The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the prot...The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the protective benefits of High Density Polyethylene(HDPE)board sand fences,focusing on their orientation relative to various wind directions(referred to as'wind angle').This study found that the size of the low-velocity zone on the leeward side of the sand fences(LSF)expanded with an increase in the wind angle(WA).At 1H(the height of the sand fence)and 2H positions on the LSF,the wind speed profiles(WSP)exhibited a segmented logarithmic growth,constrained by Z=H at varying WAs.The efficacy of the sand fence in obstructing airflow escalated as WA increased.The size of the WA has a significant impact on the protective efficiency of HDPE board sand fences.Furthermore,compared to typical sandy surfaces,the rate of sand transport across the Gobi surface diminishes more slowly with height,attributed to the gravel's rebound effect.This phenomenon allows some sand particles to bypass the fences,rendering them less effective at blocking wind and trapping sand than in sandy environments.This paper offers scientific evidence supporting the practical use and enhancement of HDPE board sand fences in varied wind conditions.展开更多
Objective To study the characterization apportionment of main ion concentrations of PM10 under the influence of trajectory wind direction in London. Methods PM10 samples from 1 May 1995 to 30 October 1995 of Oxford St...Objective To study the characterization apportionment of main ion concentrations of PM10 under the influence of trajectory wind direction in London. Methods PM10 samples from 1 May 1995 to 30 October 1995 of Oxford Street of Central London were collected, the metals and anions of which were measured using atomic absorption spectrometry (AAS) and ion chromatography (IC). Composite trajectories representative of the air mass arriving in London at the same period were calculated based on basic routine back trajectories from the British Atmospheric Data Centre (BADC). Results Concentration apportionments of main ions were similar when the trajectory was plotted back at 6 h, 12 h, and 24 h, some were obviously different. Mg, Ba, Pb, and Cu had similar peak apportionments at the area 180°-320°, but Zn and Ni at the area of 90°-270°, NO3^- and SO4^2- at the area of 100°-220°. Cl^- concentration peak apportionment was at the area of 220°-300°, which showed that Cl^- mainly came from the North Sea. Conclusion Trajectory wind direction has important effect on ion concentration apportionment of PM10 in London. The ions have similar concentration peak apportionments or their correlation coefficients are statistically significant.展开更多
Estimates of the palaeo subaerial wind direction were studied systematically for the first time by using the anisotropy of loess magnetic susceptibility (AMS) measurements in the northwestern China. One hundred and f...Estimates of the palaeo subaerial wind direction were studied systematically for the first time by using the anisotropy of loess magnetic susceptibility (AMS) measurements in the northwestern China. One hundred and forty undisturbed oriented aeolian loess samples were collected from Lanzhou, Linxia and Wudu areas for AMS measurements, which indicated the subaerial wind directions were not the same while the loess deposited. From the Early Pleistocene to Middle Pleistocene till Late Pleistocene, the wind direction experienced an anticlockwise rotation in the studied area. We suggested this change was related to the uplift of the Qinghai Xizang Plateau and the adjustment of current and landform effects.展开更多
As a promising renewable energy,offshore wind energy currently is gaining more attention,by which the economic and efficient operation of floating wind turbine systems is a potential research direction.This study is p...As a promising renewable energy,offshore wind energy currently is gaining more attention,by which the economic and efficient operation of floating wind turbine systems is a potential research direction.This study is primarily devoted to the analysis of dynamic response of the NREL-5 MW reference wind turbine supported by an OC3-Hywind SPAR-type platform using a recompiled code which combines FAST with WAMIT.To verify the reliability of the recompiled code,the free decay motions of a floating wind turbine system in still water are examined with satisfactory results.After that,thirteen scenarios with different angles between wind and wave from 0°to 90°are investigated.The dynamic responses of the turbine system in various degrees of freedom(DOFs)for different incident wind/wave directions are presented in both time and frequency domains via the fast Fourier transform.展开更多
From measurements by a circular array consisting of 18 wave gauges in a large wave tank, directional spectra of wind-generated waves in deep water are systematically determined by using maximum likehood method.The inv...From measurements by a circular array consisting of 18 wave gauges in a large wave tank, directional spectra of wind-generated waves in deep water are systematically determined by using maximum likehood method.The investigations reveal that the angular spreading of the wave energy is consistent with cos2s(θ/2) proposed by Longuet-Higgins et al. (1963, Ocean Wad Spectra,11~136), if the bimodal distributions of wave energy are not taken into account. Bimodality occurring on higher frequency than peak frequency is too rare to affect our whole results. Surprisingly, a much broader directional spreading than that of the field, which is interpreted by the strongly nonlinear energy transfer because of the very young waves in laboratory, is found. The parameter s depends on frequency in the same way as observed by Mitsuyasu et al. (1975, Journal of Physical Oceanography, 5, 750~760)and Hasselmann et al. (1980, Journal of physical Oceanography, 10, 1264~1280) in the field, and the relationship between the four nondimensional parameters sm, fo, b1 and b2, determining the directional width, and (corresponding to the inverse of wave age) are given respectively. The observed distributions are found to agree well with the suggestion of Donelan et al. (1985, Philosophical Transaction of Royal Society of London, A315, 509~562) when applied to field waves.展开更多
As a common and extensive datum to analyze wind,wind rose is one of the most important components of the meteorological elements.In this study,a model is proposed to establish the joint probability distribution of win...As a common and extensive datum to analyze wind,wind rose is one of the most important components of the meteorological elements.In this study,a model is proposed to establish the joint probability distribution of wind speed and direction using grouped data of wind rose.On the basis of the model,an algorithm is presented to generate pseudorandom numbers of wind speed and paired direction data.Afterward,the proposed model and algorithm are applied to two weather stations located in the Liaodong Gulf.With the models built for the two cases,a novel graph representing the continuous joint probability distribution of wind speed and direction is plotted,showing a strong correlation to the corresponding wind rose.Moreover,the joint probability distributions are utilized to evaluate wind energy potential successfully.In cooperation with Monte Carlo simulation,the model can approximately predict annual directional extreme wind speed under different return periods under the condition that the wind rose can represent the meteorological characters of the wind field well.The model is beneficial to design and install wind turbines.展开更多
A model on the directional frequency spectrum of wind waves for deep water is introduced. The comparisons of the proposed model with other existing models show that the proposed model is very close to the JONSWAP mode...A model on the directional frequency spectrum of wind waves for deep water is introduced. The comparisons of the proposed model with other existing models show that the proposed model is very close to the JONSWAP model and DHH model for describing the developing waves under the normal spectral bandwidth, and has a better description for the transition of the unidirectional spectrum from ω -4 to ω -5 at a position around 3ω p, i.e., three time the peak frequency. Comparisons also show that the proposed model describes closely both field data measured by a four-frequency radar and a laser-optical sensor, and laboratory data measured by a laser slope gauge and an imaging optical method. The comparisons further demonstrate that the inverse spectral bandwidth as a new wave parameter is robust for describing the spectral steepness. Finally, the formula on the local spectral-peak angular frequency is confirmed using the observed two-dimensional spectra.展开更多
By using the historical data during 1953-2009,the yearly most wind direction change in Yumen and the meteorological disasters of 4 times yearly most wind direction abnormality in recent 57 years were analyzed. The res...By using the historical data during 1953-2009,the yearly most wind direction change in Yumen and the meteorological disasters of 4 times yearly most wind direction abnormality in recent 57 years were analyzed. The results showed that there were 51 years which the yearly most wind direction was the easterlies in Yumen,and the westerly had 4 years. There were 2 years which the occurrence frequencies of westerly and easterlies were same. 4 years which the yearly wind direction abnormality was the most were in 1961,1979,1987 and 1998. When the yearly wind direction abnormality was the most,the meteorological disaster was serious. The total output of grain in Gansu Province in 1961 was the least in the history in recent 60 years. The serious drought disaster in 1961 caused that half agricultural population in Gansu seriously lacked of the grain,and the dead population sharply increased. In the end of 1961,the population in Gansu decreased nearly million than in 1958. The annual precipitation in 1979 was the most in recent 57 years. The daily precipitation on June 11,1987 was the most in June of recent 57 years in Yumen. The annual average temperature in 1998 was the highest in Yumen in recent 57 years.展开更多
A directional function for frequencies equal to and larger than the peak frequency of a wind-wave frequency spectrum is constructed by fitting the angular spreading based on the analytically derived directional spectr...A directional function for frequencies equal to and larger than the peak frequency of a wind-wave frequency spectrum is constructed by fitting the angular spreading based on the analytically derived directional spectrum of Wen et al. (1993, Journal of Oceanography, 49(2), 131~147, 149~172). For frequencies smaller than the peak frequency, the directional function is obtained by comparing and analyzing existing formulas. The nondimensional wind-wave frequency spectrum of Wen et al. (1994, Progress in Natural Seience, 4(4). 407~427;4 (5), 586~596) has been used together with the directional function just mentioned to obtain the directional spectrum for easier application.展开更多
The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity ...The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity and topography of the seabed were measured based on a system composed of plane positioning equipment and an ADV.Experimental results indicate that the development of the scour hole was fast at the beginning, but then the scour rate decreased until reaching equilibrium. Erosion would occur around each pile of the foundation. In most cases, the scour pits were connected in pairs and the outside widths of the scour holes were larger than the inner widths. The maximum scour depth occurred at the side pile of the foundation for each test. In addition, a preliminary investigation shows that the larger the flow velocity, the larger the scour hole dimensions but the shorter equilibrium time. The field maximum scour depth around the foundation was obtained based on the physical experiments with the geometric length scales of 1:27.0, 1:42.5 and 1:68.0, and it agrees with the scour depth estimated by the HEC-18 equation.展开更多
The Milan Gobi area of the Golmud-Korla Railway in northwest China is located in the lower dispersal area of the mountain pass and has strong winds with evident double wind direction characteristics.This study introdu...The Milan Gobi area of the Golmud-Korla Railway in northwest China is located in the lower dispersal area of the mountain pass and has strong winds with evident double wind direction characteristics.This study introduced a novel sand fence deployment technique,termed‘folded linear deployment',designed to position the sand fence orthogonally to the two predominant wind directions for optimal protection.This study used wind tunnel and field tests to evaluate the wind and sand flow characteristics,as well as the windproof and sandresistant performance of folded linear HDPE(Highdensity polyethylene)board sand fences.The results suggest that the airflow around the fence creates clear zoning characteristics.The deceleration area on the BSF(backwind side of the sand fence)is much larger than that on the DSF(downwind side of the sand fence).Thus,sand particles are primarily deposited on the BSF.At different wind speeds,the airflow at 2 and 5 h on the DSF is not disturbed.The WSP(wind speed profile)presents a logarithmic distribution.The airflow is disturbed at 1-20 h on the BSF,and the WSP gradually deviates from the logarithmic law.However,as the airflow moves away from the fence,the WSP gradually approaches a logarithmic distribution.Meanwhile,the WPE(windproof efficiency)and SRE(sand-resistant efficiency)of the sand fence exceed 80%.In addition,the results of wind tunnel tests are compared with those of field tests.The overall dispersion is good,and the best dispersion is found at z/H=2.00,indicating good agreement between the two test results.This study provides a scientific basis for the design of sand hazard control measures,similar to the railway project in the Gobi Gale area.展开更多
Gravity waves with periods close to the Brunt-V(a|¨)is(a|¨)l(a|¨) period of the upper troposphere are often observed at mesopause altitudes as short period,quasi-monochromatic waves.The assumption that ...Gravity waves with periods close to the Brunt-V(a|¨)is(a|¨)l(a|¨) period of the upper troposphere are often observed at mesopause altitudes as short period,quasi-monochromatic waves.The assumption that these short period waves originate in the troposphere may be problematic because their upward propagation to the mesosphere and lower thermosphere region could be significantly impeded due to an extended region of strong evanescence above the stratopause.To reconcile this apparent paradox,an alternative explanation is proposed in this paper.The inclusion of mean winds and their vertical shears is sufficient to allow certain short period waves to remain internal above the stratopause and to propagate efficiently to higher altitudes.A time-dependent numerical model is used to demonstrate the feasibility of this and to determine the circumstances under which the mesospheric wind shears play a role in the removal and directional filtering of short period gravity waves. Finally this paper concludes that the combination of the height-dependent mean winds and the mean temperature structure probably explains the existence of short period,quasi-monochromatic structures observed in airglow images of mesopause region.展开更多
Wind direction forecasting plays an important role in wind power prediction and air pollution management. Weather quantities such as temperature, precipitation, and wind speed are linear variables in which traditional...Wind direction forecasting plays an important role in wind power prediction and air pollution management. Weather quantities such as temperature, precipitation, and wind speed are linear variables in which traditional model output statistics and bias correction methods are applied. However, wind direction is an angular variable; therefore, such traditional methods are ineffective for its evaluation. This paper proposes an effective bias correction technique for wind direction forecasting of turbine height from numerical weather prediction models, which is based on a circular-circular regression approach. The technique is applied to a 24-h forecast of 65-m wind directions observed at Yangmeishan wind farm, Yunnan Province, China, which consistently yields improvements in forecast performance parameters such as smaller absolute mean error and stronger similarity in wind rose diagram pattern.展开更多
The effect of vertical wind shear(VWS)directions on the change in western North Pacific tropical cyclone(TC)intensity is revisited in this study.Results show that the differences in the correlations between VWS in dif...The effect of vertical wind shear(VWS)directions on the change in western North Pacific tropical cyclone(TC)intensity is revisited in this study.Results show that the differences in the correlations between VWS in different orientations and the change in TC nondimensional intensity highly diminish,although slight differences are still present.The subtle differences in the correlations are likely associated with different synoptic-scale patterns at upper and lower levels.This result suggests that,in addition to thermodynamic effects,dynamic roles of the synoptic-scale patterns associated with the VWS should also be taken into account when the authors examine how VWS in different directions affects TC intensity change.展开更多
Studying environmental phenomenon in Rub' Al-Khali (Arabic name of"Empty Quarter"), as one of the largest deserts in the world, requires adopting some advanced spatial technologies in conjunction with the data re...Studying environmental phenomenon in Rub' Al-Khali (Arabic name of"Empty Quarter"), as one of the largest deserts in the world, requires adopting some advanced spatial technologies in conjunction with the data recorded in the field in order to device better understanding. The paper utilizes the technologies of GIS (geographical information systems) and RS (remote sensing) in order to study large amount of weather data recorded in the field from different sources related to oil and gas industry in Rub' AI-Khali desert. The main objective is to identify the wind directions and its movement in Kidan areas and the areas south and east of Shaybah in Rub' Al-Khali desert. The study used different sources of data mainly recorded by the seismic campaigns' base camps and the drilling rig camps or the civil works camps. Wind Roses were created for all metrological weather stations in the study area. Also, the study tried to analyze the dune types using satellite imageries and identify the relation of its shapes to the wind direction. The final aim of the result of this study is to help in planning best locations to build facilities for new major oil and gas project.展开更多
A new model on the directional spectrum of wind waves for deep water is proposed based on the statistics of wind waves. This model contains three parameters: the wave age, the inverse spectral bandwidth and the local ...A new model on the directional spectrum of wind waves for deep water is proposed based on the statistics of wind waves. This model contains three parameters: the wave age, the inverse spectral bandwidth and the local spectral-peak angular frequency. The inverse spectral bandwidth is a robust parameter for describing the spectral steepness of wind waves. Using the inverse spectral bandwidth parameter, the proposed model can well describe various observations obtained from the open ocean and laboratory tank.展开更多
In this paper, a Wind Direction Change Index (WI), which can describe four-dimensional spatiotemporal changes of the atmospheric circulation objectively and quantitatively, is defined to study its evolution and season...In this paper, a Wind Direction Change Index (WI), which can describe four-dimensional spatiotemporal changes of the atmospheric circulation objectively and quantitatively, is defined to study its evolution and seasonal variation. The first four modes can be obtained by EOF expansion of the zonally averaged WI. The first mode reveals the basic spatial distribution of the annually averaged WI. The second mode reflects the quasi-harmonic parts of the WI deviations. Tropical, subtropical and extratropical monsoon areas can be clearly reflected by this mode. The third mode reflects the non-harmonic parts of the WI deviations. It shows the so-called February reverse in stratospheric atmosphere as well as the asymmetric seasonal changes from spring to fall and from fall to spring due to both the land-sea distribution contrast between the Northern and Southern Hemispheres and the nonlinear effect of atmospheric and ocean fluids. The fourth mode reveals the northward advancing of the global reversed wind fields from spring to summer and their southward withdrawal from summer to autumn.展开更多
On the basis of the wave energy balance equation, the response model of mean directions of locally wind-generated waves in slowly turning wind fields has been derived. The results show that in a homogeneous field, the...On the basis of the wave energy balance equation, the response model of mean directions of locally wind-generated waves in slowly turning wind fields has been derived. The results show that in a homogeneous field, the time scale of the response is not only related to the rate of wave growth, but also to the directional energy distribution and the angle between the wind direction and the mean wave direction. Furthermore, the law of change in the mean wave direction has been derived. The numerical computations show that the response of wave directions to slowly turning wind directions can be treated as the superposition of the responses of wave directions to a series of sudden small-angle changes of wind directions and the turning rate of the mean wave direction depends on the turning rate and the total turning angles of the wind direction. The response of wave directions is in agreement with the response for a sudden change of wind directions if the change in wind directions is very fast. Based on the normalized rates of wave growth under local winds presented by Wen et al. (1989), a quantitative estimate of the time scale of the response shows that the relationships between the dimensionless time scale and both the dimensionless total wave energy and the dimensionless peak frequency agree fairly well with the observations in comparison with other models.展开更多
Wind direction nowcasting is crucial in various sectors,particularly for ensuring aviation operations and safety.In this context,the TELMo(Time-series Embeddings from Language Models)model,a sophisticated deep learnin...Wind direction nowcasting is crucial in various sectors,particularly for ensuring aviation operations and safety.In this context,the TELMo(Time-series Embeddings from Language Models)model,a sophisticated deep learning architecture,has been introduced in this work for enhanced wind-direction nowcasting.Developed by using three years of data from multiple stations in the complex terrain of an international airport,TELMo incorporates the horizontal u(east-west)and v(north-south)wind components to significantly reduce forecasting errors.On a day with high wind direction variability,TELMo achieved mean absolute error values of 5.66 for 2-min,10.59 for 10-min,and 14.79 for 20-min forecasts,processed within a swift 9-ms/step timeframe.Standard degree-based analysis,in comparison,yielded lower performance,emphasizing the effectiveness of the u and v components.In contrast,a Vanilla neural network,representing a shallow-learning approach,underperformed in all analyses,highlighting the superiority of deep learning methodologies in wind direction nowcasting.TELMo is an efficient model,capable of accurately forecasting wind direction for air traffic operations,with an error less than 20°in 97.49%of the predictions,aligning with recommended international thresholds.This model design enables its applicability across various geographical locations,making it a versatile tool in global aviation meteorology.展开更多
Wind power has attracted increasing attention as a renewable and clean energy. Gear fault frequently occurs under extreme environment and complex loads. The time-varying meshing stiffness is one of the main excitation...Wind power has attracted increasing attention as a renewable and clean energy. Gear fault frequently occurs under extreme environment and complex loads. The time-varying meshing stiffness is one of the main excitations. This study proposes a 5 degree-of-freedom torsional vibration model for the planetary gear system. The influence of some parameters(e.g., contact ratio and phase difference) is discussed under different conditions of a single teeth pair and double pairs of teeth. The impact load caused by the teeth face fault, ramped load induced by the complex wind conditions, and the harmonic excitation are investigated. The analysis of the time-varying meshing stiffness and the dynamic meshing force shows that the dynamic design under different loads can be made to avoid resonance, can provide the basis for the gear fault location of a wind turbine, and distinguish the fault characteristics from the vibration signals.展开更多
基金financially supported by the National Natural Science Foundation of China (42461011, 42071014)the Fellowship of the China Postdoctoral Science Foundation (2021M703466)
文摘The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the protective benefits of High Density Polyethylene(HDPE)board sand fences,focusing on their orientation relative to various wind directions(referred to as'wind angle').This study found that the size of the low-velocity zone on the leeward side of the sand fences(LSF)expanded with an increase in the wind angle(WA).At 1H(the height of the sand fence)and 2H positions on the LSF,the wind speed profiles(WSP)exhibited a segmented logarithmic growth,constrained by Z=H at varying WAs.The efficacy of the sand fence in obstructing airflow escalated as WA increased.The size of the WA has a significant impact on the protective efficiency of HDPE board sand fences.Furthermore,compared to typical sandy surfaces,the rate of sand transport across the Gobi surface diminishes more slowly with height,attributed to the gravel's rebound effect.This phenomenon allows some sand particles to bypass the fences,rendering them less effective at blocking wind and trapping sand than in sandy environments.This paper offers scientific evidence supporting the practical use and enhancement of HDPE board sand fences in varied wind conditions.
基金This work was supported by China Scholarship Council.
文摘Objective To study the characterization apportionment of main ion concentrations of PM10 under the influence of trajectory wind direction in London. Methods PM10 samples from 1 May 1995 to 30 October 1995 of Oxford Street of Central London were collected, the metals and anions of which were measured using atomic absorption spectrometry (AAS) and ion chromatography (IC). Composite trajectories representative of the air mass arriving in London at the same period were calculated based on basic routine back trajectories from the British Atmospheric Data Centre (BADC). Results Concentration apportionments of main ions were similar when the trajectory was plotted back at 6 h, 12 h, and 24 h, some were obviously different. Mg, Ba, Pb, and Cu had similar peak apportionments at the area 180°-320°, but Zn and Ni at the area of 90°-270°, NO3^- and SO4^2- at the area of 100°-220°. Cl^- concentration peak apportionment was at the area of 220°-300°, which showed that Cl^- mainly came from the North Sea. Conclusion Trajectory wind direction has important effect on ion concentration apportionment of PM10 in London. The ions have similar concentration peak apportionments or their correlation coefficients are statistically significant.
文摘Estimates of the palaeo subaerial wind direction were studied systematically for the first time by using the anisotropy of loess magnetic susceptibility (AMS) measurements in the northwestern China. One hundred and forty undisturbed oriented aeolian loess samples were collected from Lanzhou, Linxia and Wudu areas for AMS measurements, which indicated the subaerial wind directions were not the same while the loess deposited. From the Early Pleistocene to Middle Pleistocene till Late Pleistocene, the wind direction experienced an anticlockwise rotation in the studied area. We suggested this change was related to the uplift of the Qinghai Xizang Plateau and the adjustment of current and landform effects.
文摘As a promising renewable energy,offshore wind energy currently is gaining more attention,by which the economic and efficient operation of floating wind turbine systems is a potential research direction.This study is primarily devoted to the analysis of dynamic response of the NREL-5 MW reference wind turbine supported by an OC3-Hywind SPAR-type platform using a recompiled code which combines FAST with WAMIT.To verify the reliability of the recompiled code,the free decay motions of a floating wind turbine system in still water are examined with satisfactory results.After that,thirteen scenarios with different angles between wind and wave from 0°to 90°are investigated.The dynamic responses of the turbine system in various degrees of freedom(DOFs)for different incident wind/wave directions are presented in both time and frequency domains via the fast Fourier transform.
文摘From measurements by a circular array consisting of 18 wave gauges in a large wave tank, directional spectra of wind-generated waves in deep water are systematically determined by using maximum likehood method.The investigations reveal that the angular spreading of the wave energy is consistent with cos2s(θ/2) proposed by Longuet-Higgins et al. (1963, Ocean Wad Spectra,11~136), if the bimodal distributions of wave energy are not taken into account. Bimodality occurring on higher frequency than peak frequency is too rare to affect our whole results. Surprisingly, a much broader directional spreading than that of the field, which is interpreted by the strongly nonlinear energy transfer because of the very young waves in laboratory, is found. The parameter s depends on frequency in the same way as observed by Mitsuyasu et al. (1975, Journal of Physical Oceanography, 5, 750~760)and Hasselmann et al. (1980, Journal of physical Oceanography, 10, 1264~1280) in the field, and the relationship between the four nondimensional parameters sm, fo, b1 and b2, determining the directional width, and (corresponding to the inverse of wave age) are given respectively. The observed distributions are found to agree well with the suggestion of Donelan et al. (1985, Philosophical Transaction of Royal Society of London, A315, 509~562) when applied to field waves.
基金The study was supported by the National Key Research and Development Program of China(No.2016YFC0303401)the National Natural Science Foundation of China(No.51779236)the National Natural Science Foundation of China-Shandong Joint Fund(No.U1706226).
文摘As a common and extensive datum to analyze wind,wind rose is one of the most important components of the meteorological elements.In this study,a model is proposed to establish the joint probability distribution of wind speed and direction using grouped data of wind rose.On the basis of the model,an algorithm is presented to generate pseudorandom numbers of wind speed and paired direction data.Afterward,the proposed model and algorithm are applied to two weather stations located in the Liaodong Gulf.With the models built for the two cases,a novel graph representing the continuous joint probability distribution of wind speed and direction is plotted,showing a strong correlation to the corresponding wind rose.Moreover,the joint probability distributions are utilized to evaluate wind energy potential successfully.In cooperation with Monte Carlo simulation,the model can approximately predict annual directional extreme wind speed under different return periods under the condition that the wind rose can represent the meteorological characters of the wind field well.The model is beneficial to design and install wind turbines.
基金supported by the National High-Technology Development Project of China through Grant No.863-2001633030 and No.863-2001633080supported partially by the National Aeronautics and Space Administration(NASA)through Grant NAG5-12745+1 种基金by the Office of Naval Research(ONR)through Grant N00014-03-1-0337by the National Oceanic and Atmospheric Administration(NOAA)through Grant NA17EC2449.
文摘A model on the directional frequency spectrum of wind waves for deep water is introduced. The comparisons of the proposed model with other existing models show that the proposed model is very close to the JONSWAP model and DHH model for describing the developing waves under the normal spectral bandwidth, and has a better description for the transition of the unidirectional spectrum from ω -4 to ω -5 at a position around 3ω p, i.e., three time the peak frequency. Comparisons also show that the proposed model describes closely both field data measured by a four-frequency radar and a laser-optical sensor, and laboratory data measured by a laser slope gauge and an imaging optical method. The comparisons further demonstrate that the inverse spectral bandwidth as a new wave parameter is robust for describing the spectral steepness. Finally, the formula on the local spectral-peak angular frequency is confirmed using the observed two-dimensional spectra.
文摘By using the historical data during 1953-2009,the yearly most wind direction change in Yumen and the meteorological disasters of 4 times yearly most wind direction abnormality in recent 57 years were analyzed. The results showed that there were 51 years which the yearly most wind direction was the easterlies in Yumen,and the westerly had 4 years. There were 2 years which the occurrence frequencies of westerly and easterlies were same. 4 years which the yearly wind direction abnormality was the most were in 1961,1979,1987 and 1998. When the yearly wind direction abnormality was the most,the meteorological disaster was serious. The total output of grain in Gansu Province in 1961 was the least in the history in recent 60 years. The serious drought disaster in 1961 caused that half agricultural population in Gansu seriously lacked of the grain,and the dead population sharply increased. In the end of 1961,the population in Gansu decreased nearly million than in 1958. The annual precipitation in 1979 was the most in recent 57 years. The daily precipitation on June 11,1987 was the most in June of recent 57 years in Yumen. The annual average temperature in 1998 was the highest in Yumen in recent 57 years.
文摘A directional function for frequencies equal to and larger than the peak frequency of a wind-wave frequency spectrum is constructed by fitting the angular spreading based on the analytically derived directional spectrum of Wen et al. (1993, Journal of Oceanography, 49(2), 131~147, 149~172). For frequencies smaller than the peak frequency, the directional function is obtained by comparing and analyzing existing formulas. The nondimensional wind-wave frequency spectrum of Wen et al. (1994, Progress in Natural Seience, 4(4). 407~427;4 (5), 586~596) has been used together with the directional function just mentioned to obtain the directional spectrum for easier application.
基金financially supported by the National Key Research and Development Program of China(Grant No.2017YFC1404200)the Tianjin Key Program of Applied Foundation and Advanced-Tech Research,China(Grant No.18JCZDJC40200)+1 种基金the National High Technology Research and Development Program of China(863 Program,Grant No.2012AA051709)the National Natural Science Foundation of China(Grant No.51509183)
文摘The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity and topography of the seabed were measured based on a system composed of plane positioning equipment and an ADV.Experimental results indicate that the development of the scour hole was fast at the beginning, but then the scour rate decreased until reaching equilibrium. Erosion would occur around each pile of the foundation. In most cases, the scour pits were connected in pairs and the outside widths of the scour holes were larger than the inner widths. The maximum scour depth occurred at the side pile of the foundation for each test. In addition, a preliminary investigation shows that the larger the flow velocity, the larger the scour hole dimensions but the shorter equilibrium time. The field maximum scour depth around the foundation was obtained based on the physical experiments with the geometric length scales of 1:27.0, 1:42.5 and 1:68.0, and it agrees with the scour depth estimated by the HEC-18 equation.
基金financially supported by the Chang Jiang Scholar and Innovation Team Development Plan of China(IRT_15R29)the Basic Research Innovation Group Project of Gansu Province,China(21JR7RA347)the Natural Science Foundation of Gansu Province,China(20JR10RA231)。
文摘The Milan Gobi area of the Golmud-Korla Railway in northwest China is located in the lower dispersal area of the mountain pass and has strong winds with evident double wind direction characteristics.This study introduced a novel sand fence deployment technique,termed‘folded linear deployment',designed to position the sand fence orthogonally to the two predominant wind directions for optimal protection.This study used wind tunnel and field tests to evaluate the wind and sand flow characteristics,as well as the windproof and sandresistant performance of folded linear HDPE(Highdensity polyethylene)board sand fences.The results suggest that the airflow around the fence creates clear zoning characteristics.The deceleration area on the BSF(backwind side of the sand fence)is much larger than that on the DSF(downwind side of the sand fence).Thus,sand particles are primarily deposited on the BSF.At different wind speeds,the airflow at 2 and 5 h on the DSF is not disturbed.The WSP(wind speed profile)presents a logarithmic distribution.The airflow is disturbed at 1-20 h on the BSF,and the WSP gradually deviates from the logarithmic law.However,as the airflow moves away from the fence,the WSP gradually approaches a logarithmic distribution.Meanwhile,the WPE(windproof efficiency)and SRE(sand-resistant efficiency)of the sand fence exceed 80%.In addition,the results of wind tunnel tests are compared with those of field tests.The overall dispersion is good,and the best dispersion is found at z/H=2.00,indicating good agreement between the two test results.This study provides a scientific basis for the design of sand hazard control measures,similar to the railway project in the Gobi Gale area.
基金Supported by the National Natural Science Foundation of China(40874100,41174128)
文摘Gravity waves with periods close to the Brunt-V(a|¨)is(a|¨)l(a|¨) period of the upper troposphere are often observed at mesopause altitudes as short period,quasi-monochromatic waves.The assumption that these short period waves originate in the troposphere may be problematic because their upward propagation to the mesosphere and lower thermosphere region could be significantly impeded due to an extended region of strong evanescence above the stratopause.To reconcile this apparent paradox,an alternative explanation is proposed in this paper.The inclusion of mean winds and their vertical shears is sufficient to allow certain short period waves to remain internal above the stratopause and to propagate efficiently to higher altitudes.A time-dependent numerical model is used to demonstrate the feasibility of this and to determine the circumstances under which the mesospheric wind shears play a role in the removal and directional filtering of short period gravity waves. Finally this paper concludes that the combination of the height-dependent mean winds and the mean temperature structure probably explains the existence of short period,quasi-monochromatic structures observed in airglow images of mesopause region.
基金supported by the Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issues of the Chinese Academy of Sciences (Grant No. XDA05040301)the National Basic Research Program of China (Grant No. 2010CB951804)the National Natural Science Foundation of China (Grant No. 41101045)
文摘Wind direction forecasting plays an important role in wind power prediction and air pollution management. Weather quantities such as temperature, precipitation, and wind speed are linear variables in which traditional model output statistics and bias correction methods are applied. However, wind direction is an angular variable; therefore, such traditional methods are ineffective for its evaluation. This paper proposes an effective bias correction technique for wind direction forecasting of turbine height from numerical weather prediction models, which is based on a circular-circular regression approach. The technique is applied to a 24-h forecast of 65-m wind directions observed at Yangmeishan wind farm, Yunnan Province, China, which consistently yields improvements in forecast performance parameters such as smaller absolute mean error and stronger similarity in wind rose diagram pattern.
基金This work was jointly supported by the National Key Research and Development Program of China[grant numbers 2018YFC1507103 and 2017YFC1501601]the Key Program of the Ministry of Science and Technology of China[grant number 2017YFE0107700]National Natural Science Foundation of China[grant numbers 41875054,41730961,41730960,and 41775065].
文摘The effect of vertical wind shear(VWS)directions on the change in western North Pacific tropical cyclone(TC)intensity is revisited in this study.Results show that the differences in the correlations between VWS in different orientations and the change in TC nondimensional intensity highly diminish,although slight differences are still present.The subtle differences in the correlations are likely associated with different synoptic-scale patterns at upper and lower levels.This result suggests that,in addition to thermodynamic effects,dynamic roles of the synoptic-scale patterns associated with the VWS should also be taken into account when the authors examine how VWS in different directions affects TC intensity change.
文摘Studying environmental phenomenon in Rub' Al-Khali (Arabic name of"Empty Quarter"), as one of the largest deserts in the world, requires adopting some advanced spatial technologies in conjunction with the data recorded in the field in order to device better understanding. The paper utilizes the technologies of GIS (geographical information systems) and RS (remote sensing) in order to study large amount of weather data recorded in the field from different sources related to oil and gas industry in Rub' AI-Khali desert. The main objective is to identify the wind directions and its movement in Kidan areas and the areas south and east of Shaybah in Rub' Al-Khali desert. The study used different sources of data mainly recorded by the seismic campaigns' base camps and the drilling rig camps or the civil works camps. Wind Roses were created for all metrological weather stations in the study area. Also, the study tried to analyze the dune types using satellite imageries and identify the relation of its shapes to the wind direction. The final aim of the result of this study is to help in planning best locations to build facilities for new major oil and gas project.
文摘A new model on the directional spectrum of wind waves for deep water is proposed based on the statistics of wind waves. This model contains three parameters: the wave age, the inverse spectral bandwidth and the local spectral-peak angular frequency. The inverse spectral bandwidth is a robust parameter for describing the spectral steepness of wind waves. Using the inverse spectral bandwidth parameter, the proposed model can well describe various observations obtained from the open ocean and laboratory tank.
文摘In this paper, a Wind Direction Change Index (WI), which can describe four-dimensional spatiotemporal changes of the atmospheric circulation objectively and quantitatively, is defined to study its evolution and seasonal variation. The first four modes can be obtained by EOF expansion of the zonally averaged WI. The first mode reveals the basic spatial distribution of the annually averaged WI. The second mode reflects the quasi-harmonic parts of the WI deviations. Tropical, subtropical and extratropical monsoon areas can be clearly reflected by this mode. The third mode reflects the non-harmonic parts of the WI deviations. It shows the so-called February reverse in stratospheric atmosphere as well as the asymmetric seasonal changes from spring to fall and from fall to spring due to both the land-sea distribution contrast between the Northern and Southern Hemispheres and the nonlinear effect of atmospheric and ocean fluids. The fourth mode reveals the northward advancing of the global reversed wind fields from spring to summer and their southward withdrawal from summer to autumn.
文摘On the basis of the wave energy balance equation, the response model of mean directions of locally wind-generated waves in slowly turning wind fields has been derived. The results show that in a homogeneous field, the time scale of the response is not only related to the rate of wave growth, but also to the directional energy distribution and the angle between the wind direction and the mean wave direction. Furthermore, the law of change in the mean wave direction has been derived. The numerical computations show that the response of wave directions to slowly turning wind directions can be treated as the superposition of the responses of wave directions to a series of sudden small-angle changes of wind directions and the turning rate of the mean wave direction depends on the turning rate and the total turning angles of the wind direction. The response of wave directions is in agreement with the response for a sudden change of wind directions if the change in wind directions is very fast. Based on the normalized rates of wave growth under local winds presented by Wen et al. (1989), a quantitative estimate of the time scale of the response shows that the relationships between the dimensionless time scale and both the dimensionless total wave energy and the dimensionless peak frequency agree fairly well with the observations in comparison with other models.
基金Supported by Interactive Technologies Institute/Larsys/Fundaçao para a Ciência e a Tecnologia(10.54499/LA/P/0083/2020,10.54499/UIDP/50009/2020,and 10.54499/UIDB/50009/2020)Agência Regional para o Desenvolvimento da Investigação,Tecnologia e Inovação,and Portuguese Technical Engineering Order(OET).
文摘Wind direction nowcasting is crucial in various sectors,particularly for ensuring aviation operations and safety.In this context,the TELMo(Time-series Embeddings from Language Models)model,a sophisticated deep learning architecture,has been introduced in this work for enhanced wind-direction nowcasting.Developed by using three years of data from multiple stations in the complex terrain of an international airport,TELMo incorporates the horizontal u(east-west)and v(north-south)wind components to significantly reduce forecasting errors.On a day with high wind direction variability,TELMo achieved mean absolute error values of 5.66 for 2-min,10.59 for 10-min,and 14.79 for 20-min forecasts,processed within a swift 9-ms/step timeframe.Standard degree-based analysis,in comparison,yielded lower performance,emphasizing the effectiveness of the u and v components.In contrast,a Vanilla neural network,representing a shallow-learning approach,underperformed in all analyses,highlighting the superiority of deep learning methodologies in wind direction nowcasting.TELMo is an efficient model,capable of accurately forecasting wind direction for air traffic operations,with an error less than 20°in 97.49%of the predictions,aligning with recommended international thresholds.This model design enables its applicability across various geographical locations,making it a versatile tool in global aviation meteorology.
基金financially supported by the project‘Research on Key Technologies of Condition Monitoring and Intelligent Early Detection of Wind Turbine Based on Big Data’from State Grid Corporation of China(No.NYB17201600300)
文摘Wind power has attracted increasing attention as a renewable and clean energy. Gear fault frequently occurs under extreme environment and complex loads. The time-varying meshing stiffness is one of the main excitations. This study proposes a 5 degree-of-freedom torsional vibration model for the planetary gear system. The influence of some parameters(e.g., contact ratio and phase difference) is discussed under different conditions of a single teeth pair and double pairs of teeth. The impact load caused by the teeth face fault, ramped load induced by the complex wind conditions, and the harmonic excitation are investigated. The analysis of the time-varying meshing stiffness and the dynamic meshing force shows that the dynamic design under different loads can be made to avoid resonance, can provide the basis for the gear fault location of a wind turbine, and distinguish the fault characteristics from the vibration signals.