期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
Memory effect in time fractional Schrödinger equation
1
作者 祖传金 余向阳 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期216-221,共6页
A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploratio... A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploration of the time fractional Schrodinger equation within the context of a non-Markovian environment.By leveraging a two-level atom as an illustrative case,we find that the choice to raise i to the order of the time derivative is inappropriate.In contrast to the conventional approach used to depict the dynamic evolution of quantum states in a non-Markovian environment,the time fractional Schrodinger equation,when devoid of fractional-order operations on the imaginary unit i,emerges as a more intuitively comprehensible framework in physics and offers greater simplicity in computational aspects.Meanwhile,we also prove that it is meaningless to study the memory of time fractional Schrodinger equation with time derivative 1<α≤2.It should be noted that we have not yet constructed an open system that can be fully described by the time fractional Schrodinger equation.This will be the focus of future research.Our study might provide a new perspective on the role of time fractional Schrodinger equation. 展开更多
关键词 time fractional Schrodinger equation memory effect non-Markovian environment
下载PDF
Variational Iteration Method for Solving Time Fractional Burgers Equation Using Maple 被引量:1
2
作者 Fayza Alwehebi Aatef Hobiny Dalal Maturi 《Applied Mathematics》 2023年第5期336-348,共13页
The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this ... The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this technique. Tables and images were used to present the collected numerical results. The difference between the exact and numerical solutions demonstrates the effectiveness of the Mabel program’s solution, as well as the accuracy and closeness of the results this method produced. It also demonstrates the Mabel program’s ability to quickly and effectively produce the numerical solution. 展开更多
关键词 Variational Iteration Method Time Fractional Burgers equation Maple18
下载PDF
A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
3
作者 曾展宽 陈艳萍 《Acta Mathematica Scientia》 SCIE CSCD 2023年第2期839-854,共16页
In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finit... In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme. 展开更多
关键词 local discontinuous Galerkin method time fractional diffusion equations sta-bility CONVERGENCE
下载PDF
Efficient Finite Difference/Spectral Method for the Time Fractional Ito Equation Using Fast Fourier Transform Technic
4
作者 Dakang Cen Zhibo Wang Seakweng Vong 《Communications on Applied Mathematics and Computation》 EI 2023年第4期1591-1600,共10页
A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the c... A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples. 展开更多
关键词 Time fractional Ito equation Finite difference method Spectral method STABILITY
下载PDF
Adomian Decomposition Method for Solving Time Fractional Burgers Equation Using Maple
5
作者 Fayza Alwehebi Aatef Hobiny Dalal Maturi 《Applied Mathematics》 2023年第5期324-335,共12页
In this paper, the Adomian decomposition method was used to solve the Time Fractional Burger equation using Mabel program. This method was applied to a number of examples of the Time Fractional Burger Equation. The ob... In this paper, the Adomian decomposition method was used to solve the Time Fractional Burger equation using Mabel program. This method was applied to a number of examples of the Time Fractional Burger Equation. The obtained numerical results were presented in the form of tables and graphics. The difference between the exact solutions and the numerical solutions shows us the effectiveness of the solution using the Mabel program and that this method gave accurate results and was close to the exact solution, in addition to its ability to obtain the numerical solution quickly and efficiently using the Mabel program. 展开更多
关键词 Adomian Decomposition Method Time Fractional Burgers equation Maple 18
下载PDF
Stability of Perfectly Matched Layers for Time Fractional Schrödinger Equation
6
作者 Tingting Zhang Xiangkun Li 《Engineering(科研)》 CAS 2023年第1期1-12,共12页
It is an important issue to numerically solve the time fractional Schrödinger equation on unbounded domains, which models the dynamics of optical solitons propagating via optical fibers. The perfectly matched lay... It is an important issue to numerically solve the time fractional Schrödinger equation on unbounded domains, which models the dynamics of optical solitons propagating via optical fibers. The perfectly matched layer approach is applied to truncate the unbounded physical domain, and obtain an initial boundary value problem on a bounded computational domain, which can be efficiently solved by the finite difference method. The stability of the reduced initial boundary value problem is rigorously analyzed. Some numerical results are presented to illustrate the accuracy and feasibility of the perfectly matched layer approach. According to these examples, the absorption parameters and the width of the absorption layer will affect the absorption effect. The larger the absorption width, the better the absorption effect. There is an optimal absorption parameter, the absorption effect is the best. 展开更多
关键词 Time Fractional Schrödinger equation Perfectly Matched Layer STABILITY
下载PDF
Bright and dark soliton solutions for some nonlinear fractional differential equations 被引量:6
7
作者 Ozkan Guner Ahmet Bekir 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期52-59,共8页
In this work, we propose a new approach, namely ansatz method, for solving fractional differential equations based on a fractional complex transform and apply it to the nonlinear partial space-time fractional modified... In this work, we propose a new approach, namely ansatz method, for solving fractional differential equations based on a fractional complex transform and apply it to the nonlinear partial space-time fractional modified Benjamin-Bona- Mahoney (mBBM) equation, the time fractional mKdV equation and the nonlinear fractional Zoomeron equation which gives rise to some new exact solutions. The physical parameters in the soliton solutions: amplitude, inverse width, free parameters and velocity are obtained as functions of the dependent model coefficients. This method is suitable and more powerful for solving other kinds of nonlinear fractional PDEs arising in mathematical physics. Since the fractional deriva- tives are described in the modified Riemann-Liouville sense. 展开更多
关键词 exact solutions ansatz method space-time fractional modified Benjamin-Bona-Mahoney equa-tion time fractional mKdV equation
下载PDF
Analysis of an Implicit Finite Difference Scheme for Time Fractional Diffusion Equation 被引量:1
8
作者 MA Yan 《Chinese Quarterly Journal of Mathematics》 2016年第1期69-81,共13页
Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order tim... Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper. 展开更多
关键词 time fractional diffusion equation finite difference approximation implicit scheme STABILITY CONVERGENCE EFFECTIVENESS
下载PDF
Redefined Extended Cubic B-Spline Functions for Numerical Solution of Time-Fractional Telegraph Equation
9
作者 Muhammad Amin Muhammad Abbas +2 位作者 Dumitru Baleanu Muhammad Kashif Iqbal Muhammad Bilal Riaz 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期361-384,共24页
This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finit... This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finite difference formulation for discretizing the Caputo time-fractional derivatives and RECBS functions to interpolate the solution curve along the spatial grid.Stability analysis of the scheme is provided to ensure that the errors do not amplify during the execution of the numerical procedure.The derivation of uniform convergence has also been presented.Some computational experiments are executed to verify the theoretical considerations.Numerical results are compared with the existing schemes and it is concluded that the present scheme returns superior outcomes on the topic. 展开更多
关键词 Extended cubic B-spline redefined extended cubic B-spline time fractional telegraph equation caputo fractional derivative finite difference method CONVERGENCE
下载PDF
He’s Homotopy Perturbation Method and Fractional Complex Transform for Analysis Time Fractional Fornberg-Whitham Equation
10
作者 Yanni Zhang Jing Pang 《Sound & Vibration》 EI 2021年第4期295-303,共9页
In this article,time fractional Fornberg-Whitham equation of He’s fractional derivative is studied.To transform the fractional model into its equivalent differential equation,the fractional complex transform is used ... In this article,time fractional Fornberg-Whitham equation of He’s fractional derivative is studied.To transform the fractional model into its equivalent differential equation,the fractional complex transform is used and He’s homotopy perturbation method is implemented to get the approximate analytical solutions of the fractional-order problems.The graphs are plotted to analysis the fractional-order mathematical modeling. 展开更多
关键词 Time fractional Fornberg-Whitham equation fractional complex transform He’s homotopy perturbation method
下载PDF
Element-free Galerkin (EFG) method for analysis of the time-fractional partial differential equations
11
作者 Ge Hon-Xia Liu Yong-Qing Cheng Rong-Jun 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第1期46-51,共6页
The present paper deals with the numerical solution of time-fractional partial differential equations using the element-free Galerkin (EFG) method, which is based on the moving least-square approximation. Compared w... The present paper deals with the numerical solution of time-fractional partial differential equations using the element-free Galerkin (EFG) method, which is based on the moving least-square approximation. Compared with numerical methods based on meshes, the EFG method for time-fractional partial differential equations needs only scattered nodes instead of meshing the domain of the problem. It neither requires element connectivity nor suffers much degradation in accuracy when nodal arrangements are very irregular. In this method, the first-order time derivative is replaced by the Caputo fractional derivative of order α(0 〈 α≤ 1). The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Several numerical examples are presented and the results we obtained are in good agreement with the exact solutions. 展开更多
关键词 element-free Galerkin (EFG) method meshless method time fractional partial differential equations
下载PDF
FAST SOLUTION OF TRANSIENT SCATTERING FROM ELECTRICALLY LARGE COMPLEX OBJECTS BASED ON TIME DOMAIN INTEGRAL EQUATION SOLVERS
12
作者 Li Ying Ren Meng Zhou Dongming He Jianguo 《Journal of Electronics(China)》 2010年第1期99-104,共6页
A fast Time Domain Integral Equation(TDIE) solver is presented for analysis of transient scattering from electrically large conducting complex objects.The numerical process of Marching-On-in-Time(MOT) method based TDI... A fast Time Domain Integral Equation(TDIE) solver is presented for analysis of transient scattering from electrically large conducting complex objects.The numerical process of Marching-On-in-Time(MOT) method based TDIE encounters high computational cost and exorbitant memory requirements.A group-style accelerated method-Plane Wave Time Domain(PWTD) algorithm,which permits rapid evaluation of transient wave field generated by temporally bandlimited sources,is employed to reduce the computational cost of MOT-based TDIE solvers.An efficient compressed storage technique for sparse matrix is adopted to decrease the enormous memory requirements of MOT.The scheme of the Multi-Level PWTD(MLPWTD)-enhanced MOT with compressed storage for sparse matrix is presented for analysis of transient scattering from electrically large complex objects in this paper.The numerical simulation results demonstrate the validity and efficiency of the presented scheme. 展开更多
关键词 Time Domain Integral equation(TDIE) Marching-On-in-Time(MOT) Plane Wave Time Domain(PWTD) Compressed storage
下载PDF
A Local Discontinuous Galerkin Method for Two-Dimensional Time Fractional Diffusion Equations
13
作者 Somayeh Yeganeh Reza Mokhtari Jan SHesthaven 《Communications on Applied Mathematics and Computation》 2020年第4期689-709,共21页
For two-dimensional(2D)time fractional diffusion equations,we construct a numerical method based on a local discontinuous Galerkin(LDG)method in space and a finite differ-ence scheme in time.We investigate the numeric... For two-dimensional(2D)time fractional diffusion equations,we construct a numerical method based on a local discontinuous Galerkin(LDG)method in space and a finite differ-ence scheme in time.We investigate the numerical stability and convergence of the method for both rectangular and triangular meshes and show that the method is unconditionally stable.Numerical results indicate the effectiveness and accuracy of the method and con-firm the analysis. 展开更多
关键词 Two-dimensional(2D)time fractional difusion equation Local discontinuous Galerkin method(LDG) Numerical stability Convergence analysis
下载PDF
ENTROPY CONSISTENCY OF LARGE TIME STEP SCHEMES FOR ISENTROPIC EQUATIONS OF GAS DYNAMICS
14
作者 姜光山 王靖华 《Acta Mathematica Scientia》 SCIE CSCD 1993年第4期361-383,共23页
In this paper, We show for isentropic equations of gas dynamics with adiabatic exponent gamma=3 that approximations of weak solutions generated by large time step Godunov's scheme or Glimm's scheme give entrop... In this paper, We show for isentropic equations of gas dynamics with adiabatic exponent gamma=3 that approximations of weak solutions generated by large time step Godunov's scheme or Glimm's scheme give entropy solution in the limit if Courant number is less than or equal to 1. 展开更多
关键词 ENTROPY CONSISTENCY OF LARGE TIME STEP SCHEMES FOR ISENTROPIC equationS OF GAS DYNAMICS STEP
下载PDF
Generalized Master Equation for Space-Time Coupled Continuous Time Random Walk
15
作者 刘剑 李宝河 陈晓松 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期1-4,共4页
The generalized master equation for the space-time coupled continuous time random walk is derived analytically, in which the space-time coupling is considered through the correlated function 9(t) ~ t^γ, 0 ≤ γ 〈... The generalized master equation for the space-time coupled continuous time random walk is derived analytically, in which the space-time coupling is considered through the correlated function 9(t) ~ t^γ, 0 ≤ γ 〈 2, and the probability density function ω(t) of a particle's waiting time t follows a power law form for large t: ω(t) ~t^-(1+α), 0 〈 α 〈 1. The results indicate that the expressions of the generalized master equation are determined by the correlation exponent 7 and the long-tailed index α of the waiting time. Moreover, the diffusion results obtained from the generalized master equation are in accordance with the previous known results and the numerical simulation results. 展开更多
关键词 GME Generalized Master equation for Space-Time Coupled Continuous Time Random Walk
下载PDF
Green Function of Generalized Time Fractional Diffusion Equation Using Addition Formula of Mittag-Leffler Function
16
作者 Fang Wang Jinmeng Zhang 《Journal of Applied Mathematics and Physics》 2022年第9期2720-2732,共13页
In this paper, we use the Mittag-Leffler addition formula to solve the Green function of generalized time fractional diffusion equation in the whole plane and prove the convergence of the Green function.
关键词 Mittag-Leffler Function Mellin Transforms Generalized Time Fractional Diffusion equation Green Function Addition Formula
下载PDF
A Compact Finite Volume Scheme for the Multi-Term Time Fractional Sub-Diffusion Equation
17
作者 Baojin Su Yanan Wang +1 位作者 Jingwen Qi Yousen Li 《Journal of Applied Mathematics and Physics》 2022年第10期3156-3174,共19页
In this paper, we introduce high-order finite volume methods for the multi-term time fractional sub-diffusion equation. The time fractional derivatives are described in Caputo’s sense. By using some operators, we obt... In this paper, we introduce high-order finite volume methods for the multi-term time fractional sub-diffusion equation. The time fractional derivatives are described in Caputo’s sense. By using some operators, we obtain the compact finite volume scheme have high order accuracy. We use a compact operator to deal with spatial direction;then we can get the compact finite volume scheme. It is proved that the finite volume scheme is unconditionally stable and convergent in L<sub>∞</sub>-norm. The convergence order is O(τ<sup>2-α</sup> + h<sup>4</sup>). Finally, two numerical examples are given to confirm the theoretical results. Some tables listed also can explain the stability and convergence of the scheme. 展开更多
关键词 Multi-Term Time Fractional Sub-Diffusion equation High-Order Compact Finite Volume Scheme Stable CONVERGENT
下载PDF
Solution of the Time Dependent Schrodinger Equation and the Advection Equation via Quantum Walk with Variable Parameters
18
作者 Shinji Hamada Masayuki Kawahata Hideo Sekino 《Journal of Quantum Information Science》 2013年第3期107-119,共13页
We propose a solution method of Time Dependent Schr?dinger Equation (TDSE) and the advection equation by quantum walk/quantum cellular automaton with spatially or temporally variable parameters. Using numerical method... We propose a solution method of Time Dependent Schr?dinger Equation (TDSE) and the advection equation by quantum walk/quantum cellular automaton with spatially or temporally variable parameters. Using numerical method, we establish the quantitative relation between the quantum walk with the space dependent parameters and the “Time Dependent Schr?dinger Equation with a space dependent imaginary diffusion coefficient” or “the advection equation with space dependent velocity fields”. Using the 4-point-averaging manipulation in the solution of advection equation by quantum walk, we find that only one component can be extracted out of two components of left-moving and right-moving solutions. In general it is not so easy to solve an advection equation without numerical diffusion, but this method provides perfectly diffusion free solution by virtue of its unitarity. Moreover our findings provide a clue to find more general space dependent formalisms such as solution method of TDSE with space dependent resolution by quantum walk. 展开更多
关键词 Quantum Walk Quantum Cellular Automaton Time Dependent Schrodinger equation Advection equation
下载PDF
On The Cauchy Problem For Some Parabolic Fractional Partial Differential Equations With Time Delays
19
作者 Mahmoud M.El-Borai Wagdy G.El-Sayed Faez N. Ghaffoori 《Journal of Mathematics and System Science》 2016年第5期194-199,共6页
The Cauchy problem for some parabolic fractional partial differential equation of higher orders and with time delays is considered. The existence and unique solution of this problem is studied. Some smoothness propert... The Cauchy problem for some parabolic fractional partial differential equation of higher orders and with time delays is considered. The existence and unique solution of this problem is studied. Some smoothness properties with respect to the parameters of these delay fractional differential equations are considered. 展开更多
关键词 Cauchy problem- fractional partial differential equations with time delays- successive approximations.
下载PDF
Temporal Second-order Scheme for a Hidden-memory Variable Order Time Fractional Diffusion Equation with an Initial Singularity
20
作者 Rui-lian DU Zhi-zhong SUN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2024年第4期1060-1077,共18页
In this work,a novel time-stepping L1 formula is developed for a hidden-memory variable-order Caputo’s fractional derivative with an initial singularity.This formula can obtain second-order accuracy and an error esti... In this work,a novel time-stepping L1 formula is developed for a hidden-memory variable-order Caputo’s fractional derivative with an initial singularity.This formula can obtain second-order accuracy and an error estimate is analyzed strictly.As an application,a fully discrete difference scheme is established for the initial-boundary value problem of a hidden-memory variable-order time fractional diffusion model.Numerical experiments are provided to support our theoretical results. 展开更多
关键词 time fractional diffusion equation hidden-memory variable-order fractional derivative error estimate initial singularity
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部