期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Influence of Tip Clearance on Unsteady Flow in Automobile Engine Pump 被引量:3
1
作者 Jiacheng Dai Jiegang Mou Tao Liu 《Fluid Dynamics & Materials Processing》 EI 2020年第2期161-179,共19页
The automobile engine pump is an important part of the automobile cooling system,and has a direct influence on the engine performance.Based on the SST k-ωturbulence model,unsteady numerical simulation for an automobi... The automobile engine pump is an important part of the automobile cooling system,and has a direct influence on the engine performance.Based on the SST k-ωturbulence model,unsteady numerical simulation for an automobile engine pump with different tip clearances was carried out by Fluent.To study the flow field characteristics and pressure fluctuation,the characteristics of secondary flow distribution in volute are also analyzed.The result shows that the pressure fluctuation characteristics of the flow field show obvious periodic variation at different levels of tip clearances.The peak value of pressure fluctuation at each monitoring point is dependent on the blade frequency.At the same time,with the increase of the tip clearance,the pressure fluctuation in the blade and volute is gradually increased,while the pressure fluctuation at the tip is reduced clearance.The pressure gradient in the pump also varies periodically with the rotation of the impeller.With the increase of the tip clearance,the pressure of the impeller,volute and tip clearance is gradually decreased.There are secondary flow vortexes inside the impeller,volute outlet and volute section.With the increase of tip clearance,the vortex intensity in the impeller channel is weakened,and the vortex strength at the volute outlet is intensified.On the cross section of the volute,the morphology of most vortexes has insignificant changes,but the vortex intensity decreased. 展开更多
关键词 Automobile engine pump tip clearance pressure fluctuation secondary flow
下载PDF
COMPARISON OF TWO METHODS TO INCREASE TIP CLEARANCE AND ITS EFFECT ON PERFORMANCE OF TURBOCHARGER CENTRIFUGAL COMPRESSOR STAGE 被引量:5
2
作者 SYED Noman Danish 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第4期60-65,共6页
Tip clearance between the blade tip and casing of a centrifugal compressor can be varied through two methods: by changing the blade height (MI) or by changing the casing diameter (M2). Numerical simulations are c... Tip clearance between the blade tip and casing of a centrifugal compressor can be varied through two methods: by changing the blade height (MI) or by changing the casing diameter (M2). Numerical simulations are carried out to compare these two methods and their effect on the stage and impeller performance. The impeller and diffuser are connected through rotor stator boundary using frozen rotor approach. Overall stage performance and the flow configuration have been investigated for nine tip clearance levels from no gap to 1 mm. Impeller and diffuser performances are also presented separately. It has been found that the overall and impeller performance are comparatively better for MI below tip clearance of 0.5 mm whereas M2 is found advantageous above 0.5 mm of tip clearance. Both MI and M2 show performance degradation with the increase in tip clearance. Two models have been proposed for the stage total pressure ratio and efficiency, which are found to be in agreement with experimental results. The impeller efficiency and the pressure ratio are found to be maximum at tip clearance of 0.1 mm for both the cases however minimum diffuser effectiveness is also observed at the same clearance level. Diffuser effectiveness is found to be maximum at zero gap for both cases. As it is practically impossible to have zero gap for unshrouded impellers so it is concluded that the optimum thickness is 0.5 mm onwards for MI and 0.5 mm for M2 in terms of diffuser effectiveness. Mass averaged flow parameters, entropy, blade loading diagram and relative pressure fields are presented, showing the loss production within the impeller passage with tip clearance. 展开更多
关键词 Centrifugal impeller Diffuser Stage tip clearance Numerical simulation Entropy
下载PDF
TOPOLOGY AND VORTEX STRUCTURES OF A CURVING TURBINE CASCADE WITH TIP CLEARANCE (Ⅰ)- EXPERIMENTAL MODEL AND TOPOLOGICAL FLOW PATTERNS ON BOTH ENDWALLS AND BLADE SURFACES
3
作者 杨庆海 黄洪雁 韩万今 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第8期948-957,共10页
By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in the transverse section, ... By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in the transverse section, and by appling topology theory, the structures on both endwalls and blade surfaces were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex and leads the secondary vortex to change from close separation to open separation, while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex. 展开更多
关键词 turbine cascade tip clearance curving cascade endwall and surface topological structure
下载PDF
TOPOLOGY AND VORTEX STRUCTURES OF A CURVING TURBINE CASCADE WITH TIP CLEARANCE (Ⅱ)- TOPOLOGICAL FLOW PATTERN AND VORTEX STRUCTURE IN THE TRANSVERSE SECTION OF A BLADE CASCADE
4
作者 杨庆海 黄洪雁 韩万今 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第8期958-962,共5页
By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and... By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and by appling topology theory, the topological structures and vortex structure in the transverse section of a blade cascade were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex, and leads the secondary vortex to change from close separation to open separation, while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex. 展开更多
关键词 turbine cascade tip clearance curving cascade transverse section flow field topological flow pattern and vortex structure
下载PDF
An experimental study on the impact behavior of cavitation inside tip clearance of a hydrofoil
5
作者 Yan-tao Cao Liang-hao Xu Xiao-xing Peng 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第6期1208-1214,共7页
Tip clearance cavitation is one of the most common cavitation phenomena exist on duct propellers,pumps and some hydraulic turbines,which may lead to erosion of the components.Due to the influence of the nearby wall,ca... Tip clearance cavitation is one of the most common cavitation phenomena exist on duct propellers,pumps and some hydraulic turbines,which may lead to erosion of the components.Due to the influence of the nearby wall,cavitation inside the tip clearance is more complicated than other cases without interaction.So far,the understanding about the impact mechanism of tip clearance cavitation is still limited.In this paper,to obtain the impact behavior of tip clearance cavitation,a high-speed camera was used to capture the cavitation behavior inside the tip clearance of a hydrofoil,and surface paint coating peeling method was applied to show the impact region.Results indicated that cavitation around the tip of the hydrofoil was composed of a tip separation cavity and a tip leakage vortex cavity,and the one with contribution to impact was the tip separation cavity.Through the comprehensive analysis of the paint peeling region and dynamic behavior of tip separation cavity,the impact was found to be related to the local collapse and rebound of the cloud cavitation shed from the attached part.In addition,the influence of tip clearance size on the behavior of tip clearance cavitation was also investigated.As the tip clearance size increased,the tip separation cavity tended to transfer from sheet cavitation to vortex cavitation.These findings can provide a sound basis for evaluating the erosion risk arising from the tip clearance cavitation. 展开更多
关键词 tip clearance cavitation impact region impact behavior tip clearance size
原文传递
New model-based method for aero-engine turbine blade tip clearance measurement 被引量:1
6
作者 Hanlin SHENG Tong LIU +3 位作者 Yan ZHAO Qian CHEN Bingxiong YIN Rui HUANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第8期128-147,共20页
Active control of aero-engine turbine tip clearance is one of the best chances for engine performance uplift currently.To do that,the first requirement is real-time measurement of tip clearance in aero-engine working ... Active control of aero-engine turbine tip clearance is one of the best chances for engine performance uplift currently.To do that,the first requirement is real-time measurement of tip clearance in aero-engine working environment.However,turbine complexity makes it unlikely for tip clearance sensors to be loaded.In recognition of that,this paper proposed a model-based method for tip clearance measurement.Firstly,by considering previously wrongly neglected factors such as load deformation,a mathematical model to monitor dynamic tip clearance changes is built to improve calculation accuracy.Then,after clarifying the coupling relationship between engine models and tip clearance models,this paper builds a component-level mathematical model integrating dynamic characteristics of turbine tip clearance,which helps realize accurate measurement of tip clearance in working environment.How tip clearance affects turbine efficiency is studied afterwards and reported to aero-engine model,so as to mitigate performance difference between aero-engine model and real engines caused by turbine tip clearance.Lastly,by hardware-in-the-loop simulation,tip clearance model demonstrates 15.9%better accuracy than previously built models in terms of turbine centrifugal deformation calculation.As tip clearance measurement model takes averagely 0.34 ms in calculation,meeting the operation requirement,it proves to be an effective new way. 展开更多
关键词 Aero-engine real-time model Gas turbines Model buildings tip clearance measurement Turbine components
原文传递
Experimental Research on Inlet Steady Swirl Distortion in an Axial Compressor with Non-Uniform Tip Clearance
7
作者 XU Rong HU Jun +2 位作者 WANG Xuegao JIANG Chao LI Wenyu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期286-296,共11页
The inlet swirl distortion and non-uniform tip clearance have great effects on aero-engine performance and stall margin.In this paper,the effects of paired swirl distortion on the aerodynamic stability and stall incep... The inlet swirl distortion and non-uniform tip clearance have great effects on aero-engine performance and stall margin.In this paper,the effects of paired swirl distortion on the aerodynamic stability and stall inception of a single stage axial compressor with non-uniform tip clearance are quantitatively analyzed by using the swirl distortion descriptors.The experimental results show that the paired swirl distortion dominated by co-rotating swirl improves the stability of the axial compressor.For a single-stage axial compressor with eccentricity of 100%,the stall inception starts at the maximum tip clearance with clean inlet.The initial position of the stall inception is determined by the maximum tip clearance when the small intensity paired swirl distortion exists at the compressor inlet.As the swirl intensity increases,it shifts towards the position of the counter rotating swirl vortex core.The inlet swirl will not change the type of stall inception. 展开更多
关键词 steady swirl distortion non-uniform tip clearance stall inception experiment research compressor performance
原文传递
NUMERICAL ANALYSIS OF THE INFLUENCE OF THE TIP CLEARANCE FLOWS ON THE UNSTEADY CAVITATING FLOWS IN A THREE- D IMENSIONAL INDUCER 被引量:30
8
作者 OKITA K. UGAJIN H. MATSUMOTO Y. 《Journal of Hydrodynamics》 SCIE EI CSCD 2009年第1期34-40,共7页
To clarify the influences of the tip clearance flows on the unsteady cavitating flow, the three-dimensional unsteady cavitating flows through both the two-dimensional cascades and the three-dimensional inducer with an... To clarify the influences of the tip clearance flows on the unsteady cavitating flow, the three-dimensional unsteady cavitating flows through both the two-dimensional cascades and the three-dimensional inducer with and without tip clearance are performed numerically. The governing equations for the compressible fluid flow with the DES turbulence model are employed with the assumption of the isentropic process of liquid phase. The evolution of cavities is represented as the source/sink of vapor phase. The basic equations in the curve linear coordinate are solved by the finite difference method. As the results of the three-dimensional cavitating flows through the two-dimensional cascades, the tip clearance flows from the pressure side to the suction side of the blade produces the tip vortex cavitation, which affects the sheet cavitation on the leading edge of the next blade and enhances the blockage effect near the casing than the flows without tip clearance. On the other hand, in the case of the three-dimensional inducer, the large backflow cavitation is observed around the inlet of the inducer, where the cavities are developed on the casing by the tip clearance flows. The large pressure gradient between the non-cavitating pressure side and the cavitating suction side enhances the tip clearance flows. The calculation considering the tip clearance reproduces the developed cavitation region similar to that of experimental visualizations. Additionally, the backflow cavitation rotates with the speed slower than the rotation speed of the inducer. Then, the rotation of backflow cavitation causes the periodic fluctuation of the outlet pressure greater than that of the inlet pressure. 展开更多
关键词 CAVITATION INDUCER tip clearance flow numerical analysis
原文传递
Effect of tip geometry and tip clearance on aerodynamic performance of a linear compressor cascade 被引量:12
9
作者 Zhong Jingjun Han Shaobing +1 位作者 Lu Huawei Kan Xiaoxu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期583-593,共11页
The tip leakage flow between a blade and a casing wall has a strong impact on compressor pressure rise capability, efficiency, and stability. Consequently, there is a strong motivation to look for means to minimize it... The tip leakage flow between a blade and a casing wall has a strong impact on compressor pressure rise capability, efficiency, and stability. Consequently, there is a strong motivation to look for means to minimize its impact on performance. This paper presents the potential of passive tip leakage flow control to increase the aerodynamic performance of highly loaded compressor blades. Experimental investigations on a linear compressor cascade equipped with blade winglets mounted to the blade tips have been carried out. Results for a variation of the tip clearance and the winglet geometry are presented. Current results indicate that the use of proper tip winglets in a compressor cascade can positively affect the local aerodynamic field by weakening the tip leakage vortex. Results also show that the suction-side winglets are aerodynamically superior to the pressure-side or combined winglets. The suction-side winglets are capable of reducing the exit total pressure loss associated with the tip leakage flow and the passage secondary flow to a significant degree. 展开更多
关键词 Compressor cascade Experimental investigation tip clearance tip geometry tip leakage vortex
原文传递
Active generalized predictive control of turbine tip clearance for aero-engines 被引量:6
10
作者 Peng Kai Fan Ding +2 位作者 Yang Fan Fu Qiang Li Yong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第5期1147-1155,共9页
Active control of turbine blade tip clearance continues to be a concern in design and control of gas turbines. Ever increasing demands for improved efficiency and higher operating temperatures require more stringent t... Active control of turbine blade tip clearance continues to be a concern in design and control of gas turbines. Ever increasing demands for improved efficiency and higher operating temperatures require more stringent tolerances on turbine tip clearance. In this paper, a turbine tip clearance control apparatus and a model of turbine tip clearance are proposed; an implicit active generalized predictive control (GPC), with auto-regressive (AR) error modification and fuzzy adjustment on control horizon, is presented, as well as a quantitative analysis method of robust per- turbation radius of the system. The active clearance control (ACC) of aero-engine turbine tip clear- ance is evaluated in a lapse-rate take-off transient, along with the comparative and quantitative analysis of the stability and robustness of the active tip clearance control system. The results show that the resultant active tip clearance control system with the improved GPC has favorable steadystate and dynamic performance and benefits of increased efficiency, reduced specific fuel consump- tion, and additional service life. 展开更多
关键词 Active clearance control(ACC) AERO-ENGINE Aircraft Generalized prcdictivc control (GPC) Global convergence Robust perturbation radius Turbine tip clearance
原文传递
A tip clearance prediction model for multistage rotors and stators in aero-engines 被引量:6
11
作者 Huibin SUN Jing WANG +3 位作者 Kai CHEN Huateng XIA Xin FENG Zhiyong CHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第2期343-357,共15页
Tip clearances of multistage rotors and stators greatly affect aero-engines’ aerodynamic efficiency, stability and safety. The inevitable machining and assembly errors, as well as the complicated error propagation me... Tip clearances of multistage rotors and stators greatly affect aero-engines’ aerodynamic efficiency, stability and safety. The inevitable machining and assembly errors, as well as the complicated error propagation mechanism, cause overproof or non-uniform tip clearances. However, it is generally accepted that tip clearances are difficult to predict, even under assembly state. In this paper, a tip clearance prediction model is proposed based on measured error data. Some 3 D error propagation sub-models, regarding rotors, supports and casings, are built and combined. The complex error coupling relationship is uncovered using mathematical methods. Rotor and stator tip clearances are predicted and analyzed in different phase angles. The maximum, minimum and average tip clearances can be calculated. The proposed model is implemented by a computer program,and a case study illustrates its performance and verifies its feasibility. The results can be referred by engineers in assembly quality judgement and decision-making. 展开更多
关键词 tip clearance Prediction Error propagation model Rotor and stator AERO-ENGINE Assembly
原文传递
Experimental investigation of cavitation instabilities in inducer with different tip clearances 被引量:4
12
作者 Le XIANG Yonghua TAN +1 位作者 Hui CHEN Kaifu XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第9期168-177,共10页
To investigate the effect of tip clearance size on cavitation characteristics in a turbopump inducer,a series of experiments have been conducted in a newly developed visualization test facility using room temperature ... To investigate the effect of tip clearance size on cavitation characteristics in a turbopump inducer,a series of experiments have been conducted in a newly developed visualization test facility using room temperature water as working fluid.The pressure fluctuations near the tip region were collected,and the cavity structures under various conditions were documented by a high-speed camera.It is found that large tip clearance distinctly reduces both the non-cavitation and cavitation performance.Three cavitation instabilities,super-synchronous rotating cavitation,synchronous rotating cavitation and cavitation surge have been carefully identified through combination of cross-correlation analysis of pressure signals and visualization results.Large tip clearance displays a remarkable stabilization effect on pressure fluctuation,cavitation surge totally disappears,and the range of occurrence of synchronous rotating cavitation becomes smaller for the large tip clearance,whereas super-synchronous rotating cavitation only occurs in the large tip clearance.The cavitation areas are smaller at large tip clearance,while the flow channels are more seriously choked when cavitation occurs heavily in comparison with those at small tip clearance,which may be responsible for the worse cavitation performance. 展开更多
关键词 Cavitation instabilities INDUCER Pressure fluctuation tip clearance VISUALIZATION
原文传递
Lock-in phenomenon of tip clearance flow and its influence on aerodynamic damping under specified vibration on an axial transonic compressor rotor 被引量:3
13
作者 Le HAN Dasheng WEI +1 位作者 Yanrong WANG Mingchang FANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期185-200,共16页
In this study,the lock-in phenomenon of Tip Clearance Flow(TCF)instabilities and their relationship to blade vibration are investigated numerically on an axial transonic rotor with a large tip clearance.The capabiliti... In this study,the lock-in phenomenon of Tip Clearance Flow(TCF)instabilities and their relationship to blade vibration are investigated numerically on an axial transonic rotor with a large tip clearance.The capabilities of simulating instability flow and lock-in phenomenon are verified on a transonic rotor and a NACA0012 airfoil by comparing with the test data,respectively.The lock-in phenomenon is first numerically confirmed that may occur to TCF instabilities when its frequency is close to the blade vibration frequency.The lock-in region becomes wider with the vibration amplitude increasing,and it is also affected by modal shapes.For the rotor at the simulation conditions in this study,the bending mode results in a wider lock-in region than the torsional mode.In the lock-in region,the phase difference between the Tip Clearance Vortex(TCV)and the blade vibration changes with the flow condition and the frequency ratio of the blade vibration and the TCV instabilities.The frequency of the TCV instabilities reduces with the mass flow decreasing.Therefore,reducing mass flow and increasing frequency ratio have similar effects on the TCV phase,which causes a significant variation on the unsteady pressure amplitude in the blade tip area.Thus,the aerodynamic damping changes significantly with the TCV phase.The aerodynamic damping displays a nonlinear relationship with the vibration amplitude,and it changes from negative to positive with the vibration amplitude increasing at the same frequency ratio.The negative damping is mainly provided by the tip area of the blade.For unlocked conditions,the period of the TCF instabilities fluctuates over time,and it cannot be directly separated by their frequency features.Inter Blade Phase Angle(IBPA)also has an important influence on the feature of the TCV instabilities.The occurrence of frequency lock-in also requires“appropriate”IBPA.For the examined working conditions,the frequency lock-in occurs under 0 ND(Nodal Diameter),but not under 8 ND.However,no matter 0 ND or 8 ND,the phase of TCV always locks onto the IBPA at the examined conditions. 展开更多
关键词 Aerodynamic damping Inter blade phase angle LOCK-IN Specified blade vibration tip clearance flow instabilities
原文传递
Numerical Prediction of the Pump jet Propulsor Tip Clearance Vortex Cavitation in Uniform Flow 被引量:2
14
作者 李晗 潘光 +1 位作者 黄桥高 施瑶 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第3期352-364,共13页
Previous studies show that the tip clearance loss limits the improvement of pumpjet propulsor (PJP) performance,and the tip clearance flow field is the most complicated part of PJP flow.In this work,the non-cavitation... Previous studies show that the tip clearance loss limits the improvement of pumpjet propulsor (PJP) performance,and the tip clearance flow field is the most complicated part of PJP flow.In this work,the non-cavitation and cavitation hydrodynamic performances of PJP with a tip clearance size of 1 mm are obtained by using the detached-eddy simulation (DES).At constant oncoming velocity,cavitation first occurs on the duct and then disappears with the decrease of the advance ratio.The rotor blade cavitation occurs at the low advance ratio and comprises tip clearance cavitation,tip leakage cavitation,and blade sheet cavitation.In the rotor region,the typical vortices include tip separation vortex,tip leakage vortex,trailing edge shedding vortex,and blade root horseshoe vortex.Combined with the pressure distribution,both the Q and λ2 criteria give reliable results of vortex identification.The cavitation causes an expansion of tip leakage vortex in the circumferential direction and decreases the intensities of tip separation vortex in the whole tip clearance area and tip leakage vortex in the cavitation area,and enhances the strength of tip leakage vortex in the downstream non-cavitation area. 展开更多
关键词 pump jet propulsor(PJP) HYDRODYNAMICS CAVITATION VORTEX tip clearance vortex
原文传递
Experimental Investigation of Aerodynamic Performance due to Blade Tip Clearance in a Gas Turbine Rotor Cascade
15
作者 CHUNG Jinmoo BAEK Seungchan HWANG Wontae 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第1期173-178,共6页
This study examines how the complex flow structure within a gas turbine rotor affects aerodynamic loss. An unshrouded linear turbine cascade was built, and velocity and pressure fields were measured using a 5-hole pro... This study examines how the complex flow structure within a gas turbine rotor affects aerodynamic loss. An unshrouded linear turbine cascade was built, and velocity and pressure fields were measured using a 5-hole probe. In order to elucidate the effect of tip clearance, the overall aerodynamic loss was evaluated by varying the tip clearance and examining the total pressure field for each case. The tip clearance was varied from 0% to 4.2% of blade span and the chord length based Reynolds number was fixed at 2×10^(5). For the case without tip clearance, a wake downstream of the blade trailing edge is observed, along with hub and tip passage vortices. These flow structures result in profile loss at the center of the blade span, and passage vortex related losses towards the hub and tip. As the tip clearance increases, a tip leakage vortex is formed, and it becomes stronger and eventually alters the tip passage vortex. Because of the interference of the secondary tip leakage flow with the main flow, the streamwise velocity decreases while the total pressure loss increases significantly by tenfold in the last 30% blade span region towards the tip for the 4.2% tip clearance case. It was additionally observed that the overall aerodynamic loss increases linearly with tip clearance. 展开更多
关键词 gas turbine turbine cascade aerodynamic loss tip clearance tip leakage
原文传递
Influence of Tip Clearance on Centrifugal Compressor IGV Regulation and Improvement
16
作者 SUN Qi WANG Huishe +3 位作者 ZHU Junqiang JI Chunjun LI Chunyang YAO Ka 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第3期1025-1033,共9页
In order to avoid collision with the end wall of the casing when the guide vane rotates around its own rotating axis in a centrifugal compressor,a circular gap will be left at the top of guide vane.Part of the gas flo... In order to avoid collision with the end wall of the casing when the guide vane rotates around its own rotating axis in a centrifugal compressor,a circular gap will be left at the top of guide vane.Part of the gas flow through the clearance cannot be effectively regulated,and the tip clearance leakage vortex is formed,which has an impact on the mainstream and makes the compressor performance decline.In order to solve this problem,in this paper,three improved schemes of guide vane channel structure,including rectangular channel,cambered channel,and globular channel,were put forward,which can effectively improve the regulation ability of guide vane.Comparing these three improved channels with the original one,the stable operating range of the compressor was enlarged;the power consumption of the compressor was reduced and the efficiency of the compressor was improved.By comprehensive comparison,the cambered channel has better performance and is easier to process,which has potential to be widely used in practice. 展开更多
关键词 centrifugal compressor inlet guide vane tip clearance
原文传递
机匣-动叶的相对运动对高负荷涡轮叶顶气热性能的影响
17
作者 杜昆 惠娜 +4 位作者 宋辉 陈磊 张倩 崔亭亭 刘存良 《风机技术》 2023年第1期47-56,共10页
Base on the standard k-ωturbulent model,numerical method for solving three dimensional Reynolds Averaged Navier-Stokes(RANS)was adopted to study the aerothermal characteristics of the turbine blade with casing relati... Base on the standard k-ωturbulent model,numerical method for solving three dimensional Reynolds Averaged Navier-Stokes(RANS)was adopted to study the aerothermal characteristics of the turbine blade with casing relative motion.Experimental data were used to verify the effectiveness of the numerical method and turbulent model.The effect of blade tip clearance,geometry and relative motion on blade tip aerothermal characteristics were analyzed.The numerical results show that for the flat tip,relative motion can effectively suppress tip leakage and reduce leakage vortex size at rotating blade-static casing(BRCS)and static bladerotating casing(BSCR)conditions.A high level of heat transfer region can be observed near the leading edge at the conditions of rotating bladerotating casing(BRCS)and static bladestatic casing(BSCR).The blade tip heat transfer coefficient expands with the increase of tip clearance at different relative motion modes.At the brcs and bscs,the axial average heat transfer trend is the closest when the tip clearance is 1.5%H.The scraping vortex generated by relative motion at brcr and bscs inhib-its the development of leakage flow for squealer tip because of its sealing effect.High level of heat transfer region is also concentrated in the leading edge at brcr and bscs.The size of scraping vortex weakens with the increase of cavity depth.The distribution trend of the average heat transfer coefficient is similar in the two cases of relative static and relative motion,except for the case of 2.5%H cavity depth. 展开更多
关键词 Numerical Simulation Relative Motion tip clearance tip Configuration Heat Transfer Coefficient
下载PDF
Variable Clearance Characteristics of High Subsonic Compressor Cascades with Blade Tip Winglets 被引量:2
18
作者 WU Wanyang ZHONG Jingjun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第2期495-510,共16页
The gas turbine is the main power equipment for naval ship and special civil ship,while the compressor is one of the core structures of the gas turbine.The existing tip clearance could prevent the compressor blade and... The gas turbine is the main power equipment for naval ship and special civil ship,while the compressor is one of the core structures of the gas turbine.The existing tip clearance could prevent the compressor blade and casing collision.Therefore,the flow loss in the tip region caused by the tip clearance will degrade the performance of the compressor.To improve the variable clearance characteristics of the high subsonic compressor cascades,the cascades with tip clearances of 1%,2%and 3%chord length are studied through experimental measurements and numerical calculations.The research results prove that the pressure surface tip winglet can cause a significant improvement effect under most working conditions.If the blade tip clearance size is gradually increasing within a reasonable range,the improvement effect becomes more remarkable,and the optimal tip winglet case changes.When tip clearance is 1%chord length,the PTW1.0 case(the width of the pressure surface tip winglet is 1.0 time of the original tip)reduces the flow loss by 3.09%compared with the NTW case(No Tip Winglet).When tip clearance is 2%chord length,the flow loss of PTW1.5 case(the width of the pressure surface tip winglet is 1.5 times of the original tip)is reduced by 3.46%.When tip clearance is 3%chord length,all alternative tip winglets reduce the total pressure loss,and PTW2.0 case(the width of the pressure surface tip winglet is 2.0 times of the original tip)is the best choice,which has a 6.53%degree of improvement. 展开更多
关键词 high subsonic compressor blade tip winglet tip clearance pressure surface experimental measurement
原文传递
压气机叶顶微喷气扩稳研究 被引量:1
19
作者 徐杰 严红 《风机技术》 2021年第4期1-13,共13页
The mechanism of compressor stall margin enhancement using the tip air injection is explored.The transonic compressor,NASARotor 37,is taken as the object to study the tip clearance flow under active control of tip air... The mechanism of compressor stall margin enhancement using the tip air injection is explored.The transonic compressor,NASARotor 37,is taken as the object to study the tip clearance flow under active control of tip air injection by numerical simulations.The effects of injection parameters(injection total temperature,injection position,injection angle,injection mass flow,injection port size,injection type and etc)on the stall margin extension are emphatically analyzed.Results show that the enhancement of tip leakage vortex enlarges the low-energy region induced by the shock wave in the row channel when the working condition is moving to stall point.In addition,the enhancement of radial vortex increases its entrainment ability,which tends to expand separation zone.Once the tip injection imposed,the decrease of the leakage vortex intensity widens the stall margin,while the total pressure loss increases to some extent due to the mixing of the tip micro jet with the mainstream.It is found that injection parameters should be restricted to a moderate region so as to achieve a good stall margin extension without an excessive increase in the pressure loss. 展开更多
关键词 Stall Margin tip clearance Flow tip Injection Flow Control Numerical Simulation
下载PDF
Effect of wire mesh casing treatment on axial compressor performance and stability
20
作者 Ming ZHANG Jiaming ZHANG +3 位作者 Jiahao HU Xu DONG Dakun SUN Xiaofeng SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期60-76,共17页
In this paper,a kind of Wire Mesh Casing Treatment(WMCT)is proposed to improve the stable operating range of the compressor.In contrast to the traditional circumferential groove,as for WMCT,a layer of wire mesh is lai... In this paper,a kind of Wire Mesh Casing Treatment(WMCT)is proposed to improve the stable operating range of the compressor.In contrast to the traditional circumferential groove,as for WMCT,a layer of wire mesh is laid on the surface of the circumferential groove.Parametric studies were conducted on the low-speed axial flow compressor,including the groove width,axial location,and mesh count.The optimum axial location for WMCT is related to its groove width.A higher wire mesh count results in a smaller compressor stall margin improvement.Steady simulations were carried out to study the effect of WMCT on the flow structure of the compressor.The wire mesh in the WMCT has a certain flow resistance,which restricts the flow into and out of the groove.Due to the WMCT,the flow parameter in the tip region of the rotor is less sensitive to changes in the operating conditions of the compressor.The WMCT causes the rotor tip blade loading to shift backward,inhibiting the formation of spill forward of the leakage flow,and thus improving the stability of the compressor.The flow resistance on the groove surface is a new degree-of-freedom for the casing treatment designer. 展开更多
关键词 Axial compressor Wire mesh casing treatment tip clearance flow Stall margin Blade loading
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部