limited water resources intensify, concerns are being raised about water resources carrying capacity(WRCC), which is defined as the maximum sustainable socioeconomic scale that can be supported by available water resources and while maintaining defined environmental conditions. This paper proposes a distributed quantitative model for WRCC, based on the principles of optimization, and considering hydro-economic interaction, water supply, water quality, and socioeconomic development constraints. With the model, the WRCCs of 60 subregions in Henan Province were determined for different development periods. The results showed that the water resources carrying level of Henan Province was suitably loaded in 2010, but that the province would be mildly overloaded in 2030 with respect to the socioeconomic development planning goals. The restricting factors for WRCC included the available water resources, the increasing rate of GDP, the urbanization ratio, the irrigation water utilization coefficient, the industrial water recycling rate, and the wastewater reuse rate, of which the available water resources was the most crucial factor. Because these factors varied temporally and spatially, the trends in predicted WRCC were inconsistent across different subregions and periods.展开更多
Over-exploitation of groundwater in North China Plain(NCP) has resulted in a series of eco-environment problems. Sustainable use of groundwater resources in NCP, in particular management of groundwater resource carryi...Over-exploitation of groundwater in North China Plain(NCP) has resulted in a series of eco-environment problems. Sustainable use of groundwater resources in NCP, in particular management of groundwater resource carrying capacity(GRCC), faces an unprecedented challenge. Here we define GRCC, and a new assessment method is tentatively proposed and applied to evaluate GRCC based on the whole NCP, city administrative units and county administrative units. Our study divided the NCP into three zones, i.e. non-overexploited non-overloaded zone(NNZ), overexploited but non-overloaded zone(ONZ), and overexploited overloaded zone(OOZ). Results confirmed 27.6% of counties belonged to NNZ. However, 58.9% of counties and NCP as a whole belonged to ONZ, and 13.5% of counties belonged to OOZ. Spatially, NNZs were mainly distributed in Beijing, parts of eastern coastal cities and Henan Province. OOZs were mostly distributed in middle-eastern part of Cangzhou, parts of Dezhou, Tianjin and Binzhou, and the remaining areas belonged to ONZs. We suggest two approaches for enhancing GRCC, i) increasing the amount of available groundwater and ii) improving the water use efficiency. An increase of 11.0 billion cubic meters to the available groundwater levels combined with water use efficiency improvements up to 479 CNY per cubic meter of the world mean, the gross domestic product(GDP) sustained by groundwater in the NCP could reach 11.1 trillion CNY and maintain a 20 years of GDP development assuming the current rate of growth.展开更多
Research on the carrying capacity and security of water resources is vital for its contribution to implementing sustainable development goals. The limitation of water resources is one of the most important factors tha...Research on the carrying capacity and security of water resources is vital for its contribution to implementing sustainable development goals. The limitation of water resources is one of the most important factors that influence the sustainable utilization of resources. Studying the carrying capacity of water resources will not only facilitate monitoring and forecast of national resources and environmental carrying capacity, but also be valuable for building ecological civilization. According to the principles of evaluation system, the carrying capacity of water resources on Shandong peninsula is explored. A comprehensive evaluation model of the carrying capacity of water resources is constructed based on the carrying capacity of water resources index and the composite of water resources index. The results show that the capacity of water resources on Shandong peninsula is generally consistent with overexploitation, and that the development and utilization of water resources has reached a considerable scale under existing economic and technological conditions. The carrying capacity of water resources in this region is relatively small, and the contradiction between supply and demand of water resources is alarming. Relative countermeasures are put forward, to improve the water resources carrying capacity and to provide a basis for future sustainable development and utilization of water resources in this region.展开更多
基金Under the auspices of the National Natural Science Foundation of China(No.42271279,41931293,41801175)。
文摘Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources.
基金supported by the 2021 Research and Practice Project of Higher Education Teaching Reform in Henan Province(Grant No.2021SJGLX072Y).
文摘Under the background of new infrastructure,the Yellow River Basin’s superior growth cannot be separated originating with the synergistic effect of scientific and technological inventiveness and ecological civilization construction.In light of the coupling coordination analysis of the coordination effect of provincial high-tech industry agglomeration and resource carrying capacity in the Yellow River Basin from 2009 to 2021,The evolution of the geographical and temporal pattern of development was investigated using the Moran index and kernel density estimation.The results show that the agglomeration of high-tech industries in the Yellow River Basin presents a development trend of seek improvement in stability,and there is a good coupling and coordination throughout the progression of scientific and technological innovation and the loading capacity of the resource,from the viewpoint of a time series.From the perspective of spatial pattern distribution,the whole basin aims at the lower reaches,accelerates the optimization of digital industry and promotes Yellow River Basin development of superior quality through innovation support and increase of input,and based on policy guidance.
基金This research was supported by Science and Technology Research Project of Education Department of Jiangxi Province,China(Nos.GJJ2206701,GJJ2206717).
文摘The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency.
基金Under the auspices of the Second Tibetan Plateau Scientific Expedition and Research Program (STEP)(No.2019QZKK0607)。
文摘Accessibility and capacity of medical resources are key for the health care and emergency response, while the efficiency of the medical resources is very much limited by hypoxia in Tibet, China.Through introducing exercise efficiency, this study explores the accessibility of township residence to county-ship medical resources in Tibet using weighted mean travel time(WMT), and evaluates the medical capacity accordingly.The results show that: 1) the average travel time of township residence to county-level hospital is around2 h by motor vehicle in Tibet.More than half of the population can not reach the county-ship hospital within 1 h, 33.24% of the population can not reach within 2 h, and 3.75% of the population can not reach within 6 h.2) When considering the catchment of the medical resources and the population size, the WMT of the county-ship medical resources ranges from 0.25 h to 10.92 h.3) After adjusted by travel time and exercise efficiency, the county-ship medical capacity became more unequal, with 38 out of 74 counties could not meet the national guideline of 1.8 medical beds per 1000.4) In total, there are 17 counties with good WMT and sufficient medical resources,while 13 counties having very high WMT and low capacity of medical resources in Tibet.In the end, suggestions on medical resources relocation and to improve the capacity are provided.This study provides a method to incorporate exercise efficiency to access the accessibility and evaluate medical capacity that can be applied in high altitude ranges.
基金Supported by Gansu Province 2023 Education Science and Technology Innovation Project(2023B-431).
文摘As a basic natural resource and strategic economic resource,the development and utilization of water resources is an important issue related to the national economy and people's livelihood.How to scientifically evaluate the water resources carrying capacity is the premise to improve the regional water resources carrying capacity and ensure the regional water security.The Gansu section of the Yellow River basin is an important water conservation and recharge area.Whether the water resources in this area can ensure the normal operation of the ecosystem and whether it can carry the sustainable development of social economy is the key to realize the high-quality development of the Yellow River basin.In this study,from the three dimensions of water consumption per capita,water consumption of 10000 yuan GDP and ecological water use rate,by constructing the evaluation index system and index grading standard of water resources carrying capacity,the fuzzy comprehensive evaluation model was used to evaluate the water resources carrying capacity of Gansu section of the Yellow River Basin,in order to provide theoretical decision-making basis for the comprehensive development,utilization and planning management of water resources in Gansu section of the Yellow River basin and even the whole basin,and help the high-quality development of the Yellow River basin.
基金Supported by Guizhou Province Science and Technology Fund Item(Guizhou Science Together (2009) 2251)High-level PersonnelSpecial Assistance Fund in Guizhou Province (TZJF (2009) 25)Ministry of Education Science and Technology Research Key Item(210201)~~
文摘[Objective] The research aimed to assess the water resources carrying capacity in Guizhou Province based on the cosine vector included angle method. [Method] By using the cosine vector included angle method, the index weight was determined. The projection value of water resources carrying capacity in Guizhou Province was counted by using the multi-objective gray relational projection method. Moreover, the projection value which was counted by the index weight determined by the mean-variance method was as the control. [Result] The projection values which were obtained by two kinds of methods were very close, and the ordering result was consistent. [Conclusion] In the assessment of water resources carrying capacity, it was feasible to use the cosine vector included angle method to determine the index weight.
基金Supported by National Natural Science Foundation of China (51179110)~~
文摘[Objective] The aim was to study on RBF model about evaluation on carrying capacity of water resources based on standardized indices. [Method] The indices were transformed and the averages of standard values in different levels were taken as the standardized values of components of central vectors for basic functions of RBF hidden nodes. Hence, the basic functions are suitable for most indices, simplifying expression and calculation of basic functions. [Result] RBF models concluded through Monkey-king Genetic Algorithm with weights optimization are used in evaluation on water carrying capacity in three districts in Changwu County in Shaanxi Province, which were in consistent with that through fuzzy evaluation. [Conclusion] RBF, simple and practical, is universal and popular.
文摘Based on analysis of the development potential of rangeland resources in China's mountain areas, the paper makes analysis and forecast in human carrying capacity of rangeland resources. It provides some reference for drawing up the development strategy in mountain areas.
基金Supported by Key Tasks of Eco-civilization System Reform Special Group in 2014,Anhui Government~~
文摘This paper, in the context of resources and environmental carrying capaci-ty, systematic reviewed resources and environmental carrying capacity in monitoring, evaluation and early warning, and then putted forward the development direction for promoting the sustainable development of China’s social and economic environment.
基金Under the auspices of Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-127)National Natural Science Foundation of China (No. 40671014, 90502007)
文摘This paper explores the method of comprehensive evaluation of water resources carrying capacity and sets up an evaluation model applying the fuzzy comprehensive evaluation method. Based on the data of nature,society,economics and water resources of the Tarim River Basin in 2002,we evaluated the water resources carrying capacity of the basin by means of the model. The results show that the comprehensive grades are 0.438 and 0.454 for Aksu and Kashi prefectures respectively,where the current water resources exploitation and utilization has reached a relative high degree and there is only a very limited water carrying capacity,0.620 for Kizilsu Kirgiz Autonomous Prefecture,where water resources carrying capacity is much higher,and in between for Hotan Prefecture and Bayingolin Mongo-lian Autonomous Prefecture. As a whole,the comprehensive grade of the Tarim River Basin is 0.508 and the current water resources exploitation and utilization has reached a relative high degree. Thus,we suggest that the integrated management of the water resources in the basin should be strengthened in order to utilize water resources scientifically and sustainably.
基金supported by the Specific Project of National Key Research and Development Program of China (Grants No.2016YFC0503506)the Strategy Priority Research Program of Chinese Academy of Sciences (Grants No. XDA20010103)
文摘This study identifies the carrying state and value of Tibet’s resource and environmental carrying capacity.A new theoretical framework is proposed for exploring the resource and environmental carrying capacity based on two perspectives of“growth limit”and“stability of Human-Earth relationship system”.On this basis,an ideal growth model that accords with the“short board”effect is established to predict the population limitation.Analytical results show that the holistic state of resource and environmental carrying capacity in Tibet is in jeopardy.From 2010 to 2016,Tibet’s carrying state continued to decline,moreover,the negative forces still overwhelm the positive forces.Although the resource reserves still have room for more population,the environmental capacity and ecological capacity have been overloaded.Meanwhile,the Human-Earth relationship system is in an unstable stage.Three scenarios that respond to different socioeconomic developments are implemented to predict the population limitation of resource and environmental carrying capacity in Tibet;thus,authors argue that Tibet should keep its population size within 4 million around 2025.This research will provide reference for sustainable development and resources and environmental conservation in Tibet.
基金supported by the National Natural Science Foundation of China(Grant No.51379181)Phase Ⅲ Project(2018-2021)of the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Based on the regional water resources carrying capacity(WRCC)evaluation principles and evaluation index system in the National Technical Outline of Water Resources Carrying Capacity Monitoring and Early Warning(hereafter referred to as the Technical Outline),this paper elaborates on the collection and sorting of the basic data of water resources conditions,water resources development and utilization status,social and economic development in basins,analysis and examination of integrity,consistency,normativeness,and rationality of the basic data,and the necessity of WRCC evaluation.This paper also describes the technique of evaluating the WRCC in prefecture-level cities and city-level administrative divisions in the District of the Taihu Lake Basin,which is composed of the Taihu Lake Basin and the Southeastern River Basin.The evaluation process combines the binary index evaluation method and reduction index evaluation method.The former,recommended by the Technical Outline,uses the total water use and the amount of exploited groundwater as evaluation indices,showing stronger operability,while the latter is developed by simplifying and optimizing the comprehensive index system with greater systematicness and completeness.The mutual validation and adjustment of the results of the above-mentioned two evaluation methods indicate that the WRCC of the District of the Taihu Lake Basin is overloaded in general because some prefecture-level cities and city-level administrative divisions in the Taihu Lake Basin and the Southeastern River Basin are in a severely overloaded state.In order to explain this conclusion,this paper analyzes the causes of WRCC overloading from the aspects of basin water environment,water resources development and utilization,water resources regulation and control ability,water resources utilization efficiency,and water resources management.
基金supported by the National Natural Science Foundation of China (Grant No.50638020)
文摘A model of Suzhou water resources carrying capacity (WRCC) was set up using the method of system dynamics (SD). In the model, three different water resources utilization programs were adopted: (1) continuity of existing water utilization, (2) water conservation/saving, and (3) water exploitation. The dynamic variation of the Suzhou WRCC was simulated with the supply-decided principle for the time period of 2001 to 2030, and the results were characterized based on socio-economic factors. The corresponding Suzhou WRCC values for several target years were calculated by the model. Based on these results, proper ways to improve the Suzhou WRCC are proposed. The model also produced an optimized plan, which can provide a scientific basis for the sustainable utilization of Suzhou water resources and for the coordinated development of the society, economy, and water resources.
基金the Program of the Geological Survey of China (DD20160328)the National Science Foundation of China (41702386).
文摘Evaluations of resources and environmental carrying capacities (GRECC)are the premise of land space planning and use control.Resource allocations and environmental capacity are the basic conditions that restrict development in a region.In this paper,based on a systematic review of China's geological environment,groundwater resources,mineral resources,other geological resources and the environmental carrying capacity research status,the relationship between the natural resource environmental system and the socio-economic system is studied.Then a "coordination theory of resources and environmental carrying"is proposed.Next,on the basis of an evaluation experiment performed at different scales and for different types of regions,the technical methods for an evaluation of the geological resources and environmental carrying capacity at the regional (inter-provincial)and provincial scales in China are established for the first time.This paper presents a standardized method based on technical ideas, evaluation methods,and index systems for geological resource and environmental carrying capacity evaluation.Finally,an evaluation of the groundwater resource carrying capacity in China is used as an example for the demonstration of the groundwater resource background and use of state evaluation methods.
基金the Key Generalization Program of Science and Tech-nology Achievement of Water Resources Ministry of China (TG0608)
文摘Blind numbers of evaluation indices about groundwater resources carrying capacity are defined from the concomitancy of randomness, fuzziness, grey property and unascertainment of groundwater system. Based on fuzzy theory, a comprehensive evaluation model on groundwater resources carrying capacity is constructed with blind information. Then a risk assessment model of surcharge about groundwater resources carrying capacity is established on blind reliability theory. The probable value "*" matrix of fuzzy membership degree about carrying capacity corresponding to each judgment level can be obtained with the aid of blind algorithm as well as the subjective reliability "×" matrix. And then a graph of "groundwater carrying capacity v.s. accumulative reliability" can be gained Based on the graph, fuzzy membership degree of groundwater resources carrying capacity to each judgment level under different risk probability can be got. Thus, a comparatively reasonable judgment to groundwater resources carrying capacity might be obtained, with comprehensive analysis to the state of society, economy technology and ecology.
基金Under the auspices of National Natural Science Foundation of China (No. 40971101)Major Project of 11th Five-Year Scientific and Technological Support Plan of China (No. 2006BAJ14B03)
文摘Studying the carrying capacity of resources and environment of city clusters in the central China has important practical guidance significance for promoting the healthy, sustainable and stable development of this region. According to their influencing factors and reciprocity mechanism, using system dynamics approaches, this paper built a SD model for measuring the carrying capacity of resources and environment of the city clusters in the central China, and through setting different development models, the comprehensive measurement analysis on the carrying capacity was carried out. The results show that the model of promoting socio-economic development under the protection of resources and environment is the optimal model for promoting the harmony development of resources, environment, society and economy in the city clusters. According to this model, the optimum population scale of the city clusters in 2020 is 42.80×106 persons, and the moderate economic development scale is 22.055×1012 yuan (RMB). In 1996-2020, the carrying capacity of resources and environment in the city clusters took on obvious phase-change characteristics. During the studied period, it is basically at the initial development stage, and will come through the development process from slow development to speedup development.
基金supported by the 863 Program (2015AA01A705)NSFC (61271187)
文摘To achieve the higher resource efficiency, Coverage and Capacity Optimization(CCO) as an important role of the network self-healing and self-optimization, has become a focus topic in wireless Self-Organized Network(SON). In this paper, a novel CCO scheme is proposed to maximize utility function of the integrated coverage and capacity. It starts with the analysis on the throughput proportional fairness(PF) algorithm and then proposes the novel Coverage and Capacity Proportional Fairness(CCPF) allocation algorithm along with a proof of the algorithms convergence. This proposed algorithm is applied in a coverage capacity optimization scheme which can guarantee the reasonable network capacity by the coverage range accommodation. Next, we simulate the proposed CCO scheme based on telecom operators' real network data and compare with three typical resource allocation algorithms: round robin(RR), proportional fairness(PF) and max C/I. In comparison of the PF algorithm, the numerical results show that our algorithm increases the average throughput by 1.54 and 1.96 times with constructed theoretical data and derived real network data respectively.
文摘As demands on limited water resources intensify, concerns are being raised about water resources carrying capacity(WRCC), which is defined as the maximum sustainable socioeconomic scale that can be supported by available water resources and while maintaining defined environmental conditions. This paper proposes a distributed quantitative model for WRCC, based on the principles of optimization, and considering hydro-economic interaction, water supply, water quality, and socioeconomic development constraints. With the model, the WRCCs of 60 subregions in Henan Province were determined for different development periods. The results showed that the water resources carrying level of Henan Province was suitably loaded in 2010, but that the province would be mildly overloaded in 2030 with respect to the socioeconomic development planning goals. The restricting factors for WRCC included the available water resources, the increasing rate of GDP, the urbanization ratio, the irrigation water utilization coefficient, the industrial water recycling rate, and the wastewater reuse rate, of which the available water resources was the most crucial factor. Because these factors varied temporally and spatially, the trends in predicted WRCC were inconsistent across different subregions and periods.
基金support of the National Basic Research Program of China (973 Program (2010CB428805))the Fundamental Research Fund (SK201306) of the Central Scientific & Research Institutes, Chinese Academy of Geological Sciences, the Institute of Hydrogeology and Environmental Geology, and the National Natural Science Foundation of China (41502253)
文摘Over-exploitation of groundwater in North China Plain(NCP) has resulted in a series of eco-environment problems. Sustainable use of groundwater resources in NCP, in particular management of groundwater resource carrying capacity(GRCC), faces an unprecedented challenge. Here we define GRCC, and a new assessment method is tentatively proposed and applied to evaluate GRCC based on the whole NCP, city administrative units and county administrative units. Our study divided the NCP into three zones, i.e. non-overexploited non-overloaded zone(NNZ), overexploited but non-overloaded zone(ONZ), and overexploited overloaded zone(OOZ). Results confirmed 27.6% of counties belonged to NNZ. However, 58.9% of counties and NCP as a whole belonged to ONZ, and 13.5% of counties belonged to OOZ. Spatially, NNZs were mainly distributed in Beijing, parts of eastern coastal cities and Henan Province. OOZs were mostly distributed in middle-eastern part of Cangzhou, parts of Dezhou, Tianjin and Binzhou, and the remaining areas belonged to ONZs. We suggest two approaches for enhancing GRCC, i) increasing the amount of available groundwater and ii) improving the water use efficiency. An increase of 11.0 billion cubic meters to the available groundwater levels combined with water use efficiency improvements up to 479 CNY per cubic meter of the world mean, the gross domestic product(GDP) sustained by groundwater in the NCP could reach 11.1 trillion CNY and maintain a 20 years of GDP development assuming the current rate of growth.
基金supported by Shandong Provincial Bureau of Statistics (No. KT15019& KT13060)China Geological Survey (No. 12120113007200) Scientific Research Funds
文摘Research on the carrying capacity and security of water resources is vital for its contribution to implementing sustainable development goals. The limitation of water resources is one of the most important factors that influence the sustainable utilization of resources. Studying the carrying capacity of water resources will not only facilitate monitoring and forecast of national resources and environmental carrying capacity, but also be valuable for building ecological civilization. According to the principles of evaluation system, the carrying capacity of water resources on Shandong peninsula is explored. A comprehensive evaluation model of the carrying capacity of water resources is constructed based on the carrying capacity of water resources index and the composite of water resources index. The results show that the capacity of water resources on Shandong peninsula is generally consistent with overexploitation, and that the development and utilization of water resources has reached a considerable scale under existing economic and technological conditions. The carrying capacity of water resources in this region is relatively small, and the contradiction between supply and demand of water resources is alarming. Relative countermeasures are put forward, to improve the water resources carrying capacity and to provide a basis for future sustainable development and utilization of water resources in this region.