Pure titanate nanotubes and titanate nanotubes doped with Fe^3+/Ni^2+/Mn^2+ ions were synthesized by the hydrothermal method. In this process,titanate nanotubes were first prepared synchronously with doping Fe^3+/...Pure titanate nanotubes and titanate nanotubes doped with Fe^3+/Ni^2+/Mn^2+ ions were synthesized by the hydrothermal method. In this process,titanate nanotubes were first prepared synchronously with doping Fe^3+/Ni^2+/Mn^2+ ions. The morphology,structure,thermal stability and magnetic property of titanate nanotubes were characterized by X-ray diffraction (XRD),transmission electron microscope (TEM),and magnetic measurement. The titanate nanotubes transformed into the anatase titania nanocrystals,and further the mixture of anatase and rutile titania along with increasing temperature. The results indicate that the titanate nanotubes doped with Fe^3+/Ni^2+/Mn^2+ ions are paramagnetic behaviors.展开更多
The effects of pH,contact time and natural organic ligands on radionuclide Eu(Ⅲ) adsorption and mechanism on titanate nanotubes(TNTs) are studied by a combination of batch and extended X-ray absorption fine structure...The effects of pH,contact time and natural organic ligands on radionuclide Eu(Ⅲ) adsorption and mechanism on titanate nanotubes(TNTs) are studied by a combination of batch and extended X-ray absorption fine structure(EXAFS) techniques.Macroscopic measurements show that the adsorption is ionic strength dependent at pH < 6.0,but ionic strength independent at pH > 6.0.The presence of humic acid(HA) /fulvic acid(FA) increases Eu(Ⅲ) adsorption on TNTs at low pH,but reduces Eu(Ⅲ) adsorption at high pH.The results of EXAFS analysis indicate that Eu(Ⅲ) adsorption on TNTs is dominated by outer-sphere surface complexation at pH < 6.0,whereas by inner-sphere surface complexation at pH > 6.0.At pH < 6.0,Eu(Ⅲ) consists of ~ 9 O atoms at REu?O ≈ 2.40 in the first coordination sphere,and a decrease in NEu-O with increasing pH indicates the introduction of more asymmetry in the first sphere of adsorbed Eu(Ⅲ).At long contact time or high pH values,the Eu(Ⅲ) consists of ~2 Eu at REu-Eu ≈ 3.60 and ~ 1 Ti at REu-Ti ≈ 4.40 ,indicating the formation of inner-sphere surface complexation,surface precipitation or surface polymers.Surface adsorbed HA/FA on TNTs modifies the species of adsorbed Eu(Ⅲ) as well as the local atomic structures of adsorbed Eu(Ⅲ) on HA/FA-TNT hybrids.Adsorbed Eu(Ⅲ) on HA/FA-TNT hybrids forms both ligand-bridging ternary surface complexes(Eu-HA/FA-TNTs) as well as surface complexes in which Eu(Ⅲ) remains directly bound to TNT surface hydroxyl groups(i.e.,binary Eu-TNTs or Eu-bridging ternary surface complexes(HA/FA-Eu-TNTs)).The findings in this work are important to describe Eu(Ⅲ) interaction with nanomaterials at molecular level and will help to improve the understanding of Eu(Ⅲ) physicochemical behavior in the natural environment.展开更多
In order to efficiently remove volatile organic compounds(VOCs) from indoor air, onedimensional titanate nanotubes(Ti NTs) were hydrothermally treated to prepare TiO2 nanocrystals with different crystalline phases...In order to efficiently remove volatile organic compounds(VOCs) from indoor air, onedimensional titanate nanotubes(Ti NTs) were hydrothermally treated to prepare TiO2 nanocrystals with different crystalline phases, shapes and sizes. The influences of various acids such as CH3 COOH, HNO3, HCl, HF and H2SO4 used in the treatment were separately compared to optimize the performance of the TiO2 nanocrystals. Compared with the strong and corrosive inorganic acids, CH3COOH was not only safer and more environmentally friendly, but also more efficient in promoting the photocatalytic activity of the obtained TiO2. It was observed that the anatase TiO2 synthesized in 15 mol/L CH3COOH solution exhibited the highest photodegradation rate of gaseous toluene(94%), exceeding that of P25(44%) by a factor of more than two. The improved photocatalytic activity was attributed to the small crystallite size and surface modification by CH3COOH. The influence of relative humidity(20%–80%) on the performance of TiO2 nanocrystals was also studied. The anatase TiO2 synthesized in 15 mol/L CH3COOH solution was more tolerant to moisture than the other TiO2 nanocrystals and P25.展开更多
Microwave-induced nitrogen-doped titanate nanotubes(NTNTs) were characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), Fourier transform infrared...Microwave-induced nitrogen-doped titanate nanotubes(NTNTs) were characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), Fourier transform infrared spectroscopy(FT-IR), Zeta potential analysis,specific surface area(SBET), and UV-Visible spectroscopy. TEM results indicate that NTNTs retain a tubular structure with a crystalline multiwall and have a length of several hundred nanometers after nitrogen doping. XRD findings demonstrate that the crystalline structure of NTNTs was dominated by anatase, which is favored for photocatalytic application. The Ti-O-N linkage observed in the XPS N 1s spectrum is mainly responsible for narrowing the band gap and eventually enhancing the visible light photoactivity. FT-IR results demonstrated the existence of H3O+, which could be excited by photo-generated holes to form hydroxyl radicals and degrade environmental pollutants. After sintering at 350°C, the UV-Vis absorbance edges of NTNTs significantly shift to the visible-light region, which indicates N atom doping into the nanotubes. Photocatalytic degradation of Rhodamine B(RhB) via NTNTs show good efficiency, with pseudo first-order kinetic model rate constants of 3.7 × 10-3, 2.4 × 10-3and 8.0 × 10-4sec-1at pH 3, 7, and 11, respectively.展开更多
Several methods have been used to tailor nanomaterials structure and properties.Sometimes,slight changes in the structure outcomes expressive improvements in the optical and photocatalytic properties of semiconductor ...Several methods have been used to tailor nanomaterials structure and properties.Sometimes,slight changes in the structure outcomes expressive improvements in the optical and photocatalytic properties of semiconductor nanoparticles.In this context,the influence of the metal doping and the morphology on a catalyst performance was studied in this work.Here,ruthenium doped titanate nanotubes(RuTNT)were synthesised for the first time using an amorphous Ru-containing precursor.Afterwards,the photocatalytic performance of this sample was compared to the one obtained for ruthenium titanate nanowires(RuTNW),recently reported.Two samples,RuTNW and RuTNT,were produced using the same Ru-containing precursor but distinct hydrothermal methodologies.The powders were structural,morphological and optical characterized by X-ray diffraction and fluorescence,transmission electron microscopy,Raman,X-ray photoelectron and photoluminescence spectroscopies.Distinct variations on the structural and optical properties of the RuTNT and RuTNW nanoparticles,due to ruthenium incorporation were observed.Their potential use as photocatalysts was evaluated on the hydroxyl radical photo-assisted production.Both samples were catalytic for this reaction,presenting better performances than the pristine counterparts,being RuTNT the best photocatalyst.Subsequently,the degradation of two emergent pollutants,caffeine and sulfamethazine,was studied.RuTNT demonstrated to be better photocatalyst than RuTNW for caffeine but identical performances were obtained for sulfamethazine.For both catalysts,the degradation mechanism of the pollutants was explored through the identification and quantification of the intermediate compounds produced and several differences were found.This indicates the importance of the structural and morphological aspects of a material on its catalytic performance.展开更多
Nb-doped TiO2 nanoparticles were prepared by hydrothermal treatment of titanate nanotubes in niobium oxalate aqueous solution.The effect of Nb doping and rutile content on the photoelectrochemical performance based on...Nb-doped TiO2 nanoparticles were prepared by hydrothermal treatment of titanate nanotubes in niobium oxalate aqueous solution.The effect of Nb doping and rutile content on the photoelectrochemical performance based on TiO2 powder electrodes was investigated.The results show that Nb-doped TiO2 with a small amount of rutile exhibits the enhanced photoelectric conversion efficiency for dye-sensitized solar cell.The highest photoelectric conversion efficiency of 8.53%is obtained for 1%Nb—TiO2 containing a small amount of rutile.When a small amount of rutile contained in 2%Nb—TiO2,a higher photoelectric conversion efficiency of8.77%is achieved.展开更多
In this paper, nanotubes and nanoribbons of sodium titanate structures were synthesized via hydrothermal methods in alkaline solution. CdS decorated titanate nanotubes and nanoribbons were therefore constructed for ex...In this paper, nanotubes and nanoribbons of sodium titanate structures were synthesized via hydrothermal methods in alkaline solution. CdS decorated titanate nanotubes and nanoribbons were therefore constructed for exploring the performance of hydrogen evolution and synergistic effect of CdS based titanate structures. CdS decorated titanate nanotubes and nanoribbons were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), UV-vis, Brunauer- Emmett-Teller (BET) and X-ray photoelectron spectroscopy (XPS) measurements. CdS encapsuled in titanate nanotubes (CdS-ETNTs) showed the best capacity of H2 evolution by water splitting and stability than that from the other two structures, i.e., CdS doped titanate nanotubes (CdS-DTNTs) and CdS doped titanate nanoribbons (CdS-DTNRs), which could be explained by the synergistic effect of decorated CdS with sodium titanate structures and confinement effect of CdS nanoparticles encapsuled inside展开更多
Titanic acid nanotubes(H_(2)Ti_(2)O_(4)(OH)_(2))were surface-modified with cetyl alcohol through dehydration reaction because of existence of Ti–OH.The modified nanotubes were characterized by transmission electron m...Titanic acid nanotubes(H_(2)Ti_(2)O_(4)(OH)_(2))were surface-modified with cetyl alcohol through dehydration reaction because of existence of Ti–OH.The modified nanotubes were characterized by transmission electron microscopy(TEM),Fourier Transform Infrared(FT-IR)spectrometry and pho-toluminescence(PL)spectra.The results indicate that the modified nanotubes can be easily dis-persed into organic solvent such as chloroform and toluene in contrast with the unmodified nanotubes,which makes it easier to be assembled by LB technique.Moreover,the Ti-O-CH_(2)(CH_(2))_(14)CH_(3) on the surface of the nanotubes can hinder the adsorption of water and consequently the photoluminescence property of the nanotubes can be stabilized.Even though kept in humid condition or in air for a long time,the modified nanotubes also maintain the special photoluminescence property in the visible region.展开更多
文摘Pure titanate nanotubes and titanate nanotubes doped with Fe^3+/Ni^2+/Mn^2+ ions were synthesized by the hydrothermal method. In this process,titanate nanotubes were first prepared synchronously with doping Fe^3+/Ni^2+/Mn^2+ ions. The morphology,structure,thermal stability and magnetic property of titanate nanotubes were characterized by X-ray diffraction (XRD),transmission electron microscope (TEM),and magnetic measurement. The titanate nanotubes transformed into the anatase titania nanocrystals,and further the mixture of anatase and rutile titania along with increasing temperature. The results indicate that the titanate nanotubes doped with Fe^3+/Ni^2+/Mn^2+ ions are paramagnetic behaviors.
基金supported by the National Natural Science Foundation of China(20907055,20971126 & 21077107)the National Basic Research Program of China(2007CB936602 & 2011CB933700)
文摘The effects of pH,contact time and natural organic ligands on radionuclide Eu(Ⅲ) adsorption and mechanism on titanate nanotubes(TNTs) are studied by a combination of batch and extended X-ray absorption fine structure(EXAFS) techniques.Macroscopic measurements show that the adsorption is ionic strength dependent at pH < 6.0,but ionic strength independent at pH > 6.0.The presence of humic acid(HA) /fulvic acid(FA) increases Eu(Ⅲ) adsorption on TNTs at low pH,but reduces Eu(Ⅲ) adsorption at high pH.The results of EXAFS analysis indicate that Eu(Ⅲ) adsorption on TNTs is dominated by outer-sphere surface complexation at pH < 6.0,whereas by inner-sphere surface complexation at pH > 6.0.At pH < 6.0,Eu(Ⅲ) consists of ~ 9 O atoms at REu?O ≈ 2.40 in the first coordination sphere,and a decrease in NEu-O with increasing pH indicates the introduction of more asymmetry in the first sphere of adsorbed Eu(Ⅲ).At long contact time or high pH values,the Eu(Ⅲ) consists of ~2 Eu at REu-Eu ≈ 3.60 and ~ 1 Ti at REu-Ti ≈ 4.40 ,indicating the formation of inner-sphere surface complexation,surface precipitation or surface polymers.Surface adsorbed HA/FA on TNTs modifies the species of adsorbed Eu(Ⅲ) as well as the local atomic structures of adsorbed Eu(Ⅲ) on HA/FA-TNT hybrids.Adsorbed Eu(Ⅲ) on HA/FA-TNT hybrids forms both ligand-bridging ternary surface complexes(Eu-HA/FA-TNTs) as well as surface complexes in which Eu(Ⅲ) remains directly bound to TNT surface hydroxyl groups(i.e.,binary Eu-TNTs or Eu-bridging ternary surface complexes(HA/FA-Eu-TNTs)).The findings in this work are important to describe Eu(Ⅲ) interaction with nanomaterials at molecular level and will help to improve the understanding of Eu(Ⅲ) physicochemical behavior in the natural environment.
基金supported by grants from National High Technology Research and Development Program of China (863) (No. 2012AA062702 and 2010AA064902)the Key Innovation Team for Science and Technology of Zhejiang Province (No. 2009R50047)
文摘In order to efficiently remove volatile organic compounds(VOCs) from indoor air, onedimensional titanate nanotubes(Ti NTs) were hydrothermally treated to prepare TiO2 nanocrystals with different crystalline phases, shapes and sizes. The influences of various acids such as CH3 COOH, HNO3, HCl, HF and H2SO4 used in the treatment were separately compared to optimize the performance of the TiO2 nanocrystals. Compared with the strong and corrosive inorganic acids, CH3COOH was not only safer and more environmentally friendly, but also more efficient in promoting the photocatalytic activity of the obtained TiO2. It was observed that the anatase TiO2 synthesized in 15 mol/L CH3COOH solution exhibited the highest photodegradation rate of gaseous toluene(94%), exceeding that of P25(44%) by a factor of more than two. The improved photocatalytic activity was attributed to the small crystallite size and surface modification by CH3COOH. The influence of relative humidity(20%–80%) on the performance of TiO2 nanocrystals was also studied. The anatase TiO2 synthesized in 15 mol/L CH3COOH solution was more tolerant to moisture than the other TiO2 nanocrystals and P25.
文摘Microwave-induced nitrogen-doped titanate nanotubes(NTNTs) were characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), Fourier transform infrared spectroscopy(FT-IR), Zeta potential analysis,specific surface area(SBET), and UV-Visible spectroscopy. TEM results indicate that NTNTs retain a tubular structure with a crystalline multiwall and have a length of several hundred nanometers after nitrogen doping. XRD findings demonstrate that the crystalline structure of NTNTs was dominated by anatase, which is favored for photocatalytic application. The Ti-O-N linkage observed in the XPS N 1s spectrum is mainly responsible for narrowing the band gap and eventually enhancing the visible light photoactivity. FT-IR results demonstrated the existence of H3O+, which could be excited by photo-generated holes to form hydroxyl radicals and degrade environmental pollutants. After sintering at 350°C, the UV-Vis absorbance edges of NTNTs significantly shift to the visible-light region, which indicates N atom doping into the nanotubes. Photocatalytic degradation of Rhodamine B(RhB) via NTNTs show good efficiency, with pseudo first-order kinetic model rate constants of 3.7 × 10-3, 2.4 × 10-3and 8.0 × 10-4sec-1at pH 3, 7, and 11, respectively.
基金Fundacao para a Ciencia e Tecnologia(FCT)(projects PEst-OE/QUI/QUI0612/2019 and IF/01210/2014)CICECO-Aveiro Institute of Materials(project POCI-01-0145FEDER-007679)financed by national funds through the FCT/MEC+2 种基金appropriate cofinanced by FEDER(Fundo Europeu de Desenvolvimento Regional)under the PT2020 Partnership AgreementFCT for her grant(No.SFRH/BD/101220/2014)funded by national funds(OE),through FCT。
文摘Several methods have been used to tailor nanomaterials structure and properties.Sometimes,slight changes in the structure outcomes expressive improvements in the optical and photocatalytic properties of semiconductor nanoparticles.In this context,the influence of the metal doping and the morphology on a catalyst performance was studied in this work.Here,ruthenium doped titanate nanotubes(RuTNT)were synthesised for the first time using an amorphous Ru-containing precursor.Afterwards,the photocatalytic performance of this sample was compared to the one obtained for ruthenium titanate nanowires(RuTNW),recently reported.Two samples,RuTNW and RuTNT,were produced using the same Ru-containing precursor but distinct hydrothermal methodologies.The powders were structural,morphological and optical characterized by X-ray diffraction and fluorescence,transmission electron microscopy,Raman,X-ray photoelectron and photoluminescence spectroscopies.Distinct variations on the structural and optical properties of the RuTNT and RuTNW nanoparticles,due to ruthenium incorporation were observed.Their potential use as photocatalysts was evaluated on the hydroxyl radical photo-assisted production.Both samples were catalytic for this reaction,presenting better performances than the pristine counterparts,being RuTNT the best photocatalyst.Subsequently,the degradation of two emergent pollutants,caffeine and sulfamethazine,was studied.RuTNT demonstrated to be better photocatalyst than RuTNW for caffeine but identical performances were obtained for sulfamethazine.For both catalysts,the degradation mechanism of the pollutants was explored through the identification and quantification of the intermediate compounds produced and several differences were found.This indicates the importance of the structural and morphological aspects of a material on its catalytic performance.
基金supported by the National Natural Science Foundation of China(No.51172233)the Major State Basic Research Development Program of China("973 Program",No. 2009CB220002)the Key Laboratory of Water and Air Pollution Control of Guandong Province,China(GD2012A05)
文摘Nb-doped TiO2 nanoparticles were prepared by hydrothermal treatment of titanate nanotubes in niobium oxalate aqueous solution.The effect of Nb doping and rutile content on the photoelectrochemical performance based on TiO2 powder electrodes was investigated.The results show that Nb-doped TiO2 with a small amount of rutile exhibits the enhanced photoelectric conversion efficiency for dye-sensitized solar cell.The highest photoelectric conversion efficiency of 8.53%is obtained for 1%Nb—TiO2 containing a small amount of rutile.When a small amount of rutile contained in 2%Nb—TiO2,a higher photoelectric conversion efficiency of8.77%is achieved.
基金financially supported by the Natural Science Foundation of China(No.81660708)Natural Science Foundation of Jiangsu Province of China(Nos.BK20150692,BK20171389)+3 种基金the Key Project of Science and Technology of Tibet(No.2015XZ01G70)the Key Project of Tibet Tibetan Medicine Bureau(No.2017005)open fund by Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials(No.KHK1507)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘In this paper, nanotubes and nanoribbons of sodium titanate structures were synthesized via hydrothermal methods in alkaline solution. CdS decorated titanate nanotubes and nanoribbons were therefore constructed for exploring the performance of hydrogen evolution and synergistic effect of CdS based titanate structures. CdS decorated titanate nanotubes and nanoribbons were characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), UV-vis, Brunauer- Emmett-Teller (BET) and X-ray photoelectron spectroscopy (XPS) measurements. CdS encapsuled in titanate nanotubes (CdS-ETNTs) showed the best capacity of H2 evolution by water splitting and stability than that from the other two structures, i.e., CdS doped titanate nanotubes (CdS-DTNTs) and CdS doped titanate nanoribbons (CdS-DTNRs), which could be explained by the synergistic effect of decorated CdS with sodium titanate structures and confinement effect of CdS nanoparticles encapsuled inside
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.90306010 and 20371015)State Key Basic Research'973'Plan of China(Grant No.2002CCC02700).
文摘Titanic acid nanotubes(H_(2)Ti_(2)O_(4)(OH)_(2))were surface-modified with cetyl alcohol through dehydration reaction because of existence of Ti–OH.The modified nanotubes were characterized by transmission electron microscopy(TEM),Fourier Transform Infrared(FT-IR)spectrometry and pho-toluminescence(PL)spectra.The results indicate that the modified nanotubes can be easily dis-persed into organic solvent such as chloroform and toluene in contrast with the unmodified nanotubes,which makes it easier to be assembled by LB technique.Moreover,the Ti-O-CH_(2)(CH_(2))_(14)CH_(3) on the surface of the nanotubes can hinder the adsorption of water and consequently the photoluminescence property of the nanotubes can be stabilized.Even though kept in humid condition or in air for a long time,the modified nanotubes also maintain the special photoluminescence property in the visible region.