A novel three-module robot has been introduced. It can change its configuration to adapt to the uneven terrain and to improve its tipover stability. This three-module tracked robot has three kinds of symmetry configur...A novel three-module robot has been introduced. It can change its configuration to adapt to the uneven terrain and to improve its tipover stability. This three-module tracked robot has three kinds of symmetry configuration. They are line type, triangle type, and row type. After the factors and the countermeasures of mobile robot's tipover problem are analyzed, stability pyramid and tipover stabil-ity index are proposed to globally determinate the mobile robot's static stability and dynamic stability. The shape shifting robot is tested by this technique under the combined disturbance of pitch, roll and yaw in simulation. The simulation result shows that this technique is effective for the analysis of mobile robot's tipover stability, especially for the reconfigurable or shape shifting modular robot. Experiments on three symmetry configurations are made under unstructured environments. The environment experiment shows the same result as that of the simulation that the triangle type configuration has the best stability. Both simulation and experiment provide a valid reference for the reconfigurable robot's potential application.展开更多
基金This project is supported by National Hi-Tech Research and Development Program of China(863 Program, No.2001AA422360) Chinese Academy of Sciences Advanced Manufacturing Technology R&D Base Foundation, Chrna(No.F000112).
文摘A novel three-module robot has been introduced. It can change its configuration to adapt to the uneven terrain and to improve its tipover stability. This three-module tracked robot has three kinds of symmetry configuration. They are line type, triangle type, and row type. After the factors and the countermeasures of mobile robot's tipover problem are analyzed, stability pyramid and tipover stabil-ity index are proposed to globally determinate the mobile robot's static stability and dynamic stability. The shape shifting robot is tested by this technique under the combined disturbance of pitch, roll and yaw in simulation. The simulation result shows that this technique is effective for the analysis of mobile robot's tipover stability, especially for the reconfigurable or shape shifting modular robot. Experiments on three symmetry configurations are made under unstructured environments. The environment experiment shows the same result as that of the simulation that the triangle type configuration has the best stability. Both simulation and experiment provide a valid reference for the reconfigurable robot's potential application.