The effects of fluoride ions(F^(-)) on the electrochemical behavior and coordination properties of titanium ions(Ti^(n+)) were studied in this work,by combining electrochemical and mathematical analysis as well as spe...The effects of fluoride ions(F^(-)) on the electrochemical behavior and coordination properties of titanium ions(Ti^(n+)) were studied in this work,by combining electrochemical and mathematical analysis as well as spectral techniques.The α was taken as a factor to indicate the molar concentration ratio of F^(-) and Ti^(n+).Cyclic voltammetry(CV),square wave voltammetry(SWV),and open circuit potential method(OCP)were used to study the electrochemical behavior of titanium ions under conditions of various α,and in-situ sampler was used to prepare molten salt samples when α equal to 0.0,1.0,2.0,3.0,4.0,5.0,6.0,and 8.0.And then,samples were analyzed by X-ray photoelectron spectroscopy(XPS) and Raman spectroscopy.The results showed that F^(-) in molten salt can reduce the reduction steps of titanium ions and greatly affects the proportion of valence titanium ions which making the high-valence titanium content increased and more stable.Ti^(2+) cannot be detected in the molten salt when α is higher than 3.0 and finally transferred to titanium ions with higher valence state.Investigation revealed that the mechanism behind those phenomenon is the coordination compounds(TiCl_(j) F_(i)^(m-)) forming.展开更多
Ti0.5Al0.5N coatings were deposited on TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) and silicon substrates using a cathode arc ion-plating system.The microstructure, composition, phase structure, and oxidation-resistance of the...Ti0.5Al0.5N coatings were deposited on TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) and silicon substrates using a cathode arc ion-plating system.The microstructure, composition, phase structure, and oxidation-resistance of the alloys and nitride coatings were investigated by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, Auger electron spectroscopy, and thermal analyzer.The results show that the oxidation resistance of the titanium alloy is relatively limited;the compound structures of Ti mixed with Al oxides are formed during the heating process.The phases of the Ti0.5Al0.5N coatings are composed of a TiN solid solution phase.The oxidation kinetics obeys the parabolic law.During the oxidation process, the selective oxidation of Al occurs, thus protecting the underlying coating and substrate.展开更多
The surface properties of Ti-6Al-4V alloy coated with titanium nitride, TiN+TiC+Ti(C,N)/DLC (diamond like carbon), TiN/DLC and TiC/DLC films by plasma-based ion implantation (PBII) with nitrogen, PBII with nitrogen th...The surface properties of Ti-6Al-4V alloy coated with titanium nitride, TiN+TiC+Ti(C,N)/DLC (diamond like carbon), TiN/DLC and TiC/DLC films by plasma-based ion implantation (PBII) with nitrogen, PBII with nitrogen then acetylene, PBII with nitrogen then glow discharge deposition with acetylene plus hydrogen and PBII with acetylene then glow discharge deposition with acetylene plus hydrogen respectively were studied. The corresponding films are found getting dimmer, showing light gold or gold, smoky color (uneven), light red in black (uneven), and graphite black separately. The corresponding film resistivities are given. Antioxidation ability of the titanium nitride film is poor, while the existence of carbon (or carbide) improves the antioxidation ability of the films. Having undergone excellent intermediate transitional region of nitrogen and carbon implantation, the top DLC layer of the TiN+TiC+Ti(C,N)/DLC multilayer are formed after the carbon implantation has the best adhesion with the substrate among all the multilayers. Although microhardness of the samples increases in the order of coatings of titanium nitride, TiN/DLC, TiN+TiC+Ti(C,N)/DLC and TiC/DLC, the TiN/DLC and TiC/DLC multilayers have greater brittleness as compared with other films.展开更多
Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb the visible light and increase the photocatalytic activitie...Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb the visible light and increase the photocatalytic activities, different concentrations of neodymium ions (Nd/Ti molar ratio was 0.5%, 0.7%, 0.9%, and 1.1% respectively) were added into the sol. X-ray diffraction (XRD), X-ray photoelectron spectros-copy (XPS), and atom force microscopy (AFM) were applied to characterize the modified films. A kind of typical textile industry pollutant (Rhodamine B) was used to evaluate the photocatalytic activities of the films under visible light. The results showed that the activities of the films were improved by doping Nd ions into the sol.展开更多
The effect of annealing of Ti foils before anodization on the morphology and electrochemical performance of resultant nanoporous anatase TiO2 (np-TiO2) as anode in rechargeable lithium-ion batteries (LIBs) was inv...The effect of annealing of Ti foils before anodization on the morphology and electrochemical performance of resultant nanoporous anatase TiO2 (np-TiO2) as anode in rechargeable lithium-ion batteries (LIBs) was investigated. The np-TiO2 anode fabricated from annealed Ti foils exhibited higher specific surface area and reduced pore diameter compared to np-TiO2 electrode fabricated from as-received Ti foils. The highly porous np-TiO2 anode fabricated from annealed Ti foils exhibited 1st discharge capacity of 453.25 mAh/g and reduced to 172.70 mAh/g at 1 C current rate after 300 cycles; whilst the np-TiO2 electrode fabricated from the as-received Ti foils exhibited 1st discharge capacity of 213.30 mAh/g and reduced to 160.0 mAh/g at 1 C current rate after 300cycles. Even after 400cycles, such np-TiO2 electrode exhibited a reversible capacity of 125.0 mAh/g at 2.5 C current rate. Compared to the untreated Ti foils, the enhanced electro- chemical performance of np-TiO2 anode fabricated from annealed Ti foils was ascribed to the annealing- induced removal of residual stress among the Ti atoms. The benefit of annealing process can reduce pore size of as-fabricated np-TiO2.展开更多
Titanium dioxide nanotubes(TNTs)were prepared by electroless deposition using ion track etched polycarbonate templates.The ion tracks were prepared to the desired diameter of the TNTs outer diameter.Titanium dioxide n...Titanium dioxide nanotubes(TNTs)were prepared by electroless deposition using ion track etched polycarbonate templates.The ion tracks were prepared to the desired diameter of the TNTs outer diameter.Titanium dioxide nanotubes with a diameter of minimum 80 nm having a wall thickness of minimum 10 nm can be fabricated using this method.To achieve nanotubes with thin walls and small surface roughness the tubes were generated by a several steps procedure under aqueous conditions at nearly room temperature.The presented approach will process open end nanotubes with well defined outer diameter and wall thickness.Using this method TNT arrays up to 109 tubes per cm2having a tube length up to 30μm can be produced,single tubes are also possible.The structural properties of the grown TNTs were investigated by using various analytical techniques,i.e.scanning electron microscopy(SEM),energy dispersive X-ray fluoresence spectrometer(EDX),X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),Raman spectroscopy and Photoluminescence.展开更多
-The i. r. spectra of Na4 [UO2 (CO3)3], Na [UO2 (OH)3] and the surface species of uranium on HTO underthe condition of flowing natural seawater and concentrated seawater (NaCl-NaHCO3-U) were recorded, with the bands o...-The i. r. spectra of Na4 [UO2 (CO3)3], Na [UO2 (OH)3] and the surface species of uranium on HTO underthe condition of flowing natural seawater and concentrated seawater (NaCl-NaHCO3-U) were recorded, with the bands of urany! of surface species obtained and the finding that iigands of surface species besides HTO are mainly water and OH, and there are some CO32- groups under the condition of natural seawater. Some relations between the complex properties and the j. r. spectroscopic characters for uranyl complexes were studied, and the transferred change quantity of surface complex was calculated.Structure models for surface species of adsorption are herein presented and the mechanism for uranium adsorption is deduced.展开更多
Sodium implanted titanium films with different ion doses were characterized to correlate their ion implantation parameters. Native titanium films and ion implanted titanium films were characterized with combined techn...Sodium implanted titanium films with different ion doses were characterized to correlate their ion implantation parameters. Native titanium films and ion implanted titanium films were characterized with combined techniques of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and light microscopy (LM). The surface presented increased sodium concentration on treated titanium films with ion dose increasing, except for the group with the highest ion dose of 4×10^17ions/cm^2. XPS depth profiling displayed that sodium entered titanium film around 25-50nm depth depending on its implantation ion dose. AFM characterization showed that sodium ion implantation treatment changed the surface morphology from a relatively smooth titanium film to rough surfaces corresponding to different implantation doses. After sodium implantation, implanted titanium films presented big particles with island structure morphology. The surface morphology and particle growth displayed the corresponding trend. Fibrinogen adsorption on these titanium films was performed to correlate with the surface properties of treated titanium films. The results show that protein adsorption on ion-implanted samples with dose of 2×10^17 and 4×10^17 are statistically higher (p 〈0.01) than samples treated with dose of 5×10^16 and 1×10^17, as well as the control samples.展开更多
In the production process of titanium dioxide with sulfuric acid, the contamination of the titanium sulfate solution (the ilmenite leaching solution) in the Fe 3+ reduction stage by iron scraps is a practical problem ...In the production process of titanium dioxide with sulfuric acid, the contamination of the titanium sulfate solution (the ilmenite leaching solution) in the Fe 3+ reduction stage by iron scraps is a practical problem because it is difficult to guarantee the quality of the iron scraps. In this research, a new method, called the ion exchange membrane primary cell method, for reduction of Fe 3+ in the titanium sulfate solution has been advanced. The positive compartment of the primary cell consists of lead (copper) electrode and the titanium sulfate solution, and the negative compartment consists of iron electrode and acidic FeSO 4 solution. The anion ion exchange membrane is used as the diaphragm between two compartments. Fe 3+ in the titanium sulfate solution is reduced by the electric discharge of the primary cell. The effects of temperature, stirring strength of the solution and membrane area on the reduction rate have been investigated. The experimental result shows that the optimum current density can be higher than 100 A/m 2.展开更多
The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses...The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses, the surface morphology of titanium alloy in a spatial scale of μm exhibits an obvious smoothening trend. The mechanism of this phenomenon is explained by the mass transfer caused by the surface tension of molten metal. Hydrodynamic simulation with a combination of the finite element method and the level set method reveals that the change in curvature on the molten surface leads to uneven distribution of surface tension. Mass transfer is caused by the relief of surface tension, and meanwhile a flattening trend in the surface morphology evolution is achieved.展开更多
Chemically synthesized cero-antimonate and titanium cero-antimonate prepared by sol-gel technique was conducted for the synthesis of a novel ion exchanger. The prepared materials has been characterized by X-ray diffra...Chemically synthesized cero-antimonate and titanium cero-antimonate prepared by sol-gel technique was conducted for the synthesis of a novel ion exchanger. The prepared materials has been characterized by X-ray diffraction, X-ray fluorescence, Fourier transform Infrared Spectroscopy (FT-IR) and Thermograve-metric analyses. The structures and empirical formula's was identified and found to CeSb4O12?6.19H2O and TiCeSb4O14?12.22H2O, for cero-antiomate and titanium cero-antimonate, respectively. The data obtained from X-ray diffraction was analyzed to define the crystallographic feature of cero-antimonate and titanium cero-antimonate and found both the composites were belong to cubic system with lattice constant 5.15 and 5.149 ?, respectively. The crystallite size and strain of cero-antimonate and titanium cero-antimonate were determined. By using ChemDraw Ultra program the modeling structures of cero-antimonate and titanium cero-antimonate were conducted. Finally, application of the prepared materials for the removal of heavy metals from industrial waste water in terms of capacity measurements was performed.展开更多
Two-dimensional numerical research has been carried out on the ablation effects of titanium target irradiated by intense pulsed ion beam (IPIB) generated by TEMP Ⅱ accelerator. Temporal and spatial evolution of the...Two-dimensional numerical research has been carried out on the ablation effects of titanium target irradiated by intense pulsed ion beam (IPIB) generated by TEMP Ⅱ accelerator. Temporal and spatial evolution of the ablation process of the target during a pulse time has been simulated. We have come to the conclusion that the melting and evaporating process begin from the surface and the target is ablated layer by layer when the target is irradiated by the IPIB. Meanwhile, we also obtained the result that the average ablation velocity in target central region is about 10 m/s, which is far less than the ejection velocity of the plume plasma formed by irradiation. Different effects have been compared to the different ratio of the ions and different energy density of IPIB while the target is irradiated by pulsed beams.展开更多
Titanium dioxide thin films were deposited on (0001) α-quartz substrate by spray pyrolysis method. The method which an aerosol of Titanium Butoxide, generated ultrasonically, was sprayed on the substrate at temperatu...Titanium dioxide thin films were deposited on (0001) α-quartz substrate by spray pyrolysis method. The method which an aerosol of Titanium Butoxide, generated ultrasonically, was sprayed on the substrate at temperature of 400°C, kept at this temperature for periods of 3, 13, 19 and 39 hours. The developed films at a crystal phase correspond to the TiO2 anatase and rutile phases. Their surface roughness increased by annealing the samples at 600, 800 and 1000°C. Deposited film annealed at 1000°C showed preferable orientation in (110) direction. The crystal evolution and crystallographic properties of this material was studied by Lotgering method, X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The study revealed that the deposition process was nearly close to the classical Chemical Vapour Deposition (CVD) technique that is generally employed to produce films with smooth surface and good crystalline properties with a thickness of about 1 μm, as measured by Focused Ion Beam.展开更多
The 50 wt pct TiC-C films were prepared on stainless steel substrates by using a technique of ion beam mixing. These films were irradiated by hydrogen ion beam with a dose of 1×10^18 ions/cm^2 and an energy of 5 ...The 50 wt pct TiC-C films were prepared on stainless steel substrates by using a technique of ion beam mixing. These films were irradiated by hydrogen ion beam with a dose of 1×10^18 ions/cm^2 and an energy of 5 keV. Microanalysis of X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) were used to analyze the films before and after hydrogen ion irradiation and to study the mechanism of hydrogen resistance.展开更多
With the assistance of nonionic surfactant (OP-10) and surface-selective surfactant (CH3COOH), anatase TiO2 was prepared as an anode material for lithium ion batteries. The morphology, the crystal structure, and t...With the assistance of nonionic surfactant (OP-10) and surface-selective surfactant (CH3COOH), anatase TiO2 was prepared as an anode material for lithium ion batteries. The morphology, the crystal structure, and the electrochemical properties of the prepared anatase TiO2 were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and galvanostatic charge and discharge test. The result shows that the prepared anatase TiO2 has high discharge capacity and good cyclic stability. The maximum discharge capacity is 313 mAh.g^-1, and there is no significant capacity decay from the second cycle.展开更多
The Ti-49.8at%Ni alloy was modified by Ti ion implantation to improve its corrosion resistance and biocompatibility. The chemical composition and morphologies of the Ti Ni alloy surface were determined using atomic fo...The Ti-49.8at%Ni alloy was modified by Ti ion implantation to improve its corrosion resistance and biocompatibility. The chemical composition and morphologies of the Ti Ni alloy surface were determined using atomic force microscopy(AFM), auger electron spectroscopy(AES), and X-ray photoelectron spectroscopy(XPS). The results revealed that Ti ion implantation caused the reduction of Ni concentration and the formation of a Ti O2 nano-film on the Ti Ni alloy. The phase transformation temperatures of the Ti–Ti Ni alloy remained almost invariable after Ti ion implantation. Electrochemical tests indicated that the corrosion resistance of Ti Ni increased after Ti ion implantation. Moreover, the Ni ion release rate in 0.9% Na Cl solution for the Ti Ni alloy remarkably decreased due to the barrier effect of the Ti O2 nano-film. The cell proliferation behavior on Ti-implanted Ti Ni was better than that on the untreated Ti Ni after cell culture for 1 d and 3 d.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51804277)the State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,China(No.CNMRCUKF2008)+1 种基金the State Key Laboratory of Special Rare Metal Materials,China(No.SKL2020K004)the Northwest Rare Metal Materials Research Institute,China。
文摘The effects of fluoride ions(F^(-)) on the electrochemical behavior and coordination properties of titanium ions(Ti^(n+)) were studied in this work,by combining electrochemical and mathematical analysis as well as spectral techniques.The α was taken as a factor to indicate the molar concentration ratio of F^(-) and Ti^(n+).Cyclic voltammetry(CV),square wave voltammetry(SWV),and open circuit potential method(OCP)were used to study the electrochemical behavior of titanium ions under conditions of various α,and in-situ sampler was used to prepare molten salt samples when α equal to 0.0,1.0,2.0,3.0,4.0,5.0,6.0,and 8.0.And then,samples were analyzed by X-ray photoelectron spectroscopy(XPS) and Raman spectroscopy.The results showed that F^(-) in molten salt can reduce the reduction steps of titanium ions and greatly affects the proportion of valence titanium ions which making the high-valence titanium content increased and more stable.Ti^(2+) cannot be detected in the molten salt when α is higher than 3.0 and finally transferred to titanium ions with higher valence state.Investigation revealed that the mechanism behind those phenomenon is the coordination compounds(TiCl_(j) F_(i)^(m-)) forming.
文摘Ti0.5Al0.5N coatings were deposited on TC11(Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) and silicon substrates using a cathode arc ion-plating system.The microstructure, composition, phase structure, and oxidation-resistance of the alloys and nitride coatings were investigated by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, Auger electron spectroscopy, and thermal analyzer.The results show that the oxidation resistance of the titanium alloy is relatively limited;the compound structures of Ti mixed with Al oxides are formed during the heating process.The phases of the Ti0.5Al0.5N coatings are composed of a TiN solid solution phase.The oxidation kinetics obeys the parabolic law.During the oxidation process, the selective oxidation of Al occurs, thus protecting the underlying coating and substrate.
文摘The surface properties of Ti-6Al-4V alloy coated with titanium nitride, TiN+TiC+Ti(C,N)/DLC (diamond like carbon), TiN/DLC and TiC/DLC films by plasma-based ion implantation (PBII) with nitrogen, PBII with nitrogen then acetylene, PBII with nitrogen then glow discharge deposition with acetylene plus hydrogen and PBII with acetylene then glow discharge deposition with acetylene plus hydrogen respectively were studied. The corresponding films are found getting dimmer, showing light gold or gold, smoky color (uneven), light red in black (uneven), and graphite black separately. The corresponding film resistivities are given. Antioxidation ability of the titanium nitride film is poor, while the existence of carbon (or carbide) improves the antioxidation ability of the films. Having undergone excellent intermediate transitional region of nitrogen and carbon implantation, the top DLC layer of the TiN+TiC+Ti(C,N)/DLC multilayer are formed after the carbon implantation has the best adhesion with the substrate among all the multilayers. Although microhardness of the samples increases in the order of coatings of titanium nitride, TiN/DLC, TiN+TiC+Ti(C,N)/DLC and TiC/DLC, the TiN/DLC and TiC/DLC multilayers have greater brittleness as compared with other films.
基金Project supported by the State Key Laboratory of Urban Water Resource and Environment (HIT 08UWQA05) and National Key Laboratory of Vacuum and Cryogenics Technology and Physics (9140C550201060C55)
文摘Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb the visible light and increase the photocatalytic activities, different concentrations of neodymium ions (Nd/Ti molar ratio was 0.5%, 0.7%, 0.9%, and 1.1% respectively) were added into the sol. X-ray diffraction (XRD), X-ray photoelectron spectros-copy (XPS), and atom force microscopy (AFM) were applied to characterize the modified films. A kind of typical textile industry pollutant (Rhodamine B) was used to evaluate the photocatalytic activities of the films under visible light. The results showed that the activities of the films were improved by doping Nd ions into the sol.
基金the financially support to this research by the Australian Research Council (ARC) through the ARC Discovery Project DP170102557
文摘The effect of annealing of Ti foils before anodization on the morphology and electrochemical performance of resultant nanoporous anatase TiO2 (np-TiO2) as anode in rechargeable lithium-ion batteries (LIBs) was investigated. The np-TiO2 anode fabricated from annealed Ti foils exhibited higher specific surface area and reduced pore diameter compared to np-TiO2 electrode fabricated from as-received Ti foils. The highly porous np-TiO2 anode fabricated from annealed Ti foils exhibited 1st discharge capacity of 453.25 mAh/g and reduced to 172.70 mAh/g at 1 C current rate after 300 cycles; whilst the np-TiO2 electrode fabricated from the as-received Ti foils exhibited 1st discharge capacity of 213.30 mAh/g and reduced to 160.0 mAh/g at 1 C current rate after 300cycles. Even after 400cycles, such np-TiO2 electrode exhibited a reversible capacity of 125.0 mAh/g at 2.5 C current rate. Compared to the untreated Ti foils, the enhanced electro- chemical performance of np-TiO2 anode fabricated from annealed Ti foils was ascribed to the annealing- induced removal of residual stress among the Ti atoms. The benefit of annealing process can reduce pore size of as-fabricated np-TiO2.
文摘Titanium dioxide nanotubes(TNTs)were prepared by electroless deposition using ion track etched polycarbonate templates.The ion tracks were prepared to the desired diameter of the TNTs outer diameter.Titanium dioxide nanotubes with a diameter of minimum 80 nm having a wall thickness of minimum 10 nm can be fabricated using this method.To achieve nanotubes with thin walls and small surface roughness the tubes were generated by a several steps procedure under aqueous conditions at nearly room temperature.The presented approach will process open end nanotubes with well defined outer diameter and wall thickness.Using this method TNT arrays up to 109 tubes per cm2having a tube length up to 30μm can be produced,single tubes are also possible.The structural properties of the grown TNTs were investigated by using various analytical techniques,i.e.scanning electron microscopy(SEM),energy dispersive X-ray fluoresence spectrometer(EDX),X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),Raman spectroscopy and Photoluminescence.
文摘-The i. r. spectra of Na4 [UO2 (CO3)3], Na [UO2 (OH)3] and the surface species of uranium on HTO underthe condition of flowing natural seawater and concentrated seawater (NaCl-NaHCO3-U) were recorded, with the bands of urany! of surface species obtained and the finding that iigands of surface species besides HTO are mainly water and OH, and there are some CO32- groups under the condition of natural seawater. Some relations between the complex properties and the j. r. spectroscopic characters for uranyl complexes were studied, and the transferred change quantity of surface complex was calculated.Structure models for surface species of adsorption are herein presented and the mechanism for uranium adsorption is deduced.
文摘Sodium implanted titanium films with different ion doses were characterized to correlate their ion implantation parameters. Native titanium films and ion implanted titanium films were characterized with combined techniques of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and light microscopy (LM). The surface presented increased sodium concentration on treated titanium films with ion dose increasing, except for the group with the highest ion dose of 4×10^17ions/cm^2. XPS depth profiling displayed that sodium entered titanium film around 25-50nm depth depending on its implantation ion dose. AFM characterization showed that sodium ion implantation treatment changed the surface morphology from a relatively smooth titanium film to rough surfaces corresponding to different implantation doses. After sodium implantation, implanted titanium films presented big particles with island structure morphology. The surface morphology and particle growth displayed the corresponding trend. Fibrinogen adsorption on these titanium films was performed to correlate with the surface properties of treated titanium films. The results show that protein adsorption on ion-implanted samples with dose of 2×10^17 and 4×10^17 are statistically higher (p 〈0.01) than samples treated with dose of 5×10^16 and 1×10^17, as well as the control samples.
文摘In the production process of titanium dioxide with sulfuric acid, the contamination of the titanium sulfate solution (the ilmenite leaching solution) in the Fe 3+ reduction stage by iron scraps is a practical problem because it is difficult to guarantee the quality of the iron scraps. In this research, a new method, called the ion exchange membrane primary cell method, for reduction of Fe 3+ in the titanium sulfate solution has been advanced. The positive compartment of the primary cell consists of lead (copper) electrode and the titanium sulfate solution, and the negative compartment consists of iron electrode and acidic FeSO 4 solution. The anion ion exchange membrane is used as the diaphragm between two compartments. Fe 3+ in the titanium sulfate solution is reduced by the electric discharge of the primary cell. The effects of temperature, stirring strength of the solution and membrane area on the reduction rate have been investigated. The experimental result shows that the optimum current density can be higher than 100 A/m 2.
基金Supported by the National Natural Science Foundation of China under Grant No 1175012the China Postdoctoral Science Foundation under Grant No 2016M600897the National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant No 2013ZX04001-071
文摘The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses, the surface morphology of titanium alloy in a spatial scale of μm exhibits an obvious smoothening trend. The mechanism of this phenomenon is explained by the mass transfer caused by the surface tension of molten metal. Hydrodynamic simulation with a combination of the finite element method and the level set method reveals that the change in curvature on the molten surface leads to uneven distribution of surface tension. Mass transfer is caused by the relief of surface tension, and meanwhile a flattening trend in the surface morphology evolution is achieved.
文摘Chemically synthesized cero-antimonate and titanium cero-antimonate prepared by sol-gel technique was conducted for the synthesis of a novel ion exchanger. The prepared materials has been characterized by X-ray diffraction, X-ray fluorescence, Fourier transform Infrared Spectroscopy (FT-IR) and Thermograve-metric analyses. The structures and empirical formula's was identified and found to CeSb4O12?6.19H2O and TiCeSb4O14?12.22H2O, for cero-antiomate and titanium cero-antimonate, respectively. The data obtained from X-ray diffraction was analyzed to define the crystallographic feature of cero-antimonate and titanium cero-antimonate and found both the composites were belong to cubic system with lattice constant 5.15 and 5.149 ?, respectively. The crystallite size and strain of cero-antimonate and titanium cero-antimonate were determined. By using ChemDraw Ultra program the modeling structures of cero-antimonate and titanium cero-antimonate were conducted. Finally, application of the prepared materials for the removal of heavy metals from industrial waste water in terms of capacity measurements was performed.
文摘Two-dimensional numerical research has been carried out on the ablation effects of titanium target irradiated by intense pulsed ion beam (IPIB) generated by TEMP Ⅱ accelerator. Temporal and spatial evolution of the ablation process of the target during a pulse time has been simulated. We have come to the conclusion that the melting and evaporating process begin from the surface and the target is ablated layer by layer when the target is irradiated by the IPIB. Meanwhile, we also obtained the result that the average ablation velocity in target central region is about 10 m/s, which is far less than the ejection velocity of the plume plasma formed by irradiation. Different effects have been compared to the different ratio of the ions and different energy density of IPIB while the target is irradiated by pulsed beams.
文摘Titanium dioxide thin films were deposited on (0001) α-quartz substrate by spray pyrolysis method. The method which an aerosol of Titanium Butoxide, generated ultrasonically, was sprayed on the substrate at temperature of 400°C, kept at this temperature for periods of 3, 13, 19 and 39 hours. The developed films at a crystal phase correspond to the TiO2 anatase and rutile phases. Their surface roughness increased by annealing the samples at 600, 800 and 1000°C. Deposited film annealed at 1000°C showed preferable orientation in (110) direction. The crystal evolution and crystallographic properties of this material was studied by Lotgering method, X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The study revealed that the deposition process was nearly close to the classical Chemical Vapour Deposition (CVD) technique that is generally employed to produce films with smooth surface and good crystalline properties with a thickness of about 1 μm, as measured by Focused Ion Beam.
文摘The 50 wt pct TiC-C films were prepared on stainless steel substrates by using a technique of ion beam mixing. These films were irradiated by hydrogen ion beam with a dose of 1×10^18 ions/cm^2 and an energy of 5 keV. Microanalysis of X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) were used to analyze the films before and after hydrogen ion irradiation and to study the mechanism of hydrogen resistance.
基金supported by the National Natural Science Foundation of China(No.20873046)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.200805740004)the Project of Guangdong Province(No.2009B050700039)
文摘With the assistance of nonionic surfactant (OP-10) and surface-selective surfactant (CH3COOH), anatase TiO2 was prepared as an anode material for lithium ion batteries. The morphology, the crystal structure, and the electrochemical properties of the prepared anatase TiO2 were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and galvanostatic charge and discharge test. The result shows that the prepared anatase TiO2 has high discharge capacity and good cyclic stability. The maximum discharge capacity is 313 mAh.g^-1, and there is no significant capacity decay from the second cycle.
基金support provided by the National Natural Science Foundation of China (No. 51171009)the National Basic Research Program of China (No. 2012CB619403)
文摘The Ti-49.8at%Ni alloy was modified by Ti ion implantation to improve its corrosion resistance and biocompatibility. The chemical composition and morphologies of the Ti Ni alloy surface were determined using atomic force microscopy(AFM), auger electron spectroscopy(AES), and X-ray photoelectron spectroscopy(XPS). The results revealed that Ti ion implantation caused the reduction of Ni concentration and the formation of a Ti O2 nano-film on the Ti Ni alloy. The phase transformation temperatures of the Ti–Ti Ni alloy remained almost invariable after Ti ion implantation. Electrochemical tests indicated that the corrosion resistance of Ti Ni increased after Ti ion implantation. Moreover, the Ni ion release rate in 0.9% Na Cl solution for the Ti Ni alloy remarkably decreased due to the barrier effect of the Ti O2 nano-film. The cell proliferation behavior on Ti-implanted Ti Ni was better than that on the untreated Ti Ni after cell culture for 1 d and 3 d.