期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
An update–tissue engineered nerve grafts for the repair of peripheral nerve injuries 被引量:11
1
作者 Nitesh P.Patel Kristopher A.Lyon Jason H.Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第5期764-774,共11页
Peripheral nerve injuries(PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage,... Peripheral nerve injuries(PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts(ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts(TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems(DDS), co-administration of platelet-rich plasma(PRP), and pretreatment with chondroitinase ABC(Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix(ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia(DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed. 展开更多
关键词 peripheral nerve injury peripheral nerve repair tissue engineered nerve graft nerve conduit stem cells Schwann cells dorsal root ganglia neurons axon stretch-growth autologous tissue graft
下载PDF
Differentiation of mesenchymal stem cells into neuronal cells on fetal bovine acellular dermal matrix as a tissue engineered nerve scaffold 被引量:4
2
作者 Yuping Feng Jiao Wang +5 位作者 Shixin Ling Zhuo Li Mingsheng Li Qiongyi Li Zongren Ma Sijiu Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第22期1968-1978,共11页
The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells fol-lowing induction with neural di... The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells fol-lowing induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined speciifc neu-ronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuro-nal-speciifc proteins, includingβIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differen-tiation medium differentiated into a multilayered neural network-like structure with long nerve ifbers that was composed of several parallel microifbers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sec-tioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve. 展开更多
关键词 nerve regeneration peripheral nerve defects fetal bovine acellular dermal matrix biological scaffold bone marrow mesenchymal stem cells neuronal differentiation neurons tissue engineered nerve neural regeneration
下载PDF
Repairing peripheral nerve injury using tissue engineering techniques 被引量:4
3
作者 Ernest W.Wang Jun Zhang Jason H.Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1393-1394,共2页
Each year approximately 360,000 people in the United States suffer a peripheral nerve injury (PNI), which is a leading source of lifelong disability (Kelsey et al., 1997; Noble et al., 1998). The most frequent cau... Each year approximately 360,000 people in the United States suffer a peripheral nerve injury (PNI), which is a leading source of lifelong disability (Kelsey et al., 1997; Noble et al., 1998). The most frequent cause of PNIs is motor vehicle accidents, while gunshot wounds, stabbings, and birth trauma are also common factors. Patients suffering from disabilities as a result of their PNIs are also burdensome to the healthcare system, with aver- age hospital stays of 28 days each year (Kelsey et al., 1997; Noble et al., 1998). 展开更多
关键词 PNI Repairing peripheral nerve injury using tissue engineering techniques DRG
下载PDF
Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering 被引量:2
4
作者 Jun-feng Zhou Yi-guo Wang +3 位作者 Liang Cheng Zhao Wu Xiao-dan Sun Jiang Peng 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1644-1652,共9页
Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We ... Polypyrrole (PPy) is a biocompatible polymer with good conductivity. Studies combining PPy with electrospinning have been reported; however, the associated decrease in PPy conductivity has not yet been resolved. We embedded PPy into poly(lactic acid) (PLA) nanofibers via electrospinning and fabricated a PLA/PPy nanofibrous scaffold containing 15% PPy with sustained conductivity and aligned topog- raphy, qhere was good biocompatibility between the scaffold and human umbilical cord mesenchymal stem cells as well as Schwann cells. Additionally, the direction of cell elongation on the scaffold was parallel to the direction of fibers. Our findings suggest that the aligned PLA/PPy nanofibrous scaffold is a promising biomaterial for peripheral nerve regeneration. 展开更多
关键词 nerve regeneration POLYPYRROLE ELECTROSPINNING CONDUCTIVITY electrical property Schwann cells human umbilical cord mesenchymalstem cells nerve tissue engineering nanofibrous scaffolds neural regeneration
下载PDF
3D printing of functional bioengineered constructs for neural regeneration: a review 被引量:1
5
作者 Hui Zhu Cong Yao +6 位作者 Boyuan Wei Chenyu Xu Xinxin Huang Yan Liu Jiankang He Jianning Zhang Dichen Li 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期87-118,共32页
Three-dimensional(3D)printing technology has opened a new paradigm to controllably and reproducibly fabricate bioengineered neural constructs for potential applications in repairing injured nervous tissues or producin... Three-dimensional(3D)printing technology has opened a new paradigm to controllably and reproducibly fabricate bioengineered neural constructs for potential applications in repairing injured nervous tissues or producing in vitro nervous tissue models.However,the complexity of nervous tissues poses great challenges to 3D-printed bioengineered analogues,which should possess diverse architectural/chemical/electrical functionalities to resemble the native growth microenvironments for functional neural regeneration.In this work,we provide a state-of-the-art review of the latest development of 3D printing for bioengineered neural constructs.Various 3D printing techniques for neural tissue-engineered scaffolds or living cell-laden constructs are summarized and compared in terms of their unique advantages.We highlight the advanced strategies by integrating topographical,biochemical and electroactive cues inside 3D-printed neural constructs to replicate in vivo-like microenvironment for functional neural regeneration.The typical applications of 3D-printed bioengineered constructs for in vivo repair of injured nervous tissues,bio-electronics interfacing with native nervous system,neural-on-chips as well as brain-like tissue models are demonstrated.The challenges and future outlook associated with 3D printing for functional neural constructs in various categories are discussed. 展开更多
关键词 3D printing bioengineered neural constructs neural regeneration nerve tissue engineering nervous tissue models
下载PDF
Fascial pedicle artificial nerve tissue compared with silicone tube bridging to repair sciatic nerve defects in rats
6
作者 Xu He Xiaofei Wang +5 位作者 Jing Zhao Wenhua Li Yuanxin Zhang Zhigang Qu Guanghai Yuan Huanfang Chi 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第5期348-352,共5页
BACKGROUND: Silicone tube bridging for peripheral nerve defects has been shown to be successful in guiding neural regeneration. However, this method is accompanied by complications. Because materials for bridging ner... BACKGROUND: Silicone tube bridging for peripheral nerve defects has been shown to be successful in guiding neural regeneration. However, this method is accompanied by complications. Because materials for bridging nerve fibers should exhibit biocompatibility, the development of novel artificial tissues to bridge nerve grafts has become important in the field of nerve tissue engineering for the repair of peripheral nerve defects. OBJECTIVE: To investigate effectiveness and feasibility of fascial pedicle artificial nerve tissue to repair peripheral nerve defects, and to compare to autologous nerve grafts and silicone tube bridging methods. DESIGN, TIME AND SETTING: Randomized, controlled, neural tissue engineering-based, animal experiments were performed at the Laboratory of Human Anatomy in Qingdao University Medical College from March 2006 to March 2007. MATERIALS: Medical absorbable collagen sponge was purchased from Henan Province Tiangong BJo-Material, China. Cantata 2-track 4-trace EMG-evoked potential instrument was purchased from Dantec, Denmark. Medical silicone tube was purchased from Shenzhen Legend Technology, China. METHODS: Forty healthy, adult, male, Sprague Dawley rats were randomly assigned to four groups fascial pedicle nerve, autologous nerve, silicone tube, and normal, with 10 rats in each group. A 10-mm defective sciatic nerve section was produced in rats following the removal of the fascial pedicle. The fascial flap surrounding the defect was harvested; one side of the nerve pedicle was maintained and then sutured into a tube with the fascia surface as the pipe inner wail. The tube was filled with a medical absorbable collagen (Bodyin) to construct a bridge between the artificial tissue nerve graft and the damaged sciatic nerve. The sciatic nerve defects in the autologous nerve and silicone tube groups were bridged using autologous nerve grafts and a medical silicone tube with matched specifications. MAIN OUTCOME MEASURES: At 4 months after transplantation, electromyogram was used to detect sciatic nerve conduction velocity and action potential amplitude. Hematoxylin-eosin and Nissl staining were used to determine the number of spinal cord anterior horn motor neurons and neurites Osmium tetroxide staining of the sciatic nerve bridge section was performed to detect the number and diameter of nerve fibers. RESULTS: There were no differences in sciatic nerve conduction velocity, action potential amplitude, the number of spinal cord anterior horn motor neurons and neurites, sciatic nerve fiber number, and diameter between the autologous nerve graft and normal groups (P 〉 0.05). However, these values were significantly greater than in the silicone tube group (P 〈 0.05). CONCLUSION: Quantitative results suggested that artificial nerve tissue, with an autologous tissue fascia flap as a nerve conduit, could be used to repair peripheral nerve defects. The regenerated fascial pedicle artificial nerve tissue was similar to an autologous nerve graft in terms of morphology and functional recovery and was superior to results from silicone tube bridging transplants. 展开更多
关键词 artificial tissue nerve fascia pedicle medical absorbable collagen autologous nerve graft silicone tube nerve tissue engineering neural regeneration
下载PDF
Human amniotic membrane and nerve tissue engineering
7
《Neural Regeneration Research》 SCIE CAS CSCD 2012年第4期319-319,共1页
Totally three articles focusing on "the effects of microenvironment for human amniotic epithelial cell transplantation on cell survival and differentiation, the migration of human amniotic epithelial cells after in v... Totally three articles focusing on "the effects of microenvironment for human amniotic epithelial cell transplantation on cell survival and differentiation, the migration of human amniotic epithelial cells after in vitro transplantation, and the rheological characteristics of anastomosing injured sciatic nerve with human amniotic membrane without amniotic epithelial cells" are published in three issues. We hope that our readers find these papers useful to their research. 展开更多
关键词 CELL Human amniotic membrane and nerve tissue engineering
下载PDF
Hypoxic pre-conditioned adipose-derived stem/progenitor cells embedded in fibrin conduits promote peripheral nerve regeneration in a sciatic nerve graft model
8
作者 Julius M.Mayer Christian Krug +4 位作者 Maximilian M.Saller Annette Feuchtinger Riccardo E.Giunta Elias Volkmer Thomas Holzbach 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期652-656,共5页
Recent results emphasize the supportive effects of adipose-derived multipotent stem/progenitor cells(ADSPCs)in peripheral nerve recovery.Cultivation under hypoxia is considered to enhance the release of the regenerati... Recent results emphasize the supportive effects of adipose-derived multipotent stem/progenitor cells(ADSPCs)in peripheral nerve recovery.Cultivation under hypoxia is considered to enhance the release of the regenerative potential of ADSPCs.This study aimed to examine whether peripheral nerve regeneration in a rat model of autologous sciatic nerve graft benefits from an additional custom-made fibrin conduit seeded with hypoxic pre-conditioned(2%oxygen for 72 hours)autologous ADSPCs(n=9).This treatment mode was compared with three others:fibrin conduit seeded with ADSPCs cultivated under normoxic conditions(n=9);non-cell-carrying conduit(n=9);and nerve autograft only(n=9).A 16-week follow-up included functional testing(sciatic functional index and static sciatic index)as well as postmortem muscle mass analyses and morphometric nerve evaluations(histology,g-ratio,axon density,and diameter).At 8 weeks,the hypoxic pre-conditioned group achieved significantly higher sciatic functional index/static sciatic index scores than the other three groups,indicating faster functional regeneration.Furthermore,histologic evaluation showed significantly increased axon outgrowth/branching,axon density,remyelination,and a reduced relative connective tissue area.Hypoxic pre-conditioned ADSPCs seeded in fibrin conduits are a promising adjunct to current nerve autografts.Further studies are needed to understand the underlying cellular mechanism and to investigate a potential application in clinical practice. 展开更多
关键词 adipose-derived progenitor cells adipose-derived multipotent stem/progenitor cell autologous nerve graft fibrin conduit hypoxia hypoxic pre-conditioning nerve defect nerve tissue engineering peripheral nerve regeneration regenerative medicine
下载PDF
Platelet-rich plasma gel in combination with Schwann cells for repair of sciatic nerve injury 被引量:11
9
作者 Fagang Ye Haiyan Li Guangxi Qiao Feng Chen Hao Tao Aiyu Ji Yanling Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第29期2286-2292,共7页
Bone marrow mesenchymal stem cells were isolated from New Zealand white rabbits, culture-expanded and differentiated into Schwann cell-like cells. Autologous platelet-dch plasma and Schwann cell-like cells were mixed ... Bone marrow mesenchymal stem cells were isolated from New Zealand white rabbits, culture-expanded and differentiated into Schwann cell-like cells. Autologous platelet-dch plasma and Schwann cell-like cells were mixed in suspension at a density of 1 x 106 cells/mL, prior to introduction into a poly (lactic-co-glycolic acid) conduit. Fabricated tissue-engineered nerves were implanted into rabbits to bridge 10 mm sciatic nerve defects (platelet-rich plasma group). Controls were established using fibrin as the seeding matrix for Schwann cell-like cells at identical density to construct tissue-engineered nerves (fibrin group). Twelve weeks after implantation, toluidine blue staining and scanning electron microscopy were used to demonstrate an increase in the number of regenerating nerve fibers and thickness of the myelin sheath in the platelet-rich plasma group compared with the fibrin group. Fluoro-gold retrograde labeling revealed that the number of Fluoro-gold-positive neurons in the dorsal root ganglion and the spinal cord anterior horn was greater in the platelet-rich plasma group than in the fibrin group. Electrophysiological examination confirmed that compound muscle action potential and nerve conduction velocity were superior in the platelet-rich plasma group compared with the fibrin group. These results indicate that autologous platelet-rich plasma gel can effectively serve as a seeding matrix for Schwann cell-like cells to construct tissue-engineered nerves to promote perJpheral nerve regeneration. 展开更多
关键词 platelet-rich plasma extracellular matrix Schwann cells FIBRIN sciatic nerve peripheral nerve injury nerve tissue engineering neural regeneration
下载PDF
Combining acellular nerve allografts with brainderived neurotrophic factor transfected bone marrow mesenchymal stem cells restores sciatic nerve injury better than either intervention alone 被引量:7
10
作者 Yanru Zhang Hui Zhang +2 位作者 Gechen Zhang Ka Ka Wenhua Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第20期1814-1819,共6页
In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bo... In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchyrnal stem cells group. Results showed that at 8 weeks after bridging, sciatic functional index, triceps wet weight recovery rate, myelin thickness, and number of myelinated nerve fibers were significantly changed in the three groups. Variations were the largest in the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells group compared with the other two groups. Experimental findings suggest that chemically extracted acellular nerve allograft combined nerve factor and mesenchymal stem cells can promote the restoration of sciatic nerve defects. The repair effect seen is better than the single application of acellular nerve allograft or acellular nerve allograft combined mesenchymal stem cell transplantation. 展开更多
关键词 nerve regeneration peripheral nerve regeneration peripheral nerve injury chemicallyextracted acellular nerve brain-derived neurotrophic factor bone marrow mesenchymal stem cells nerve tissue engineering neural regeneration
下载PDF
Construction of a three-dimensional bionic nerve conduit containing two neurotrophic factors with separate delivery systems for the repair of sciatic nerve defects 被引量:3
11
作者 Zhiyue Li Qun Zhao +2 位作者 Ran Bi Yong Zhuang Siyin Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第13期988-994,共7页
Previous studies of nerve conduits have investigated numerous properties, such as conduit luminal structure and neurotrophic factor incorporation, for the regeneration of nerve defects. The present study used a poly(... Previous studies of nerve conduits have investigated numerous properties, such as conduit luminal structure and neurotrophic factor incorporation, for the regeneration of nerve defects. The present study used a poly(lactic-co-glycolic acid) (PLGA) copolymer to construct a three-dimensional (3D) bionic nerve conduit, with two channels and multiple microtubule lumens, and incorporating two neurotrophic factors, each with their own delivery system, as a novel environment for peripheral nerve regeneration. The efficacy of this conduit in repairing a 1.5 cm sciatic nerve defect was compared with PLGA-alone and PLGA-microfilament conduits, and autologous nerve transplantation. Results showed that compared with the other groups, the 3D bionic nerve conduit had the fastest nerve conduction velocity, largest electromyogram amplitude, and shortest electromyogram latency. In addition, the nerve fiber density, myelin sheath thickness and axon diameter were significantly increased, and the recovery rate of the triceps surae muscle wet weight was lowest. These findings suggest that 3D bionic nerve conduits can provide a suitable microenvironment for peripheral nerve regeneration to efficiently repair sciatic nerve defects. p 展开更多
关键词 oly(lactic-co-glycolic acid) sciatic nerve defect nerve conduit BIONICS nerve tissue engineering neural regeneration
下载PDF
Comparison of viscoelasticity between normal human sciatic nerve and amniotic membrane 被引量:1
12
作者 Donghui Xu Conghai Zhao +2 位作者 Huili Ma Jun Wei Dongyuan Li 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第14期1269-1275,共7页
Sciatic nerve tissue was obtained from the gluteus maximus muscle segment of normal human cadavers and amniotic membrane tissue was obtained from healthy human puerperant placentas. Both tissues were analyzed for thei... Sciatic nerve tissue was obtained from the gluteus maximus muscle segment of normal human cadavers and amniotic membrane tissue was obtained from healthy human puerperant placentas. Both tissues were analyzed for their stress relaxation and creep properties to determine suitability for transplantation applications. Human amniotic membrane and sciatic nerve tissues had similar tendencies for stress relaxation and creep properties. The stress value of the amniotic membrane stress relaxation group decreased to a greater extent compared with the sciatic nerve stress relaxation group. Similarly, the stress value of the amniotic membrane creep group increased to a greater extent compared with the sciatic nerve creep group. The stress relaxation curve for human amniotic membrane and sciatic nerve showed a logarithm correlation, while the creep curve showed an exponential correlation. These data indicate that amniotic membrane tissue has better stress relaxation and creep properties compared with sciatic nerve tissue. 展开更多
关键词 neural regeneration basic research CADAVER HUMAN sciatic nerve amniotic membrane stressrelaxation creep VISCOELASTICITY stress BIOMECHANICS nerve tissue engineering NEUROREGENERATION
下载PDF
Noncoding RNAs and Their Potential Therapeutic Applications in Tissue Engineering 被引量:4
13
作者 Shiying Li Tianmei Qian +2 位作者 Xinghui Wang Jie Liu Xiaosong Gu 《Engineering》 SCIE EI 2017年第1期3-15,共13页
Tissue engineering is a relatively new but rapidly developing field in the medical sciences. Noncoding RNAs(ncRNAs) are functional RNA molecules without a protein-coding function; they can regulate cellular behavior a... Tissue engineering is a relatively new but rapidly developing field in the medical sciences. Noncoding RNAs(ncRNAs) are functional RNA molecules without a protein-coding function; they can regulate cellular behavior and change the biological milieu of the tissue. The application of ncRNAs in tissue engineering is starting to attract increasing attention as a means of resolving a large number of unmet healthcare needs, although ncRNA-based approaches have not yet entered clinical practice. In-depth research on the regulation and delivery of ncRNAs may improve their application in tissue engineering.The aim of this review is: to outline essential ncRNAs that are related to tissue engineering for the repair and regeneration of nerve, skin, liver, vascular system, and muscle tissue; to discuss their regulation and delivery; and to anticipate their potential therapeutic applications. 展开更多
关键词 tissue engineering Noncoding RNAs MicroRNAs nerve Skin Liver Vascular system Muscle
下载PDF
Cartilage oligomeric matrix protein enhances the vascularization of acellular nerves 被引量:1
14
作者 Wei-ling Cui Long-hai Qiu +3 位作者 Jia-yan Lian Jia-chun Li Jun Hu Xiao-lin Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第3期512-518,共7页
Vascularization of acellular nerves has been shown to contribute to nerve bridging.In this study,we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the... Vascularization of acellular nerves has been shown to contribute to nerve bridging.In this study,we used a 10-mm sciatic nerve defect model in rats to determine whether cartilage oligomeric matrix protein enhances the vascularization of injured acellular nerves.The rat nerve defects were treated with acellular nerve grafting(control group) alone or acellular nerve grafting combined with intraperitoneal injection of cartilage oligomeric matrix protein(experimental group).As shown through two-dimensional imaging,the vessels began to invade into the acellular nerve graft from both anastomotic ends at day 7 post-operation,and gradually covered the entire graft at day 21.The vascular density,vascular area,and the velocity of revascularization in the experimental group were all higher than those in the control group.These results indicate that cartilage oligomeric matrix protein enhances the vascularization of acellular nerves. 展开更多
关键词 nerve regeneration peripheral nerve injuries acellular nerves radiography nerve repair nerve tissue engineering two-dimensional evaluation vascularized models angiogenesis neural regeneration
下载PDF
Fabrication and Characterization of Dual-layer Multichannel Nerve Guidance Conduit
15
作者 孙彬彬 吴桐 +4 位作者 王娟 布托阿齐 袁柳 李丹丹 莫秀梅 《Journal of Donghua University(English Edition)》 EI CAS 2017年第1期167-170,共4页
Nowadays, muifichannel nerve guidance conduit (NGC) was designed by mimicking the architecture of nerve fascicles, and it was used to reduce dispersion of regenerating axons within the NGC lumen. In this paper, gela... Nowadays, muifichannel nerve guidance conduit (NGC) was designed by mimicking the architecture of nerve fascicles, and it was used to reduce dispersion of regenerating axons within the NGC lumen. In this paper, gelatin was used to prepare multichannel inner layer of NGC by freeze-drying, and poly ( L-lactic add-co-ε- caprolactone) (P(LLA-CL)) was used to fabricate nanofiber outer layer of NGC by electrospinning. The morphology of dual-layer mtlltichannel NGC was observed by scanning electron microscopy (SEM). In vitro degradation experiment of the NGC demonstrated that the inner layer of NGC had the faster degradation rate than the outer layer of NGC. tell viability assay indicated that Schwann cells (SCs) showed better proliferation on dual-layer multichannel NGC than hollow NGC, because the multichannel structure introduced contact guidance for direct cell migration. Therefore, it was suggested that the dual-layer multichannel NGC had the potential for nerve lissue regeneration. 展开更多
关键词 poly(L-lactic acid-co-ε-caprolactone) (P(LLA-CL)) GELATIN electrospinniag MULTICHANNEL nerve tissue engineering
下载PDF
Repairing peripheral nerve defects with tissue engineered artificial nerves in rats 被引量:2
16
作者 卫爱林 刘世清 +1 位作者 陶海鹰 彭昊 《Chinese Journal of Traumatology》 CAS 2008年第1期28-33,共6页
Objective: To observe the effect of tissue engineered nerves in repairing peripheral nerve defects ( about 1. 5 cm in length) in rats to provide data for clinical application. Methods: Glycerinated sciatic nerves... Objective: To observe the effect of tissue engineered nerves in repairing peripheral nerve defects ( about 1. 5 cm in length) in rats to provide data for clinical application. Methods: Glycerinated sciatic nerves (2 cm in length) from 10 Sprague Dawiey (SD) rats (aged 4 months) were used to prepare homologous dermal acellular matrix. Other 10 neonate SD rats (aged 5-7 days) were killed by neck dislocation. After removing the epineurium, the separated sciatic nerve tracts were cut into small pieces, then digested by 2.5 g/L trypsin and 625 U/nd collagenase and cultured in Dulbecco' s modified Eagle' s medium (DMEM) for 3 weeks. After proliferation, the Schwann cells (SCs) were identified and prepared for use. And other 40 female adult SD rats ( weighing 200 g and aged 3 months) with sciatic nerve defects of 1.5 cm in length were randomly divided into four groups: the defects of 10 rats bridged with proliferated SCs and homologous dermal acellular matrix (the tissue engineered nerve group, Group A), 10 rats with no SCs but homologous dermal acellular matrix with internal scaffolds (Group B ), 10 with autologous nerves (Group C ), and the other 10 with nothing (the blank control group, Group D). The general status of the rats was observed, the wet weight of triceps muscle of calf was monitored, and the histological observation of the regenerated nerves were made at 12 weeks after operation. Results: The wounds of all 40 rats healed after operation and no death was found. No foot ulceration was found in Groups A, B and C, but 7 rats suffered from foot ulceration in Group D. The triceps muscles of calf were depauperated in the experimental sides in all the groups compared with the uninjured sides, which was much more obvious in Group D. The wet weight of triceps muscle of calf and nerve electrophysiologic monitoring showed no statistical difference between Group A and Group C, but statistical difference was found between Groups A and B and Groups B and D. And significant statistical difference was found between Group B and Group D. Obvious compound muscle ( or motor) action potential (CMAP) could be evoked in Group A and Group C, but the evoked amplitude was very low in Group B and Group D. The axons of regenerated nerves penetrated through the whole graft in Group A and Group C, and partly penetrated through the graft in Group B, but did not penetrate in Group D. The two tips of the separated sciatic nerves of Groups A , B , and C were connected together, without formation of neuroma. But those of Group D were not connected together and neuroma formed in 6 rats. Conclusions: Tissue engineered nerves can be used for repairing long defects of the peripheral nerves of rats and ideal repairing effects can be obtained. 展开更多
关键词 tissue engineered nerves Peripheral nerve defects Schwann cells
原文传递
Biocompatibility evaluation of electrospun aligned poly(propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro 被引量:8
17
作者 WANG Yu ZHAO Zhe +7 位作者 ZHAO Binx ZHAO Bin QI Hong-xu PENG Jiang ZHANG Li XU Wen-jing HU Ping LU Shi-bi 《Chinese Medical Journal》 SCIE CAS CSCD 2011年第15期2361-2366,共6页
Background Peripheral nerve regeneration across large gaps is clinically challenging. Scaffold design plays a pivotal role in nerve tissue engineering. Recently, nanofibrous scaffolds have proven a suitable environmen... Background Peripheral nerve regeneration across large gaps is clinically challenging. Scaffold design plays a pivotal role in nerve tissue engineering. Recently, nanofibrous scaffolds have proven a suitable environment for cell attachment and proliferation due to similarities of their physical properties to natural extracellular matrix. Poly(propylene carbonate) (PPC) nanofibrous scaffolds have been investigated for vascular tissue engineering. However, no reports exist of PPC nanofibrous scaffolds for nerve tissue engineering. This study aimed to evaluate the potential role of aligned and random PPC nanofibrous scaffolds as substrates for peripheral nerve tissue and cells in nerve tissue engineering. Methods Aligned and random PPC nanofibrous scaffolds were fabricated by electrospinning and their chemical characterization were carried out using scanning electron microscopy (SEM). Dorsal root ganglia (DRG) from Sprague-Dawley rats were cultured on the nanofibrous substrates for 7 days. Neurite outgrowth and Schwann-ceU migration from DRG were observed and quantified using immunocytochemistry and SEM. Schwann cells derived from rat sciatic nerves were cultured in electrospun PPC scaffold-extract fluid for 24, 48, 72 hours and 7 days. The viability of Schwann cells was evaluated by 3-[4,5-dimethyl(thiazol-2-yl)-2,5-diphenyl] tetrazolium bromide (M]-F) assay. Results The diameter of aligned and random fibers ranged between 800 nm and 1200 nm, and the thickness of the films was approximately 10-20 IJm. Quantification of aligned fiber films revealed approximately 90% alignment of all fibers along the longitudinal axis. However, with random fiber films, the alignment of fibers was random through all angle bins. Rat DRG explants were grown on PPC nanofiber films for up to 1 week. On the aligned fiber films, the majority of neurite outgrowth and Schwann cell migration from the DRG extended unidirectionally, parallel to the aligned fibers. However, on the random fiber films, neurite outgrowth and Schwann cell migration were randomly distributed. A comparison of cumulative neurite lengths from cultured DRGs indicated that neurites grew faster on aligned PPC films ((2537.6±987.3) μm) than randomly-distributed fibers ((493.5±50.6) μm). The average distance of Schwann cell migration on aligned PPC nanofibrous films ((2803.5±943.6) μm) were significantly greater than those on random fibers ((625.3±47.8) pm). The viability of Schwann cells cultured in aligned PPC scaffold extract fluid was not significantly different from that in the plain DMEM/F12 medium at all time points after seeding. Conclusions The aligned PPC nanofibrous film, but not the randomly-oriented fibers, significantly enhanced peripheral nerve regeneration in vitro, indicating the substantial role of topographical cues in stimulating endogenous nerve repair mechanisms. Aligned PPC nanofibrous scaffolds may be a promising biomaterial for nerve regeneration. 展开更多
关键词 dorsal root ganglia ELECTROSPINNING nerve tissue engineering poly(propylene carbonate) Schwann cell
原文传递
Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation 被引量:3
18
作者 Aijun Hu Baoqi Zuo +2 位作者 Feng Zhang Qing Lan Huanxiang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第15期1171-1178,共8页
In this study, Schwann cells, at a density of 1 x 105 cells/well, were cultured on regenerated silk fibroin nanofibers (305 + 84 nm) prepared using the electrospinning method. Schwann cells cultured on the silk fib... In this study, Schwann cells, at a density of 1 x 105 cells/well, were cultured on regenerated silk fibroin nanofibers (305 + 84 nm) prepared using the electrospinning method. Schwann cells cultured on the silk fibroin nanofibers appeared more ordered, their processes extended further, and they formed more extensive and complex interconnections. In addition, the silk fibroin nanofibers had no impact on the proliferation of Schwann cells or on the secretion of ciliary neurotrophic factor, brain-derived neurotrophic factor or nerve growth factor. These findings indicate that regenerated electrospun silk fibroin nanofibers can promote Schwann cell adhesion, growth and proliferation, and have excellent biocompatibility. 展开更多
关键词 peripheral nerve regeneration nerve tissue engineering Schwann cells silk fibroin ELECTROSPINNING neural regeneration
下载PDF
Effect of IKVAV Peptide Nanofiber on Proliferation,Adhesion and Differentiation into Neurocytes of Bone Marrow Stromal Cells 被引量:2
19
作者 吴斌 郑启新 +2 位作者 吴永超 郭晓东 邹枕玮 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2010年第2期178-182,共5页
This study examined the effect of IKVAV peptide nanofiber on proliferation, adhesion and differentiation into neurocytes of bone marrow stromal cells (BMSCs). IKVAV Peptide-amphiphile was synthesized and purified. T... This study examined the effect of IKVAV peptide nanofiber on proliferation, adhesion and differentiation into neurocytes of bone marrow stromal cells (BMSCs). IKVAV Peptide-amphiphile was synthesized and purified. Then, hydrogen chloride was added to the diluted aqueous solutions of PA to induce spontaneous formation of nanofiber in vitro. The resultant samples was observed tmder transmission electron microscope. BMSCs were cultured with IKVAV peptide nanofiber. The effect of IKVAV nanofiber on the proliferation, adhesion and induction differentiation of BMSCs was observed by inverted microscopy, calcein-AM/PI staining, cell counting and immunofluorescence staining. The results demonstrated that IKVAV peptide-amphiphile could self-assemble to form nanofiber gel. BMSCs cultured in combination with IKVAV peptide nanofiber gel grew well and the percentage of live cells was over 90%. IKVAV peptide nanofiber gel exerted no influence on the proliferation of BMSCs and could promote the adhesion of BMSCs and raise the ra- tio of neurons when BMSCs were induced to differentiate into neurocytes. It is concluded that BMSCs could proliferate and adhere well and yield more neurons during when induced to differente into neurocytes on IKVAV peptide nanofiber gel. 展开更多
关键词 bone marrow stem ceils IKVAV SELF-ASSEMBLY nerve tissue engineering
下载PDF
Two-dimensional Effects of Hydrogel Self-organized from IKVAV-containing Peptides on Growth and Differentiation of NSCs 被引量:1
20
作者 宋玉林 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期186-192,共7页
The neural stem cells (NSCs) were seeded in the surface layer of hydrogels made of IKVAV-containing peptide amphiphile. Two-dimensional effects of hydrogel on growth and differentiation of NSCs were investigated. Pe... The neural stem cells (NSCs) were seeded in the surface layer of hydrogels made of IKVAV-containing peptide amphiphile. Two-dimensional effects of hydrogel on growth and differentiation of NSCs were investigated. Peptide was synthesized in solid way. Cells were harvested from the cerebral cortex of neonatal mice, identified by immunohistochemical methods. Cells were incubated in the surface layer of self-assembled peptide hydrogel and coverslips for seven days respectively,detected immunocytochemically for NF and GFAP. The molecular weight (Mw) of Peptide was 1438 and purity was 95.22%. Cells were identified as Nestin-positive NSCs. TEM showed that hydrogel was composed of interactive nanofibers. NSCs extended processes, and were able to be dif- ferentiated into NF-positive neurons with red fluorescence and GFAP-positive astrocytes with green one in the surface of hydrogel. However, NSCs only formed undifferentiated neurospheres in the surface layer of coverslips. Results indicate that the self-assembled hydrogel from peptide amphiphile has good cyto-compatibility to NSCs and induced their differentiation. 展开更多
关键词 nerve tissue engineering HYDROGEL SELF-ASSEMBLY neural stem cells
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部