In this paper, the sintered Ti anodes (STA) with Ti suboxide intermediate layers and β-MnO_2 active layers were investigated in detail. At usual industrial current densities, the oxygen evolution overpotential on STA...In this paper, the sintered Ti anodes (STA) with Ti suboxide intermediate layers and β-MnO_2 active layers were investigated in detail. At usual industrial current densities, the oxygen evolution overpotential on STA is reduced by 350 mV compared with lead anodes. According to the equation obtained experimentally, the service life of STA may be expected to be more than 3 years. After los- ing activity, STA may be recoated with β-MnO_2 active layers and used again. The electrocatalytic activity and the service life of the reused anodes remained almost unchanged. The possible reasons for losing activity of STA during the anodic evolution of oxygen were investigated by means of elec- tron probe microanalysis, electron scanning microscope and X-ray diffraction.展开更多
The effect of annealing of Ti foils before anodization on the morphology and electrochemical performance of resultant nanoporous anatase TiO2 (np-TiO2) as anode in rechargeable lithium-ion batteries (LIBs) was inv...The effect of annealing of Ti foils before anodization on the morphology and electrochemical performance of resultant nanoporous anatase TiO2 (np-TiO2) as anode in rechargeable lithium-ion batteries (LIBs) was investigated. The np-TiO2 anode fabricated from annealed Ti foils exhibited higher specific surface area and reduced pore diameter compared to np-TiO2 electrode fabricated from as-received Ti foils. The highly porous np-TiO2 anode fabricated from annealed Ti foils exhibited 1st discharge capacity of 453.25 mAh/g and reduced to 172.70 mAh/g at 1 C current rate after 300 cycles; whilst the np-TiO2 electrode fabricated from the as-received Ti foils exhibited 1st discharge capacity of 213.30 mAh/g and reduced to 160.0 mAh/g at 1 C current rate after 300cycles. Even after 400cycles, such np-TiO2 electrode exhibited a reversible capacity of 125.0 mAh/g at 2.5 C current rate. Compared to the untreated Ti foils, the enhanced electro- chemical performance of np-TiO2 anode fabricated from annealed Ti foils was ascribed to the annealing- induced removal of residual stress among the Ti atoms. The benefit of annealing process can reduce pore size of as-fabricated np-TiO2.展开更多
The literatures were analyzed,ingredients were designed»the mono/double layered structures were experimented.It was found that the excellent titanium anodes could be obtained by adding cobalt into the intermediat...The literatures were analyzed,ingredients were designed»the mono/double layered structures were experimented.It was found that the excellent titanium anodes could be obtained by adding cobalt into the intermediate layer.So an anode material with both high activity and corrosion resistance was developed.展开更多
Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of th...Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of the coatings, TC(hkl), of IrO2 rutile crystal have been tested. It showed that, the crystallization processes of IrO2 and Ta2O5 in xIrO2 +(100-x) Ta2 O5 (x is in mol%) films affected and confined each other.In the mixed system, IrO2 rutile phase existed as a solid solution with Ta, and attained the maximum solubility when x=70mol%, i.e. for the coating of 70% IrO2 +Ta2O5.For the coatings of low iridium content or at low preparing tem pemture, (110) and (101) pwtered orientations were dominant. However, preferred growth of IrO2 weakened with increasing either iridium content or temperature. Three typical surface morphologies were observed by using scanning electron tnicroscopy(SEM). The crystallite size of the mixed oxide coatings were finest for the the film of 70%IrO2 +30%Ta2O5,and decreased with the pyrolysis tempemture. As the results of the finest crystallite segregating on sudece and the maxitnum solid solubility of Ir and Ta component in deposits, the coatings with the composition of 70%IrO2 +Ta2O5 prepared at 450℃ presented the mdrimutn electrocatalgtic activitg for O2 evolution in 0. 5M H2SO4 solution.UP to 550℃, Ti base suffered to oxidation resulting in decreasing anode conductivity,therefore, coatings performed a low activity.展开更多
The effect of fluoride ions on the formation and dissolution behaviour of anodic oxide films on Ti has been investigated in acidic fluoride media (pH=1) using impedance and galvanostatic techniques. A5 the fluoride io...The effect of fluoride ions on the formation and dissolution behaviour of anodic oxide films on Ti has been investigated in acidic fluoride media (pH=1) using impedance and galvanostatic techniques. A5 the fluoride ion concentration and temperature increase the rate of oxide film formation decreases while the dissolution process increases. oxide film formed at high tem-perature and formation voltage was found to contain more defect sites in the film than that formed at a lower one. Activation energies are calculated during the oxide film formation and dissolution and found to be 20.76 and 28.72 kJ/mol, respectively. Formation rate and reciprocal capacitance data are reported as a function of polarizing current density. Values are recorded for the electrolytic parameters A and B. Potentiostatic curves are derived from the galvanostatic results.展开更多
Silicon (Si) has the highest known theoretical specific capacity (3,590 mAh/g for Li1.5Si4, and 4,200 mAh/g for Li22Si4) as a lithium-ion battery anode, and has attracted extensive interest in the past few years. ...Silicon (Si) has the highest known theoretical specific capacity (3,590 mAh/g for Li1.5Si4, and 4,200 mAh/g for Li22Si4) as a lithium-ion battery anode, and has attracted extensive interest in the past few years. However, its application is limited by poor cyclability and early capacity fading due to significant volume changes during lithiation and delithiation processes. In this work, we report a coaxial silicon/anodic titanium oxide/silicon (Si-ATO--Si) nanotube array structure grown on a titanium substrate demonstrating excellent electrochemical cyclability. The ATO nanotube scaffold used for Si deposition has many desirable features, such as a rough surface for enhanced Si adhesion, and direct contact with the Ti substrate working as current collector. More importantly, our ATO scaffold provides a rather unique advantage in that Si can be loaded on both the inner and outer surfaces, and an inner pore can be retained to provide room for Si volume expansion. This coaxial structure shows a capacity above 1,500 mAh/g after 100 cycles, with less than 0.05% decay per cycle. Simulations show that this improved performance can be attributed to the lower stress induced on Si layers upon lithiation/delithiation compared with some other recently reported Si-based nanostructures.展开更多
Titanium dioxide (TiO2) is being extensively applied in such fields as photocatalysis, sensing, photoelectrolysis, and pho- tovoltaics [I]. The work function (WF) of a material is one of the vital factors that det...Titanium dioxide (TiO2) is being extensively applied in such fields as photocatalysis, sensing, photoelectrolysis, and pho- tovoltaics [I]. The work function (WF) of a material is one of the vital factors that determine the performance of this ma- terial in electron emission, chemical reaction, surface atomic reconstruction, trapping, and recombination of photogener- ated electrons and holes, interface interaction, and corrosion resistance [2,3]. The WF of metallic Ti is an old topic and abundant data are available [4-7]. In contrast, reports on the WF of TiO2 are relatively rare [2,3,8-10].展开更多
Oxide nanotubes with different diameters and lengths were fabricated on the biomedical Ti2448 alloy by anodic oxidation in neutral electrolyte. Similar to oxide nanotubes fabricated on pure titanium and its alloys, th...Oxide nanotubes with different diameters and lengths were fabricated on the biomedical Ti2448 alloy by anodic oxidation in neutral electrolyte. Similar to oxide nanotubes fabricated on pure titanium and its alloys, the as-grown nanotubes on Ti2448 also exhibit gradually changing chemical distribution along the direction of tube growth. Furthermore, several kinds of oxides with different valence states (MxOy) are formed simultaneously for each alloying element M, while their volume fractions vary gradually along the tube-growth direction. The findings of this study would provide insight into the effect of valence states on the desired nanotube properties and help develop ways to enhance the properties of the preferred oxide.展开更多
Porous anodic aluminium oxide(AAO)and anodic titanium oxide(ATO)attracted an increased attention in the recent years due to their high potentials of application in nanotechnology.This article presents a brief review o...Porous anodic aluminium oxide(AAO)and anodic titanium oxide(ATO)attracted an increased attention in the recent years due to their high potentials of application in nanotechnology.This article presents a brief review of some important developments of these smart materials including anodization methods,formation mechanisms of the pores,self-ordering processes and applications.Anodization of other metals are also highlighted.展开更多
文摘In this paper, the sintered Ti anodes (STA) with Ti suboxide intermediate layers and β-MnO_2 active layers were investigated in detail. At usual industrial current densities, the oxygen evolution overpotential on STA is reduced by 350 mV compared with lead anodes. According to the equation obtained experimentally, the service life of STA may be expected to be more than 3 years. After los- ing activity, STA may be recoated with β-MnO_2 active layers and used again. The electrocatalytic activity and the service life of the reused anodes remained almost unchanged. The possible reasons for losing activity of STA during the anodic evolution of oxygen were investigated by means of elec- tron probe microanalysis, electron scanning microscope and X-ray diffraction.
基金the financially support to this research by the Australian Research Council (ARC) through the ARC Discovery Project DP170102557
文摘The effect of annealing of Ti foils before anodization on the morphology and electrochemical performance of resultant nanoporous anatase TiO2 (np-TiO2) as anode in rechargeable lithium-ion batteries (LIBs) was investigated. The np-TiO2 anode fabricated from annealed Ti foils exhibited higher specific surface area and reduced pore diameter compared to np-TiO2 electrode fabricated from as-received Ti foils. The highly porous np-TiO2 anode fabricated from annealed Ti foils exhibited 1st discharge capacity of 453.25 mAh/g and reduced to 172.70 mAh/g at 1 C current rate after 300 cycles; whilst the np-TiO2 electrode fabricated from the as-received Ti foils exhibited 1st discharge capacity of 213.30 mAh/g and reduced to 160.0 mAh/g at 1 C current rate after 300cycles. Even after 400cycles, such np-TiO2 electrode exhibited a reversible capacity of 125.0 mAh/g at 2.5 C current rate. Compared to the untreated Ti foils, the enhanced electro- chemical performance of np-TiO2 anode fabricated from annealed Ti foils was ascribed to the annealing- induced removal of residual stress among the Ti atoms. The benefit of annealing process can reduce pore size of as-fabricated np-TiO2.
基金Suported by the Natural Science Foundation of Fujian Province。
文摘The literatures were analyzed,ingredients were designed»the mono/double layered structures were experimented.It was found that the excellent titanium anodes could be obtained by adding cobalt into the intermediate layer.So an anode material with both high activity and corrosion resistance was developed.
文摘Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of the coatings, TC(hkl), of IrO2 rutile crystal have been tested. It showed that, the crystallization processes of IrO2 and Ta2O5 in xIrO2 +(100-x) Ta2 O5 (x is in mol%) films affected and confined each other.In the mixed system, IrO2 rutile phase existed as a solid solution with Ta, and attained the maximum solubility when x=70mol%, i.e. for the coating of 70% IrO2 +Ta2O5.For the coatings of low iridium content or at low preparing tem pemture, (110) and (101) pwtered orientations were dominant. However, preferred growth of IrO2 weakened with increasing either iridium content or temperature. Three typical surface morphologies were observed by using scanning electron tnicroscopy(SEM). The crystallite size of the mixed oxide coatings were finest for the the film of 70%IrO2 +30%Ta2O5,and decreased with the pyrolysis tempemture. As the results of the finest crystallite segregating on sudece and the maxitnum solid solubility of Ir and Ta component in deposits, the coatings with the composition of 70%IrO2 +Ta2O5 prepared at 450℃ presented the mdrimutn electrocatalgtic activitg for O2 evolution in 0. 5M H2SO4 solution.UP to 550℃, Ti base suffered to oxidation resulting in decreasing anode conductivity,therefore, coatings performed a low activity.
文摘The effect of fluoride ions on the formation and dissolution behaviour of anodic oxide films on Ti has been investigated in acidic fluoride media (pH=1) using impedance and galvanostatic techniques. A5 the fluoride ion concentration and temperature increase the rate of oxide film formation decreases while the dissolution process increases. oxide film formed at high tem-perature and formation voltage was found to contain more defect sites in the film than that formed at a lower one. Activation energies are calculated during the oxide film formation and dissolution and found to be 20.76 and 28.72 kJ/mol, respectively. Formation rate and reciprocal capacitance data are reported as a function of polarizing current density. Values are recorded for the electrolytic parameters A and B. Potentiostatic curves are derived from the galvanostatic results.
文摘Silicon (Si) has the highest known theoretical specific capacity (3,590 mAh/g for Li1.5Si4, and 4,200 mAh/g for Li22Si4) as a lithium-ion battery anode, and has attracted extensive interest in the past few years. However, its application is limited by poor cyclability and early capacity fading due to significant volume changes during lithiation and delithiation processes. In this work, we report a coaxial silicon/anodic titanium oxide/silicon (Si-ATO--Si) nanotube array structure grown on a titanium substrate demonstrating excellent electrochemical cyclability. The ATO nanotube scaffold used for Si deposition has many desirable features, such as a rough surface for enhanced Si adhesion, and direct contact with the Ti substrate working as current collector. More importantly, our ATO scaffold provides a rather unique advantage in that Si can be loaded on both the inner and outer surfaces, and an inner pore can be retained to provide room for Si volume expansion. This coaxial structure shows a capacity above 1,500 mAh/g after 100 cycles, with less than 0.05% decay per cycle. Simulations show that this improved performance can be attributed to the lower stress induced on Si layers upon lithiation/delithiation compared with some other recently reported Si-based nanostructures.
基金supported by the National Natural Science Foundation of China(Grant No.61671022)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161423)
文摘Titanium dioxide (TiO2) is being extensively applied in such fields as photocatalysis, sensing, photoelectrolysis, and pho- tovoltaics [I]. The work function (WF) of a material is one of the vital factors that determine the performance of this ma- terial in electron emission, chemical reaction, surface atomic reconstruction, trapping, and recombination of photogener- ated electrons and holes, interface interaction, and corrosion resistance [2,3]. The WF of metallic Ti is an old topic and abundant data are available [4-7]. In contrast, reports on the WF of TiO2 are relatively rare [2,3,8-10].
基金supported in part by the National Natural Science Foundation of China (No. 51401048)the National Basic Research Program of China (No. 2012CB933902)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130042120043)the Doctoral Scientific Research Foundation of Liaoning Province (No. 20141002)the Fundamental Research Funds for the Central Universities (No. N140204004, L1502044)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. 47-7)
文摘Oxide nanotubes with different diameters and lengths were fabricated on the biomedical Ti2448 alloy by anodic oxidation in neutral electrolyte. Similar to oxide nanotubes fabricated on pure titanium and its alloys, the as-grown nanotubes on Ti2448 also exhibit gradually changing chemical distribution along the direction of tube growth. Furthermore, several kinds of oxides with different valence states (MxOy) are formed simultaneously for each alloying element M, while their volume fractions vary gradually along the tube-growth direction. The findings of this study would provide insight into the effect of valence states on the desired nanotube properties and help develop ways to enhance the properties of the preferred oxide.
文摘Porous anodic aluminium oxide(AAO)and anodic titanium oxide(ATO)attracted an increased attention in the recent years due to their high potentials of application in nanotechnology.This article presents a brief review of some important developments of these smart materials including anodization methods,formation mechanisms of the pores,self-ordering processes and applications.Anodization of other metals are also highlighted.