Stitch welding of plate covered skeleton structure of Ti-6Al-4V titanium alloys has a variety of applications in aerospace vehicle manufacture. The laser stitch welding of Ti-6Al-4V titanium alloys was carried out by ...Stitch welding of plate covered skeleton structure of Ti-6Al-4V titanium alloys has a variety of applications in aerospace vehicle manufacture. The laser stitch welding of Ti-6Al-4V titanium alloys was carried out by a 4 kW ROFIN fiber laser. Influences of laser welding parameters on the macroscopic geometry, porosity, microstructure and mechanical properties of the stitch welded seams were investigated by digital microscope, optical microscope, scanning electron microscope and universal tensile testing machine. The results showed that the three-pipe nozzle with gas flow rate larger than 5 L/min could avoid oxidization, presenting better shielding effect in comparison with the single-pipe nozzle. Porosity formation could be suppressed with the gap between plate and skeleton less than 0.1 mm, while the existing porosity can be reduced with remelting. The maximum shear strength of stitch welding joint with minimal porosity was obtained by employing laser power of 1700 W, welding speed of 1.5 m/min and defocusing distance of +8 ram.展开更多
Effective recovery of UO2+2 from wastewater is essential for nuclear fuel industry and related industries.In this study,a novel adsorbent was prepared by loading titanium(Ti4+) onto collagen fiber(TICF),and its physic...Effective recovery of UO2+2 from wastewater is essential for nuclear fuel industry and related industries.In this study,a novel adsorbent was prepared by loading titanium(Ti4+) onto collagen fiber(TICF),and its physical and chemical properties as well as adsorption to UO2+2 in nuclear fuel industrial wastewater were investigated.It is found that TICF can effectively recover UO2+2 from the wastewater with excellent adsorption capacity.The adsorption capacity is 0.62 mmol·g-1 at 303 K and pH 5.0 when the initial concentration of UO2+2 is 1.50 mmol·L-1.The adsorption isotherms can be described by the Langmuir equation and the adsorption capacity increases with temperature.The effect of co-existed F on the adsorption capacity for UO2+2 is significant,which can be eliminated by adding aluminum ions as complexing agent,while the other co-existed ions in the solutions,including HCO-3,Cl-,NO-3,Ca2+,Mg2+ and Cu2+,have little effect on the adsorption capacity for UO2+2.The saturated TICF after UO2+2 adsorption can be regenerated by using 0.2 mol·L-1 nitrate(HNO-3) as desorption agent,and the TICF can be reused at least three times.Thus the TICF is a new and effective adsorbent for the recovery of UO2+2 from the wastewater.展开更多
The high-temperature acoustic absorption performance of porous titanium fiber material was investigated in terms of sample thickness, porosity, temperature, air-cavity thickness and double-layer structure arrangement....The high-temperature acoustic absorption performance of porous titanium fiber material was investigated in terms of sample thickness, porosity, temperature, air-cavity thickness and double-layer structure arrangement. The effects on absorption coefficient were systematically assessed. The results show that the sound absorption performance is improved by increasing the sample porosity and/or thickness, and/or increasing the air-cavity thickness. Meanwhile, increasing the temperature gives better acoustic absorption performance in the low frequency range but also lowers the performance in the high frequency range, while double-layer structure enables better acoustic absorption performance.展开更多
Light-colored antistatic polyacrylonitrile(PAN)composite fiber was successfully prepared via a facile wet-spinning process using ATZO@TiO_(2)whiskers as conductive fillers.This kind of low-cost fiber meets the require...Light-colored antistatic polyacrylonitrile(PAN)composite fiber was successfully prepared via a facile wet-spinning process using ATZO@TiO_(2)whiskers as conductive fillers.This kind of low-cost fiber meets the requirements of light-colored and antistatic ability,which is quite suitable for mass production of dust-proof and safety workwear.The conductive whiskers are well dispersed in the fiber and form a continuous conductive pathway,which makes the fiber to possess a long conductive ability.The lowest resistance of antistatic ATZO@TiO_(2)/PAN fiber was 2.1×10^(7)Ω·cm.展开更多
Residual thermal stresses (RTS) of SCS-6 SiC/Ti-24Al-11Nb composite were analyzed by using finite element method (FEM). Three models of fiber array in the composite and the effect of fiber distance on the RTS were dis...Residual thermal stresses (RTS) of SCS-6 SiC/Ti-24Al-11Nb composite were analyzed by using finite element method (FEM). Three models of fiber array in the composite and the effect of fiber distance on the RTS were discussed. In all the three models compressive stress was found in the radial direction and tensile stress in the tangential direction. It is pointed out that, in real composite system, hexagonal fiber geometry is superior because the distribution and the magnitude of the residual stress are similar to those in single fiber model. In square fiber geometry, it is easier to make the matrix crack due to the larger residual tangential stress. RTS becomes very large and changes violently when the fiber distance is less than 15 μm or so, therefore too high fiber volume is apt to result in matrix crack.展开更多
This study presents the first stage of a multi-scale numerical framework designed to predict the non-linear constitutive behavior of metal-composite interfaces in titanium-graphite fiber metal laminates. Scanning elec...This study presents the first stage of a multi-scale numerical framework designed to predict the non-linear constitutive behavior of metal-composite interfaces in titanium-graphite fiber metal laminates. Scanning electron microscopy and x-ray diffraction techniques are used to characterize the baseline physical and chemical state of the interface. The physics of adhesion between the metal and polymer matrix composite components are then evaluated on the atomistic scale using molecular dynamics simulations. Interfacial mechanical properties are subsequently derived from these simulations using classical mechanics and thermodynamics. These molecular-level property predictions are used in a companion study to parameterize a continuum-level finite element model of the interface by means of a traction-separation constitutive law. Extension of the proposed approach to other dissimilar metal- or metal oxide-polymer interfaces is also discussed.展开更多
C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com...C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.展开更多
基金Project(2012BAF08B02)supported by Key Project in the National Science and Technology Pillar Program During the Twelfth Five-year Plan Period,China
文摘Stitch welding of plate covered skeleton structure of Ti-6Al-4V titanium alloys has a variety of applications in aerospace vehicle manufacture. The laser stitch welding of Ti-6Al-4V titanium alloys was carried out by a 4 kW ROFIN fiber laser. Influences of laser welding parameters on the macroscopic geometry, porosity, microstructure and mechanical properties of the stitch welded seams were investigated by digital microscope, optical microscope, scanning electron microscope and universal tensile testing machine. The results showed that the three-pipe nozzle with gas flow rate larger than 5 L/min could avoid oxidization, presenting better shielding effect in comparison with the single-pipe nozzle. Porosity formation could be suppressed with the gap between plate and skeleton less than 0.1 mm, while the existing porosity can be reduced with remelting. The maximum shear strength of stitch welding joint with minimal porosity was obtained by employing laser power of 1700 W, welding speed of 1.5 m/min and defocusing distance of +8 ram.
基金Supported by the National Natural Science Foundation of China (20976111) Sichuan Province Technologies R&D Program(2008GZ0026)
文摘Effective recovery of UO2+2 from wastewater is essential for nuclear fuel industry and related industries.In this study,a novel adsorbent was prepared by loading titanium(Ti4+) onto collagen fiber(TICF),and its physical and chemical properties as well as adsorption to UO2+2 in nuclear fuel industrial wastewater were investigated.It is found that TICF can effectively recover UO2+2 from the wastewater with excellent adsorption capacity.The adsorption capacity is 0.62 mmol·g-1 at 303 K and pH 5.0 when the initial concentration of UO2+2 is 1.50 mmol·L-1.The adsorption isotherms can be described by the Langmuir equation and the adsorption capacity increases with temperature.The effect of co-existed F on the adsorption capacity for UO2+2 is significant,which can be eliminated by adding aluminum ions as complexing agent,while the other co-existed ions in the solutions,including HCO-3,Cl-,NO-3,Ca2+,Mg2+ and Cu2+,have little effect on the adsorption capacity for UO2+2.The saturated TICF after UO2+2 adsorption can be regenerated by using 0.2 mol·L-1 nitrate(HNO-3) as desorption agent,and the TICF can be reused at least three times.Thus the TICF is a new and effective adsorbent for the recovery of UO2+2 from the wastewater.
基金Projects(51671152,51304153)supported by the National Natural Science Foundation of China
文摘The high-temperature acoustic absorption performance of porous titanium fiber material was investigated in terms of sample thickness, porosity, temperature, air-cavity thickness and double-layer structure arrangement. The effects on absorption coefficient were systematically assessed. The results show that the sound absorption performance is improved by increasing the sample porosity and/or thickness, and/or increasing the air-cavity thickness. Meanwhile, increasing the temperature gives better acoustic absorption performance in the low frequency range but also lowers the performance in the high frequency range, while double-layer structure enables better acoustic absorption performance.
文摘Light-colored antistatic polyacrylonitrile(PAN)composite fiber was successfully prepared via a facile wet-spinning process using ATZO@TiO_(2)whiskers as conductive fillers.This kind of low-cost fiber meets the requirements of light-colored and antistatic ability,which is quite suitable for mass production of dust-proof and safety workwear.The conductive whiskers are well dispersed in the fiber and form a continuous conductive pathway,which makes the fiber to possess a long conductive ability.The lowest resistance of antistatic ATZO@TiO_(2)/PAN fiber was 2.1×10^(7)Ω·cm.
文摘Residual thermal stresses (RTS) of SCS-6 SiC/Ti-24Al-11Nb composite were analyzed by using finite element method (FEM). Three models of fiber array in the composite and the effect of fiber distance on the RTS were discussed. In all the three models compressive stress was found in the radial direction and tensile stress in the tangential direction. It is pointed out that, in real composite system, hexagonal fiber geometry is superior because the distribution and the magnitude of the residual stress are similar to those in single fiber model. In square fiber geometry, it is easier to make the matrix crack due to the larger residual tangential stress. RTS becomes very large and changes violently when the fiber distance is less than 15 μm or so, therefore too high fiber volume is apt to result in matrix crack.
文摘This study presents the first stage of a multi-scale numerical framework designed to predict the non-linear constitutive behavior of metal-composite interfaces in titanium-graphite fiber metal laminates. Scanning electron microscopy and x-ray diffraction techniques are used to characterize the baseline physical and chemical state of the interface. The physics of adhesion between the metal and polymer matrix composite components are then evaluated on the atomistic scale using molecular dynamics simulations. Interfacial mechanical properties are subsequently derived from these simulations using classical mechanics and thermodynamics. These molecular-level property predictions are used in a companion study to parameterize a continuum-level finite element model of the interface by means of a traction-separation constitutive law. Extension of the proposed approach to other dissimilar metal- or metal oxide-polymer interfaces is also discussed.
基金Projects(51201134,51271147)supported by the National Natural Science Foundation of ChinaProject(2015JM5181)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central Universities,China
文摘C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.