The realization of an ideal combination of mechanical and fatigue properties is prerequisites for practical application of titanium(Ti)microalloyed steel in automotive field.The fatigue behavior of four Ti microalloye...The realization of an ideal combination of mechanical and fatigue properties is prerequisites for practical application of titanium(Ti)microalloyed steel in automotive field.The fatigue behavior of four Ti microalloyed high-strength beam steels with different Ti contents was systematically studied.The results show that the content of microalloying element Ti has a significant effect on the fatigue properties,especially in the steel with a high Ti content.For the experimental Ti microalloyed steel,inclusion-induced crack initiation is the main fatigue failure mode.Different from general fatigue fracture mechanism in Ti-contained steel,no TiN,which is the most detrimental to fatigue behavior,was found in fatigue crack initiation area.However,the large-sized TiN and oxide complex inclusion with a core-shell structure is the dominant cause of fatigue fracture.Because of the intense-localized deformation at the interface between complex inclusion and matrix,the angular TiN in the outer shell has a serious deteriorating effect on the fatigue properties,which is consistent with the result of the Kernel average misorientation map.Besides,the modification effect of a small amount of MnS on large-sized inclusion is not obvious and has little effect on the fatigue behavior.For more practical guidance,the critical inclusion sizes of the experimental steels were also investigated by experimental extrapolation method.With the increasing tensile strength,the inclusion sensitivity of the experimental steels increases,leading to the small critical inclusion size.展开更多
Carbon neutrality of the steel industry requires the development of high-strength steel.The mechanical properties of low-alloy steel can be considerably improved at a low cost by adding a small amount of titanium(Ti)e...Carbon neutrality of the steel industry requires the development of high-strength steel.The mechanical properties of low-alloy steel can be considerably improved at a low cost by adding a small amount of titanium(Ti)element,namely Ti microalloying,whose performance is related to Ti-contained second phase particles including inclusions and precipitates.By proper controlling the precipitation behaviors of these particles during different stages of steel manufacture,fine-grained microstructure and strong precipitation strengthening effects can be obtained in low-alloy steel.Thus,Ti microalloying can be widely applied to produce high strength steel,which can replace low strength steels heavily used in various areas currently.This article reviews the characteristics of the chemical and physical metallurgies of Ti microalloying and the effects of Ti microalloying on the phase formation,microstructural evolution,precipitation behavior of low-carbon steel during the steel making process,especially the thin slab casting and continuous rolling process and the mechanical properties of final steel products.Future development of Ti microalloying is also proposed to further promote the application of Ti microalloying technology in steel to meet the requirement of low-carbon economy.展开更多
Effect of titanium microalloying on the microstructure and mechanical properties of vanadium microalloyed steels for hot forging was studied.Titanium microalloying improves the mechanical properties mainly through ref...Effect of titanium microalloying on the microstructure and mechanical properties of vanadium microalloyed steels for hot forging was studied.Titanium microalloying improves the mechanical properties mainly through refining the austenite grains.When the heating temperature is in the range of 1050–1300℃,the austenite grain diameter is decreased from 77–133 to 26–68μm by titanium microalloying.With the decrease in austenite grain diameter,the final microstructure is refined significantly,and the high misorientation boundaries are increased.After the steel is heated at 1200℃(the common hot forging temperature)and cooled slowly,titanium microalloying decreases the yield strength from 548.4 to 519.4 MPa,and the tensile strength decreases from 842.7 to 808.7 MPa.However,the elongation increases from 19.0%to 21.4%,and the impact energy increases from 9.8 to 38.2 J.V–Ti steel has a better combination of strength,plasticity and toughness than V steel.In addition,the nucleation of intragranular ferrite idiomorphs is promoted by titanium microalloying,which may have a beneficial effect on the property of steels with coarse microstructure caused by the critical deformation in hot die forging.展开更多
基金supported by the National Natural Science Foundation of China(No.52104369)the China Postdoctoral Science Foundation(No.2021M700374).
文摘The realization of an ideal combination of mechanical and fatigue properties is prerequisites for practical application of titanium(Ti)microalloyed steel in automotive field.The fatigue behavior of four Ti microalloyed high-strength beam steels with different Ti contents was systematically studied.The results show that the content of microalloying element Ti has a significant effect on the fatigue properties,especially in the steel with a high Ti content.For the experimental Ti microalloyed steel,inclusion-induced crack initiation is the main fatigue failure mode.Different from general fatigue fracture mechanism in Ti-contained steel,no TiN,which is the most detrimental to fatigue behavior,was found in fatigue crack initiation area.However,the large-sized TiN and oxide complex inclusion with a core-shell structure is the dominant cause of fatigue fracture.Because of the intense-localized deformation at the interface between complex inclusion and matrix,the angular TiN in the outer shell has a serious deteriorating effect on the fatigue properties,which is consistent with the result of the Kernel average misorientation map.Besides,the modification effect of a small amount of MnS on large-sized inclusion is not obvious and has little effect on the fatigue behavior.For more practical guidance,the critical inclusion sizes of the experimental steels were also investigated by experimental extrapolation method.With the increasing tensile strength,the inclusion sensitivity of the experimental steels increases,leading to the small critical inclusion size.
基金financially support by the National Natural Science Foundation of China(Nos.52104369 and 52071038)the China Postdoctoral Science Foundation(No.2021M700374)the State Key Laboratory for Advanced Metals and Materials(No.2020Z-02)。
文摘Carbon neutrality of the steel industry requires the development of high-strength steel.The mechanical properties of low-alloy steel can be considerably improved at a low cost by adding a small amount of titanium(Ti)element,namely Ti microalloying,whose performance is related to Ti-contained second phase particles including inclusions and precipitates.By proper controlling the precipitation behaviors of these particles during different stages of steel manufacture,fine-grained microstructure and strong precipitation strengthening effects can be obtained in low-alloy steel.Thus,Ti microalloying can be widely applied to produce high strength steel,which can replace low strength steels heavily used in various areas currently.This article reviews the characteristics of the chemical and physical metallurgies of Ti microalloying and the effects of Ti microalloying on the phase formation,microstructural evolution,precipitation behavior of low-carbon steel during the steel making process,especially the thin slab casting and continuous rolling process and the mechanical properties of final steel products.Future development of Ti microalloying is also proposed to further promote the application of Ti microalloying technology in steel to meet the requirement of low-carbon economy.
基金The authors appreciate the financial support by the China Postdoctoral Science Foundation(2019TQ0031)the Fundamental Research Funds for the Central Universities(FRF-TP-20-030A1)the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2021-002).
文摘Effect of titanium microalloying on the microstructure and mechanical properties of vanadium microalloyed steels for hot forging was studied.Titanium microalloying improves the mechanical properties mainly through refining the austenite grains.When the heating temperature is in the range of 1050–1300℃,the austenite grain diameter is decreased from 77–133 to 26–68μm by titanium microalloying.With the decrease in austenite grain diameter,the final microstructure is refined significantly,and the high misorientation boundaries are increased.After the steel is heated at 1200℃(the common hot forging temperature)and cooled slowly,titanium microalloying decreases the yield strength from 548.4 to 519.4 MPa,and the tensile strength decreases from 842.7 to 808.7 MPa.However,the elongation increases from 19.0%to 21.4%,and the impact energy increases from 9.8 to 38.2 J.V–Ti steel has a better combination of strength,plasticity and toughness than V steel.In addition,the nucleation of intragranular ferrite idiomorphs is promoted by titanium microalloying,which may have a beneficial effect on the property of steels with coarse microstructure caused by the critical deformation in hot die forging.