To avoid high crack sensitivity of TiB-Ti composite coating during laser cladding process,network-like structure composite coating was fabricated with laser in-situ technique on titanium alloy using 5 μm TiB2 powder ...To avoid high crack sensitivity of TiB-Ti composite coating during laser cladding process,network-like structure composite coating was fabricated with laser in-situ technique on titanium alloy using 5 μm TiB2 powder as the cladding material.The microstructure,phase structure and properties of the coatings were analyzed by SEM,XRD,EPMA,TEM,hardness tester and fretting wear meter.It was observed that the outer ring of the network-like structure was mainly TiB strengthening phase,while the inner ring was α-Ti grain,and the interface between TiB and Ti matrix was very clean and had a consistent orientation relationship.The hardness of the cladding layer with network-like structure gradually decreased from the surface toward the interface,but the average hardness was nearly two times that of the substrate.In the fretting wear test,it was found that the wear resistance of the cladding layer with network-like structure was larger than that of the substrate under low load(40 N).The results revealed that the hardness and fretting wear resistance of the titanium-based composite coating could be improved by the introduction of network-like structure.展开更多
Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of th...Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of the coatings, TC(hkl), of IrO2 rutile crystal have been tested. It showed that, the crystallization processes of IrO2 and Ta2O5 in xIrO2 +(100-x) Ta2 O5 (x is in mol%) films affected and confined each other.In the mixed system, IrO2 rutile phase existed as a solid solution with Ta, and attained the maximum solubility when x=70mol%, i.e. for the coating of 70% IrO2 +Ta2O5.For the coatings of low iridium content or at low preparing tem pemture, (110) and (101) pwtered orientations were dominant. However, preferred growth of IrO2 weakened with increasing either iridium content or temperature. Three typical surface morphologies were observed by using scanning electron tnicroscopy(SEM). The crystallite size of the mixed oxide coatings were finest for the the film of 70%IrO2 +30%Ta2O5,and decreased with the pyrolysis tempemture. As the results of the finest crystallite segregating on sudece and the maxitnum solid solubility of Ir and Ta component in deposits, the coatings with the composition of 70%IrO2 +Ta2O5 prepared at 450℃ presented the mdrimutn electrocatalgtic activitg for O2 evolution in 0. 5M H2SO4 solution.UP to 550℃, Ti base suffered to oxidation resulting in decreasing anode conductivity,therefore, coatings performed a low activity.展开更多
Milled form of mesophase pitch-based graphite fibers were coated with a titanium layer using chemical vapor deposition technique and Ti-coated graphite fiber/Cu composites were fabricated by hot-pressing sintering. Th...Milled form of mesophase pitch-based graphite fibers were coated with a titanium layer using chemical vapor deposition technique and Ti-coated graphite fiber/Cu composites were fabricated by hot-pressing sintering. The composites were characterized with X-ray diffraction, scanning/transmission electron microscopies, and by mea- suring thermal properties, including thermal conductivity and coefficient of thermal expansion (CTE). The results show that the milled fibers are preferentially oriented in a plane perpendicular to the pressing direction, leading to anisotropic thermal properties of the composites. The Ti coating reacted with graphite fiber and formed a continuous and uniform TiC layer. This carbide layer establishes a good metallurgical interracial bonding in the composites, which can improve the thermal properties effectively. When the fiber content ranges from 35 vol% to 50 vol%, the in-plane thermal conductivities of the composites increase from 383 to 407 W.(m.K)-~, and the in-plane CTEs decrease from 9.5 x 10-6 to 6.3 10-6 K-1.展开更多
The XRD spectrum of titanium coated diamond showed the existence of titanium ca rbide on the interface between diamond and its titanium coating. The diffusions between titanium coating and metal matrices were stud ied...The XRD spectrum of titanium coated diamond showed the existence of titanium ca rbide on the interface between diamond and its titanium coating. The diffusions between titanium coating and metal matrices were stud ied by SEM. The SEM photographs revealed that titanium can interdiffuse with nic kel, cobalt, copper,iron and copper based alloy to a great extent to lead to th e disappearance of pure titanium layer and the formation of titanium diffusion l ayer. The results from transverse rupture strength test showed that ti tanium coating on diamond improved the bonding strength between diamond and metal matrices by 3.2% for Co based segment and 4.1% for Cu 10Sn based segment respectively.展开更多
In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive s...In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffraction(XRD) were employed to investigate the microstructures and phase constitutions of the coatings. The experimental results show that all silicon deposition coatings have multi-layer structure. The microstructure and composition of silicide coatings strongly depend on siliconizing temperatures. In order to investigate the rate controlling step of pack siliconizing on Ti Al alloy, coating growth kinetics was analyzed by measuring the mass gains per unit area of silicided samples as a function of time and temperature. The results showed that the rate controlling step was gas-phase diffusion step and the growth rate constant(k) ranged from 1.53 mg^2/(cm^4·h^2) to 2.3 mg^2/(cm^4·h^2). Activation energy(Q) for the process was calculated as 109 k J/mol, determined by Arrhenius' equation: k = k0 exp[–Q/(RT)].展开更多
The objective of this study was to determine the role of functional groups of silane coupling on bioactive titanium (Ti) surface by electrochemical deposition, and calcium phosphate (CAP) coating, as well as bone ...The objective of this study was to determine the role of functional groups of silane coupling on bioactive titanium (Ti) surface by electrochemical deposition, and calcium phosphate (CAP) coating, as well as bone cell adhesion and proliferation. Methyl group (-CH3), amino group (-NH2), and epoxy group (-glyph name--C(O)C) were introduced onto the bioactive Ti surface using self-assembled monolayers (SAMs) with different silane coupling agents as molecular bridges. The effect of the surface functional groups on the growth features of the CaP crystals was analyzed (including chemical compositions, element content, minerals morphology and crystal structure etc.). CH3-terminated SAMs showed a hydrophobic surface and others were hydrophilic by contact angle measurement; NH2-terminated SAMs showed a positive charge and others were negatively charged using zeta-potential measurement. Scanning electron microscopy results confirmed that flower-like structure coatings consisting of various pinpoint-like crystals were formatted by different functional groups of silane coupling, and the CaP coatings were multicrystalline consisting of hydroxyapatite (HA) and precursors. CaP coating of CH3-terminated SAMs exhibited more excellent crystallization property as compared to coatings of --NH2 and -C(O)C groups. In vitro MC3T3- El cells adhesion and proliferation were performed. The results showed that CaP coatings on silane coupling functionalized surfaces supported cell adhesion and proliferation. Thus, these functional groups of silane coupling on Ti can form homogeneous and oriented nano-CaP coatings and provide a more biocompatible surface for bone regeneration and biomedical applications.展开更多
In order to provide a theoretic basis for the research of Ti(C_xN_y) thinfilms, the thermodynamic database of Ti-C-N ternary system is established and the phase diagramsections are calculated. In addition to the asses...In order to provide a theoretic basis for the research of Ti(C_xN_y) thinfilms, the thermodynamic database of Ti-C-N ternary system is established and the phase diagramsections are calculated. In addition to the assessed thermodynamic properties of Ti-C-N system, theinfluence of the residual strain energy of Ti(C_xN_y) thin films on the phase equilibria isanalyzed. The classical formula for calculating the elastic strain energy is expressed into aRedlich-Kister form in order to perform the thermodynamic and equilibrium calculations using theThermo-Calc software. Isothermal sections at 900 and 1100 K are calculated with this database andcompared with those calculated without considering the residual stress. As a result, with theaddition of strain energy delta-fcc Ti(C_xN_y) phase area shrinks. It is therefore concluded thatwith the influence of the residual stress in Ti(C_xN_y) thin solid film, the precipitation of puredelta film requires more precise control of composition.展开更多
Medical imaging is an important tool for the post-operative checkup of an accurate position of an implant as well as for monitoring the integration in the adjacent tissue that may influence the success of a medical de...Medical imaging is an important tool for the post-operative checkup of an accurate position of an implant as well as for monitoring the integration in the adjacent tissue that may influence the success of a medical device.Unfortunately,the possibility to use imaging methods is associated with the implant material and all the established metallic materials for surgery do not show a proper 'imaging compatibility'.The present study is a combined investigation of the in vitro response to human mesenchymal stromal cells(hMSC) and magnetic resonance imaging(MRI) compatibility of the potential material combination polyetheretherketone/titanium(PEEK/Ti) for medical devices.Because of the advantageous imaging properties and the mechanical and chemical stability,PEEK becomes more and more an alternative to common metallic implant materials like titanium or cobalt-chrome.However,PEEK is a bioinert material having a limited ability for direct bone incorporation.Due to its excellent biocompatibility,Ti was chosen as coating material to enhance the cellular response.The result is a combination with advantageous properties:the magnetic susceptibility and elastic modulus close to bone,corrosion resistance and mechanical flexibility of PEEK and the excellent biocompatibility of titanium.The appearance of metal-related artifact was discussed in electrical resistivity and magnetic susceptibility.Therefore,two titanium coatings have been investigated:a complete coating and a structured surface avoiding surface conductivity.To determine the in vitro biocompatibility,the cell responses were assessed in terms of the overall morphology of the hMSC and their cell area distribution,proliferation,osteogenic differentiation and mineral deposition.The cellular stress was evaluated by the prostaglandin E2level.The bonded materials both produced no disturbing artifacts in magnetic resonance imaging.Compared to the pure PEEK material,the titanium coated specimens showed an enhanced biocompatibility,which is indicated by a higher cell number,larger activity of the enzyme tissue non-specific alkaline phosphatase and therefore a greater amount of deposited calcium and phosphate.The results on bare PEEK are accompanied with a higher cellular stress level,which is indicated by prostaglandin E2.展开更多
Ti–Al mixed powder(Ti:Al = 3:1 in atomic ratio) and Ti3 Al intermetallic alloy powder mechanically clad hexagonal BN to fabricate Ti Al/BN and Ti3Al/BN composite powders. The corresponding porous abradable seal c...Ti–Al mixed powder(Ti:Al = 3:1 in atomic ratio) and Ti3 Al intermetallic alloy powder mechanically clad hexagonal BN to fabricate Ti Al/BN and Ti3Al/BN composite powders. The corresponding porous abradable seal coatings(named as TAC-1 and TAC-2, respectively) were deposited using vacuum plasma spray(VPS) technology, and their corrosion behavior was studied via salt spray corrosion and electrochemical tests. Phase compositions and microstructures of these coatings before and after corrosion were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM) facilitated with energy dispersive X-ray spectrometer(EDS). The results showed that spontaneous passivation of TAC-1 and TAC-2 granted the coatings excellent corrosion resistance than that of commercial Al/BN coating. Additionally, TAC-2 exhibited higher corrosion potential(Ecorr) and breakdown potential(Ebp) but a lower corrosion current density(icorr) than TAC-1. A small quantity of the corrosion product(Al(OH)3and Al O) could be detected on the surface of TAC-1, while no corrosion product appeared in TAC-2. The non-uniform elements distribution in the metal matrix of TAC-1 resulted in localized corrosion and relatively poor corrosion resistance compared to TAC-2.展开更多
Preparation of titanium film on magnesium substrate faces a challenge due to non-Fickian inter-diffusion between titanium and magnesium. Aluminum can build a bridge between titanium and magnesium. Al/Ti duplex coating...Preparation of titanium film on magnesium substrate faces a challenge due to non-Fickian inter-diffusion between titanium and magnesium. Aluminum can build a bridge between titanium and magnesium. Al/Ti duplex coatings were deposited on magnesium alloy AZ31B using magnetron sputtering (MS). The low temperature diffusion bonding behavior of the MglAl/Ti coating was investigated through SEM and its affiliated EDS. The phase structure and critical load of the coatings were examined by means of XRD and scratch tests, respectively, The results demonstrated that the bonding strength was significantly improved after a post heat treatment (HT) at a temperature of 210℃. The diffusion mechanism of the interfaces of MglAI and Al/Ti in the coating was discussed based on the analysis of formation energy of vacancies and diffusion rates. The Al/Ti dual layer enhanced the corrosion resistance of the alloy. And the HT process further increased the corrosion resistance of the coated alloy. This result implies that a post HTat a lower temperature after MS is an effective approach to enhance the bonding strength and corrosion resistance of the Al/Ti film on Mg alloys.展开更多
The formation of protective multifunctional coatings on magnesium alloy MA8 using plasma electrolyt- ic oxidation (PEO) in an electrolytic system containing nanosized particles of titanium nitride was investigated. ...The formation of protective multifunctional coatings on magnesium alloy MA8 using plasma electrolyt- ic oxidation (PEO) in an electrolytic system containing nanosized particles of titanium nitride was investigated. Electrochemical and mechanical properties of the obtained layers were examined. It was established that microhardness of the coating with the nanoparticle concentration of 3 gl-1 increased twofold (4.2 ± 0.5 GPa), while wear resistance decreased (4.97 × 10-6 mm3 N-1 m-1), as compared to re- spective values for the PEO-coating formed in the electrolyte without nanoparticles (2.1 ± 0.3 GPa, 1.12 × 10.5 mm3 N-1 m-1).展开更多
基金Projects(2019J01813,2018J01557) supported by the Natural Science Foundation of Fujian Province,ChinaProject(2018H0031) supported by the Guiding Science Program of Fujian Province,ChinaProject(2018GP2002) supported by the Science and Technology Program of Putian City,China
文摘To avoid high crack sensitivity of TiB-Ti composite coating during laser cladding process,network-like structure composite coating was fabricated with laser in-situ technique on titanium alloy using 5 μm TiB2 powder as the cladding material.The microstructure,phase structure and properties of the coatings were analyzed by SEM,XRD,EPMA,TEM,hardness tester and fretting wear meter.It was observed that the outer ring of the network-like structure was mainly TiB strengthening phase,while the inner ring was α-Ti grain,and the interface between TiB and Ti matrix was very clean and had a consistent orientation relationship.The hardness of the cladding layer with network-like structure gradually decreased from the surface toward the interface,but the average hardness was nearly two times that of the substrate.In the fretting wear test,it was found that the wear resistance of the cladding layer with network-like structure was larger than that of the substrate under low load(40 N).The results revealed that the hardness and fretting wear resistance of the titanium-based composite coating could be improved by the introduction of network-like structure.
文摘Titanium based IrO2 +Ta2O5 oxide anodes with different compositions and pyrolysis temperatures were prepared by termodecompoisition method. By using X-ray diffraction (XRD), the structure and texture coefficient of the coatings, TC(hkl), of IrO2 rutile crystal have been tested. It showed that, the crystallization processes of IrO2 and Ta2O5 in xIrO2 +(100-x) Ta2 O5 (x is in mol%) films affected and confined each other.In the mixed system, IrO2 rutile phase existed as a solid solution with Ta, and attained the maximum solubility when x=70mol%, i.e. for the coating of 70% IrO2 +Ta2O5.For the coatings of low iridium content or at low preparing tem pemture, (110) and (101) pwtered orientations were dominant. However, preferred growth of IrO2 weakened with increasing either iridium content or temperature. Three typical surface morphologies were observed by using scanning electron tnicroscopy(SEM). The crystallite size of the mixed oxide coatings were finest for the the film of 70%IrO2 +30%Ta2O5,and decreased with the pyrolysis tempemture. As the results of the finest crystallite segregating on sudece and the maxitnum solid solubility of Ir and Ta component in deposits, the coatings with the composition of 70%IrO2 +Ta2O5 prepared at 450℃ presented the mdrimutn electrocatalgtic activitg for O2 evolution in 0. 5M H2SO4 solution.UP to 550℃, Ti base suffered to oxidation resulting in decreasing anode conductivity,therefore, coatings performed a low activity.
基金financially supported by the National Natural Science Foundation of China(No.51274040)the Fundamental Research Funds for the Central Universities(FRF-TP-10-003B)
文摘Milled form of mesophase pitch-based graphite fibers were coated with a titanium layer using chemical vapor deposition technique and Ti-coated graphite fiber/Cu composites were fabricated by hot-pressing sintering. The composites were characterized with X-ray diffraction, scanning/transmission electron microscopies, and by mea- suring thermal properties, including thermal conductivity and coefficient of thermal expansion (CTE). The results show that the milled fibers are preferentially oriented in a plane perpendicular to the pressing direction, leading to anisotropic thermal properties of the composites. The Ti coating reacted with graphite fiber and formed a continuous and uniform TiC layer. This carbide layer establishes a good metallurgical interracial bonding in the composites, which can improve the thermal properties effectively. When the fiber content ranges from 35 vol% to 50 vol%, the in-plane thermal conductivities of the composites increase from 383 to 407 W.(m.K)-~, and the in-plane CTEs decrease from 9.5 x 10-6 to 6.3 10-6 K-1.
文摘The XRD spectrum of titanium coated diamond showed the existence of titanium ca rbide on the interface between diamond and its titanium coating. The diffusions between titanium coating and metal matrices were stud ied by SEM. The SEM photographs revealed that titanium can interdiffuse with nic kel, cobalt, copper,iron and copper based alloy to a great extent to lead to th e disappearance of pure titanium layer and the formation of titanium diffusion l ayer. The results from transverse rupture strength test showed that ti tanium coating on diamond improved the bonding strength between diamond and metal matrices by 3.2% for Co based segment and 4.1% for Cu 10Sn based segment respectively.
基金Funded by the Natural Science Program for Basic Research in Key Areas of Shaanxi Province(2014JZ012)
文摘In order to improve the oxidation resistance of Ti Al alloy, silicide coatings were prepared by pack cementation method at 1273, 1323, and 1373 K for 1-3 hours. Scanning electron microscopy(SEM), energy dispersive spectrometry(EDS) and X-ray diffraction(XRD) were employed to investigate the microstructures and phase constitutions of the coatings. The experimental results show that all silicon deposition coatings have multi-layer structure. The microstructure and composition of silicide coatings strongly depend on siliconizing temperatures. In order to investigate the rate controlling step of pack siliconizing on Ti Al alloy, coating growth kinetics was analyzed by measuring the mass gains per unit area of silicided samples as a function of time and temperature. The results showed that the rate controlling step was gas-phase diffusion step and the growth rate constant(k) ranged from 1.53 mg^2/(cm^4·h^2) to 2.3 mg^2/(cm^4·h^2). Activation energy(Q) for the process was calculated as 109 k J/mol, determined by Arrhenius' equation: k = k0 exp[–Q/(RT)].
基金supported by the National Key Basic Research Program of China (No. 2012CB619100)the National Natural Science Foundation of China (No. 51541201, 51372087)+2 种基金the Science and Technology Planning Project of Guangdong Province, China (No. 2014A010105048)the Natural Science Foundation of Guangdong Province, China (No. 2015A030313493)the State Key Laboratory for Mechanical Behavior of Materials, China (No. 20141607)
文摘The objective of this study was to determine the role of functional groups of silane coupling on bioactive titanium (Ti) surface by electrochemical deposition, and calcium phosphate (CAP) coating, as well as bone cell adhesion and proliferation. Methyl group (-CH3), amino group (-NH2), and epoxy group (-glyph name--C(O)C) were introduced onto the bioactive Ti surface using self-assembled monolayers (SAMs) with different silane coupling agents as molecular bridges. The effect of the surface functional groups on the growth features of the CaP crystals was analyzed (including chemical compositions, element content, minerals morphology and crystal structure etc.). CH3-terminated SAMs showed a hydrophobic surface and others were hydrophilic by contact angle measurement; NH2-terminated SAMs showed a positive charge and others were negatively charged using zeta-potential measurement. Scanning electron microscopy results confirmed that flower-like structure coatings consisting of various pinpoint-like crystals were formatted by different functional groups of silane coupling, and the CaP coatings were multicrystalline consisting of hydroxyapatite (HA) and precursors. CaP coating of CH3-terminated SAMs exhibited more excellent crystallization property as compared to coatings of --NH2 and -C(O)C groups. In vitro MC3T3- El cells adhesion and proliferation were performed. The results showed that CaP coatings on silane coupling functionalized surfaces supported cell adhesion and proliferation. Thus, these functional groups of silane coupling on Ti can form homogeneous and oriented nano-CaP coatings and provide a more biocompatible surface for bone regeneration and biomedical applications.
基金This work was financially supported by the National Natural Science Foundation of China(No.50071008).
文摘In order to provide a theoretic basis for the research of Ti(C_xN_y) thinfilms, the thermodynamic database of Ti-C-N ternary system is established and the phase diagramsections are calculated. In addition to the assessed thermodynamic properties of Ti-C-N system, theinfluence of the residual strain energy of Ti(C_xN_y) thin films on the phase equilibria isanalyzed. The classical formula for calculating the elastic strain energy is expressed into aRedlich-Kister form in order to perform the thermodynamic and equilibrium calculations using theThermo-Calc software. Isothermal sections at 900 and 1100 K are calculated with this database andcompared with those calculated without considering the residual stress. As a result, with theaddition of strain energy delta-fcc Ti(C_xN_y) phase area shrinks. It is therefore concluded thatwith the influence of the residual stress in Ti(C_xN_y) thin solid film, the precipitation of puredelta film requires more precise control of composition.
基金supported by grant of Deutsche Forschungsgemeinschaft(grant SFB/Transregio 67,projects B1 and B8)the European Social Fund through Schsische Aufbaubank(grant number:100107173)
文摘Medical imaging is an important tool for the post-operative checkup of an accurate position of an implant as well as for monitoring the integration in the adjacent tissue that may influence the success of a medical device.Unfortunately,the possibility to use imaging methods is associated with the implant material and all the established metallic materials for surgery do not show a proper 'imaging compatibility'.The present study is a combined investigation of the in vitro response to human mesenchymal stromal cells(hMSC) and magnetic resonance imaging(MRI) compatibility of the potential material combination polyetheretherketone/titanium(PEEK/Ti) for medical devices.Because of the advantageous imaging properties and the mechanical and chemical stability,PEEK becomes more and more an alternative to common metallic implant materials like titanium or cobalt-chrome.However,PEEK is a bioinert material having a limited ability for direct bone incorporation.Due to its excellent biocompatibility,Ti was chosen as coating material to enhance the cellular response.The result is a combination with advantageous properties:the magnetic susceptibility and elastic modulus close to bone,corrosion resistance and mechanical flexibility of PEEK and the excellent biocompatibility of titanium.The appearance of metal-related artifact was discussed in electrical resistivity and magnetic susceptibility.Therefore,two titanium coatings have been investigated:a complete coating and a structured surface avoiding surface conductivity.To determine the in vitro biocompatibility,the cell responses were assessed in terms of the overall morphology of the hMSC and their cell area distribution,proliferation,osteogenic differentiation and mineral deposition.The cellular stress was evaluated by the prostaglandin E2level.The bonded materials both produced no disturbing artifacts in magnetic resonance imaging.Compared to the pure PEEK material,the titanium coated specimens showed an enhanced biocompatibility,which is indicated by a higher cell number,larger activity of the enzyme tissue non-specific alkaline phosphatase and therefore a greater amount of deposited calcium and phosphate.The results on bare PEEK are accompanied with a higher cellular stress level,which is indicated by prostaglandin E2.
基金financially supported by the Fund of State Key Laboratory of Multiphase Complex Systems, IPE, CAS (No. MPCS-2012-A-06)the Natural Science Foundation of Jiangsu Province, China (No. BK2011452)
文摘Ti–Al mixed powder(Ti:Al = 3:1 in atomic ratio) and Ti3 Al intermetallic alloy powder mechanically clad hexagonal BN to fabricate Ti Al/BN and Ti3Al/BN composite powders. The corresponding porous abradable seal coatings(named as TAC-1 and TAC-2, respectively) were deposited using vacuum plasma spray(VPS) technology, and their corrosion behavior was studied via salt spray corrosion and electrochemical tests. Phase compositions and microstructures of these coatings before and after corrosion were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM) facilitated with energy dispersive X-ray spectrometer(EDS). The results showed that spontaneous passivation of TAC-1 and TAC-2 granted the coatings excellent corrosion resistance than that of commercial Al/BN coating. Additionally, TAC-2 exhibited higher corrosion potential(Ecorr) and breakdown potential(Ebp) but a lower corrosion current density(icorr) than TAC-1. A small quantity of the corrosion product(Al(OH)3and Al O) could be detected on the surface of TAC-1, while no corrosion product appeared in TAC-2. The non-uniform elements distribution in the metal matrix of TAC-1 resulted in localized corrosion and relatively poor corrosion resistance compared to TAC-2.
基金Acknowledgements This research was financially supported by the National Natural Science Foundation of China (Grant No. 51241001), Shandong Provincial Natural Science Foundation, China (ZR2011 EMM004), Taishan Scholarship Project of Shandong Province (TS20110828), SDUST Research Fund (2014TDJH104), Joint Innovative Center for Safe and Effective Mining Technology and Equipment of Coal Resources, and Shandong Province. Thanks go to Dr. Jun CHEN, Dr. Donghua YANG and Dr. Zhenlin WANG in Chongqing University of Technology for the help in the sample preparation, corrosion and scratch tests.
文摘Preparation of titanium film on magnesium substrate faces a challenge due to non-Fickian inter-diffusion between titanium and magnesium. Aluminum can build a bridge between titanium and magnesium. Al/Ti duplex coatings were deposited on magnesium alloy AZ31B using magnetron sputtering (MS). The low temperature diffusion bonding behavior of the MglAl/Ti coating was investigated through SEM and its affiliated EDS. The phase structure and critical load of the coatings were examined by means of XRD and scratch tests, respectively, The results demonstrated that the bonding strength was significantly improved after a post heat treatment (HT) at a temperature of 210℃. The diffusion mechanism of the interfaces of MglAI and Al/Ti in the coating was discussed based on the analysis of formation energy of vacancies and diffusion rates. The Al/Ti dual layer enhanced the corrosion resistance of the alloy. And the HT process further increased the corrosion resistance of the coated alloy. This result implies that a post HTat a lower temperature after MS is an effective approach to enhance the bonding strength and corrosion resistance of the Al/Ti film on Mg alloys.
基金financially supported by the Russian Science Foundation(Project No.14-33-00009)the Russian Federation Government(Federal Agency of Scientific Organizations)
文摘The formation of protective multifunctional coatings on magnesium alloy MA8 using plasma electrolyt- ic oxidation (PEO) in an electrolytic system containing nanosized particles of titanium nitride was investigated. Electrochemical and mechanical properties of the obtained layers were examined. It was established that microhardness of the coating with the nanoparticle concentration of 3 gl-1 increased twofold (4.2 ± 0.5 GPa), while wear resistance decreased (4.97 × 10-6 mm3 N-1 m-1), as compared to re- spective values for the PEO-coating formed in the electrolyte without nanoparticles (2.1 ± 0.3 GPa, 1.12 × 10.5 mm3 N-1 m-1).