The electro-deoxidation of TiO2 was investigated in molten CaCl2.Back electromotive force measurements,constant voltage electrolytic experiments,contrast experiments of different cathodes,and cyclic voltammograms were...The electro-deoxidation of TiO2 was investigated in molten CaCl2.Back electromotive force measurements,constant voltage electrolytic experiments,contrast experiments of different cathodes,and cyclic voltammograms were carried out for solving the puzzle of reduction mechanism.The results showed that the reduction process proceeded step by step.TiO2 was first reduced to Ti3O5 or Ti2O3,and then further reduced to Ti3O,Ti2O,TiO and Ti.In addition,direct electrochemical reduction of titanium dioxide was the primary cathodic reaction;meanwhile,some calciothermic reduction reactions also happened at the cathode.Cyclic voltammograms of solid titanium dioxide and molybdenum wire in molten salts with different compositions were also studied.展开更多
The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria,...The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria, including growth pro-moting mechanism and bio-control mechanism, subsequently lists the use of excel-lent plant growth promoting rhizobacteria strains in recent years, especial y Pseu-domonas and Bacil us strains, and final y discusses problems existing in this area and points out issues requiring further exploration, including PGPR screening meth-ods, preservation methods, mechanism of action, in order to commercialize PGPR as soon as possible and practical y realize its application to production.展开更多
The effect of diboron trioxide(B_2O_3) on the crushing strength and smelting mechanism of high-chromium vanadium–titanium magnetite pellets was investigated in this work. The main characterization methods were X-ray ...The effect of diboron trioxide(B_2O_3) on the crushing strength and smelting mechanism of high-chromium vanadium–titanium magnetite pellets was investigated in this work. The main characterization methods were X-ray fluorescence, inductively coupled plasma–atomic emission spectroscopy, mercury injection porosimetry, X-ray diffraction, metallographic microscopy, and scanning electron microscopy–energy-dispersive X-ray spectroscopy. The results showed that the crushing strength increased greatly with increasing B_2O_3 content and that the increase in crushing strength was strongly correlated with a decrease in porosity, the formation of liquid phases, and the growth and recrystallization consolidation of hematite crystalline grains. The smelting properties were measured under simulated blast furnace conditions; the results showed that the smelting properties within a certain B_2O_3 content range were improved and optimized except in the softening stage. The valuable element B was easily transformed to the slag, and this phenomenon became increasingly evident with increasing B_2O_3 content. The formation of Ti(C,N) was mostly avoided, and the slag and melted iron were separated well during smelting with the addition of B_2O_3. The size increase of the melted iron was consistent with the gradual optimization of the dripping characteristics with increasing B_2O_3 content.展开更多
The independent influence of microstructural features on fracture toughness of TC21alloy with lamellar microstructure was investigated.Triple heat treatments were designed to obtain lamellar microstructures with diffe...The independent influence of microstructural features on fracture toughness of TC21alloy with lamellar microstructure was investigated.Triple heat treatments were designed to obtain lamellar microstructures with different parameters,which were characterized by OM and SEM.The size and content ofαplates were mainly determined by cooling rate from singleβphase field and solution temperature in two-phase field;while the precipitation behavior of secondaryαplatelets was dominantly controlled by aging temperature in two-phase field.The content and thickness ofαplates and the thickness of secondaryαplatelets were important microstructural features influencing the fracture toughness.Both increasing the content ofαplates and thickeningαplates(or secondaryαplatelets)could enhance the fracture toughness of TC21alloy.Based on energy consumption by the plastic zone of crack tip inαplates,a toughening mechanism for titanium alloys was proposed.展开更多
Vacuum diffusion bonding of a TiAl based alloy (TAD) to a titanium alloy (TC2) was carried out at 1 273 K for 15~120 min under a pressure of 25 MPa . The kinds of the reaction products and the interface s...Vacuum diffusion bonding of a TiAl based alloy (TAD) to a titanium alloy (TC2) was carried out at 1 273 K for 15~120 min under a pressure of 25 MPa . The kinds of the reaction products and the interface structures of the joints were investigated by SEM, EPMA and XRD. Based on this, a formation mechanism of the interface structure was elucidated. Experimental and analytical results show that two reaction layers have formed during the diffusion bonding of TAD to TC2. One is Al rich α(Ti)layer adjacent to TC2,and the other is (Ti 3Al+TiAl)layer adjacent to TAD,thus the interface structure of the TAD/TC2 joints is TAD/(Ti 3Al+TiAl)/α(Ti)/TC2.This interface structure forms according to a three stage mechanism,namely(a)the occurrence of a single phase α(Ti)layer;(b)the occurrence of a duplex phase(Ti 3Al+TiAl)layer;and(c)the growth of the α(Ti)and (Ti 3Al+TiAl)layers.展开更多
In order to establish the rolling process parameters of grade-2 commercially pure titanium (CP-Ti), it is necessary to understand the transformation mechanism and mechanical properties of this material. The β→α t...In order to establish the rolling process parameters of grade-2 commercially pure titanium (CP-Ti), it is necessary to understand the transformation mechanism and mechanical properties of this material. The β→α transformation kinetics of the grade-2 CP-Ti during continuous cooling was measured and its hot compression behavior was investigated using Gleeble-1500 thermal mechanical simulator. Dynamic CCT diagram confirms that cooling rate has an obvious effect on the start and finishing transformation and microstructures at room temperature. The critical cooling rate for γ-phase transforms to a phase is about 15℃/s. When the cooling rate is higher than 15 ℃/s, some β phases with fine granular shape remain residually into plate-like structure. The plate-like a phase forms at cooling rate lower than 2 ℃/s, serrate a phase forms at medium cooling rates, about 5-15℃/s. The flow stress behavior of grade-2 CP-Ti was investigated in a temperature range of 700-900℃ and strain rate of 3.6-40 mm/min. The results show that dynamic recrystallization, dynamic recovery and work-hardening obviously occur during hot deformation. Constitutive equation of grade-2 CP-Ti was established by analyzing the relationship of the deformation temperature, strain rate, deformation degree and deformation resistance.展开更多
Isothermal compression tests are applied to study the deformation mechanisms of TCll titanium alloy with lamellar structure under the deformation temperature range of 890-995 ℃ and strain rate range of 0.01-10 s^-1. ...Isothermal compression tests are applied to study the deformation mechanisms of TCll titanium alloy with lamellar structure under the deformation temperature range of 890-995 ℃ and strain rate range of 0.01-10 s^-1. According to the flow stress data obtained by compression tests, the deformation activations are calculated based on kinetics analysis of high temperature deformation, which are then used for deformation mechanism analysis combined with microstructure investigation. The results show that deformation mechanisms vary with deformation conditions: at low strain rate range, the deformation mechanism is mainly dislocation slip; at low temperature and high strain rate range, twinning is the main mechanism; at high temperature and high strain rate range, the deformation is mainly controlled by diffusion offl phase.展开更多
Ti - 40 alloy is a single β phase burn resistant titanium alloy.Its high temperature deformation mech- anism is studied and its stress - strain curves are examined he use of Gleeble - 1500 thermal -simulator. The r...Ti - 40 alloy is a single β phase burn resistant titanium alloy.Its high temperature deformation mech- anism is studied and its stress - strain curves are examined he use of Gleeble - 1500 thermal -simulator. The results reveal that there are abrupt flow stress drops followed b steady state.The magnitude of the flow stress drop increases with strain rote and decreases with temperature.Deformation activation energy, Q, is 247. 5 KJ/mol. The deformation mechanism of Ti - 40 alloy is controlled by the lattice diffusion Its constitutive equation is set up, i. e.展开更多
The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6A...The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6Al-2Zr-1Mo-1V alloy were investigated in this work.The result shows that laser power acts a dominant role in determining the relative density in comparison with scanning speed and hatch space.The optimal SLM process window for fabricating relative density>99%samples is located in the energy density range of 34.72 J·mm^(-3)to 52.08 J·mm^(-3),where the laser power range is between 125 W and 175 W.An upward trend is found in the micro-hardness as the energy density is increased.The optimum SLM processing parameters of Ti-6Al-2Zr-1Mo-1V alloy are:laser power of 150 W,scanning speed of 1,600 mm·s^(-1),hatch space of 0.08 mm,and layer thickness of 0.03 mm.The highest ultimate tensile strength,yield strength,and ductility under the optimum processing parameter are achieved,which are 1,205 MPa,1,099 MPa,and 8%,respectively.The results of this study can be used to guide SLM production Ti-6Al-2Zr-1Mo-1V alloy parts.展开更多
Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applicati...Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applications,given its superior mechanical properties,which are approximately 10%higher in terms of ultimate tensile strength(UTS)and yield strength after appropriate heat treatment.In as-built conditions,the alloy is characterized by the presence of soft orthorhombicα″martensite,necessitating a postprocessing heat treatment to decompose this phase and enhance the mechanical properties of the alloy.Usually,PBFed Ti6246 components undergo an annealing process that transforms theα″martensite into anα-βlamellar microstructure.The primary objective of this research was to develop a solution treatment and aging(STA)heat treatment tailored to the unique microstructure produced by the additive manufacturing process to achieve an ultrafine bilamellar microstructure reinforced by precipitation hardening.This study investigated the effects of various solution temperatures in theα-βfield(ranging from 800 to 875℃),cooling media(air and water),and aging time to determine the optimal heat treatment parameters for achieving the desired bilamellar microstructure.For each heat treatment condition,differentα-βmicrostructures were found,varying in terms of theα/βratio and the size of the primaryα-phase lamellae.Particular attention was given to how these factors were influenced by increases in solution temperature and how microhardness correlated with the percentage of the metastableβphase present after quenching.Tensile tests were performed on samples subjected to the most promising heat treatment parameters.A comparison with literature data revealed that the optimized STA treatment enhanced hardness and UTS by13%and 23%,respectively,compared with those of the annealed alloy.Fracture surface analyses were conducted to investigate fracture mechanisms.展开更多
The fiber laser welding tests for 3 mm thick TC4 titanium alloy plates are carried out,and the microstructures of the joints are analyzed by the OM and SEM,and the mechanical properties of the joints are described by ...The fiber laser welding tests for 3 mm thick TC4 titanium alloy plates are carried out,and the microstructures of the joints are analyzed by the OM and SEM,and the mechanical properties of the joints are described by tensile and hardness tests,and the SEM morpho-logies of the tensile fracture are observed.The results show that the weld zone is composed of columnarβphase with coarse grains and acicular martensiteα',and small secondaryα'phases in different directions are formed acicular martensiteα'.The microstructure at the boundary between the HAZ and the weld is composed ofα'andαphases,the microstructure at the boundary between the HAZ and the base metal is composed of the initial(αandβ)andαphases,and the microstructure of the middle transition zone of the HAZ is composed of a small amount ofα'andαphase of high temperatureβphase’transformation and initial(αandβ)phases.The average tensile strength of TC4 titanium alloy laser beam welded joints is 1056 MPa,and the average elongation is 9.0%,which are lower than the tensile strength and the elongation of the base metal respectively.The fracture is ductile fracture,and the hardness of the weld zone is the highest and that of the HAZ is the lowest.展开更多
The high-temperature deformation strengthening and toughening mechanisms of titanium alloys have been investigated in this paper. The materials processed by this method produce a new tri-modal microstrvcture, which co...The high-temperature deformation strengthening and toughening mechanisms of titanium alloys have been investigated in this paper. The materials processed by this method produce a new tri-modal microstrvcture, which consists of 10-20% equiaxed alpha, streaky alpha and transformed beta matrix. It is found that the higher ductility of tri-modal microstructure is attributed to the equiaxed alpha's coopemtive slip and coordinated deformation with the transformed beta matrix. The streaky alpha phases not only increase the strength and creep properties, but also increase the fracture toughness. Propagating along grain boundaries between two neighboring streaky alpha phases, cracks in tri-modal microstructure make a more tortuous way, and then the materials show a higher fracture toughness. This new method is applicable to α, near α,α+β and near β titanium alloys.展开更多
Phosphorus (P) and metal (M) components were incorporated into promoters for enhancing FCC propylene yield, and the reactive behavior of promoters, before and after modification, were investigated. The results sho...Phosphorus (P) and metal (M) components were incorporated into promoters for enhancing FCC propylene yield, and the reactive behavior of promoters, before and after modification, were investigated. The results showed that both LPG and propylene yields were increased, and propylene selectivity was improved after the incorporation of P or M into the matrix, resulting in an increased C3 to C4 ratio in LPG during FCC process. But the sole incorporation of M into the matrix also led to an increase in coke and H2 yields on the other hand. Simultaneous modification of the matrix by P and M components resulted in more enhancement in propylene yield and selectivity along with little influence on FCC product distribution. Physico-chemical characterizations and model compound reactions were used to assist in analyzing the mechanism for improving propylene selectivity. Two types of active centers could strengthen the oligomerization of C4 olefins in LPG and these oligomers could be further cracked into C3 olefins on ZSM-5 zeolite, therefore maximizing the ratio of C3 to C4 in liquefied petroleum gas obtained during FCC process.展开更多
The overall promotion of all-for-one tourism requires tourists' civilized behaviors. This paper focused on tourists' environmental responsible behaviors in the context of all-for-one tourism. On the basis of c...The overall promotion of all-for-one tourism requires tourists' civilized behaviors. This paper focused on tourists' environmental responsible behaviors in the context of all-for-one tourism. On the basis of clarifying the connotation, dimension and driving factors of tourists' environmental responsible behaviors, this paper firstly analyzed the relationship between all-for-one tourism and tourists' environmental responsible behaviors, and proposed that the development of all-for-one tourism was an important path to optimize and upgrade China's tourism industry and a new concept of sustainable development of tourism industry. The emergence of all-for-one tourism has formed a new tourism trend, which will drive tourists to behave more civilly. Tourists' environmental responsible behaviors are a "subject and share" concept, and from tourists' point of view, all-for-one tourism development is the most basic requirement. Secondly, based on the theory of "value-belief-norm", this paper focused on the strengthening mechanism of "interaction effect" between all-for-one tourism and tourists' environmental responsible behaviors, and put forward the idea of "double internalization strengthening" to guide tourists' environmental responsible behaviors from being passive to active, from individuals to groups. Finally, this paper discussed the promotion of environmental responsible behaviors of tourist's specific strategies from two aspects, "external drive" and "internal drive" to enhance the level of all-for-one tourism construction and strengthen the environment responsibility of tourists. "External drives" were as follows:(1) to make a scientific development plan to implement the "host and guest sharing" mechanism;(2) to optimize the landscape, the environment, services, enhance the local attachment of visitors;(3) to improve the infrastructure system, pay attention to the details of visitors' experience;(4) to strengthen environment education and publicity, deepening the quality of tourists' civilization construction, and strengthen the environmental responsible behaviors of tourists. "Internal drives" were as follows:(1) to strengthen the sense of environmental responsibility of tourists;(2) to establish a model of environmental responsible behaviors;(3) to strengthen the supervision of environmental responsible behaviors.展开更多
In order to promote the development and application of environmental-friendly,efficient and safe beneficial Bacillus sp.preparations,the paper summarizes and systematically elaborates the colonization of Bacillus sp.i...In order to promote the development and application of environmental-friendly,efficient and safe beneficial Bacillus sp.preparations,the paper summarizes and systematically elaborates the colonization of Bacillus sp.in host plants and the mechanism of synergistic effect on disease prevention of host plants,further reviews the application of rhizospheric Bacillus sp.in promoting the growth of agricultural and forestry crops and controlling plant diseases,and prospects the scientific issues and application of plant rhizospheric Bacillus sp.in the future.展开更多
The effects of riboflavin deficiency and simultaneously nitrosodimethylamine (NDMA) given by gastric intubation on the hepatic glutathione (GSH) content were examined in rats. On different days of the experiment, hepa...The effects of riboflavin deficiency and simultaneously nitrosodimethylamine (NDMA) given by gastric intubation on the hepatic glutathione (GSH) content were examined in rats. On different days of the experiment, hepatic GSH content of the riboflavin deficient rats decreased to 55-61% of the control rats. When NDMA was given 6 mg kg by gastric intubation to riboflavin deficient rats, hepatic GSH content decreased markedly to 39-43% of the control rats. After supplying riboflavin, hepatie GSH content of the deficient rats recovered to the level of the control rats. These results suggest that alterations of rat hepatic GSH content during riboflavin deficiency may imply as one of the promoting effects of riboflavin deficiency on the carcinogenesis of nitrosamines.展开更多
This paper studies the operation mechanism of crowdfunding for rural tourism from three aspects:the main body of crowdfunding for rural tourism,driving factors and operating stage.At the same time,this paper analyzes ...This paper studies the operation mechanism of crowdfunding for rural tourism from three aspects:the main body of crowdfunding for rural tourism,driving factors and operating stage.At the same time,this paper analyzes the operation risk of crowdfunding for rural tourism from five aspects:legal risk,information asymmetry risk,capital security risk,interest subject conflict risk and industry development risk.It also puts forward measures and suggestions on the promotion of crowdfunding for rural tourism from four aspects:improving market awareness,providing professional services,issuing relevant laws and regulations and regulating the development of the industry.展开更多
Science and Technology Park, which plays a very important role in promoting rapid development of regional economy, has enjoyed various preferential policies in its unique development since China’s reform and opening ...Science and Technology Park, which plays a very important role in promoting rapid development of regional economy, has enjoyed various preferential policies in its unique development since China’s reform and opening up, which oppositely shows that the government has overlooked development outside the park and resulted in negative competition between the science and technology park and surrounding areas in resources and industry development, etc. Therefore, it is necessary and urgent to overcome the existing obstacles against coordinative development between the park and surrounding areas, to explore paths where the two can development coordinately and to achieve new breakthrough and innovation in coordinative development in subject, object, platform and mechanism.展开更多
The rise and fall of a country are closely associated with the country's intellectuals, and knowledge is a fundamental method of changing the fate of a country. Wake up the national ideology of reading. In this conte...The rise and fall of a country are closely associated with the country's intellectuals, and knowledge is a fundamental method of changing the fate of a country. Wake up the national ideology of reading. In this context of the times, the Library undertakes the important task of advancing the national reading, libraries should continue to strengthen self-construction, and work together with other institutions and government, strangthaning our universal reading mechanism and developing it into a mature career.展开更多
On the basis of clarifying the teachers'Ethics internalization theory,this paper analyzes the typical dilemma in teachers'Ethics internalization.To resolve these problems,this paper construct an overall framew...On the basis of clarifying the teachers'Ethics internalization theory,this paper analyzes the typical dilemma in teachers'Ethics internalization.To resolve these problems,this paper construct an overall framework,including security mechanism,normative mechanism,education mechanism,evaluation mechanism and supervision mechanism,which the external conditions are used to constantly strengthen the moral needs of the subject,then enhance the consciousness of moral internalization,improve the effectiveness of teachers'moral construction.展开更多
基金Project(2006AA068128)supported by the Hi-tech Research and Development Program of China
文摘The electro-deoxidation of TiO2 was investigated in molten CaCl2.Back electromotive force measurements,constant voltage electrolytic experiments,contrast experiments of different cathodes,and cyclic voltammograms were carried out for solving the puzzle of reduction mechanism.The results showed that the reduction process proceeded step by step.TiO2 was first reduced to Ti3O5 or Ti2O3,and then further reduced to Ti3O,Ti2O,TiO and Ti.In addition,direct electrochemical reduction of titanium dioxide was the primary cathodic reaction;meanwhile,some calciothermic reduction reactions also happened at the cathode.Cyclic voltammograms of solid titanium dioxide and molybdenum wire in molten salts with different compositions were also studied.
基金Supported by the Science and Technology Project of Nanping Tobacco Company(201203)~~
文摘The paper first introduces the definition and classification of plant growth promoting rhizobacteria (PGPR), then reviews the research achievements on the mechanism of action of plant growth promoting rhizobacteria, including growth pro-moting mechanism and bio-control mechanism, subsequently lists the use of excel-lent plant growth promoting rhizobacteria strains in recent years, especial y Pseu-domonas and Bacil us strains, and final y discusses problems existing in this area and points out issues requiring further exploration, including PGPR screening meth-ods, preservation methods, mechanism of action, in order to commercialize PGPR as soon as possible and practical y realize its application to production.
基金financially supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No. 2015BAB19B02)the National Program on Key Basic Research Project of China (No. 2013CB632603)
文摘The effect of diboron trioxide(B_2O_3) on the crushing strength and smelting mechanism of high-chromium vanadium–titanium magnetite pellets was investigated in this work. The main characterization methods were X-ray fluorescence, inductively coupled plasma–atomic emission spectroscopy, mercury injection porosimetry, X-ray diffraction, metallographic microscopy, and scanning electron microscopy–energy-dispersive X-ray spectroscopy. The results showed that the crushing strength increased greatly with increasing B_2O_3 content and that the increase in crushing strength was strongly correlated with a decrease in porosity, the formation of liquid phases, and the growth and recrystallization consolidation of hematite crystalline grains. The smelting properties were measured under simulated blast furnace conditions; the results showed that the smelting properties within a certain B_2O_3 content range were improved and optimized except in the softening stage. The valuable element B was easily transformed to the slag, and this phenomenon became increasingly evident with increasing B_2O_3 content. The formation of Ti(C,N) was mostly avoided, and the slag and melted iron were separated well during smelting with the addition of B_2O_3. The size increase of the melted iron was consistent with the gradual optimization of the dripping characteristics with increasing B_2O_3 content.
文摘The independent influence of microstructural features on fracture toughness of TC21alloy with lamellar microstructure was investigated.Triple heat treatments were designed to obtain lamellar microstructures with different parameters,which were characterized by OM and SEM.The size and content ofαplates were mainly determined by cooling rate from singleβphase field and solution temperature in two-phase field;while the precipitation behavior of secondaryαplatelets was dominantly controlled by aging temperature in two-phase field.The content and thickness ofαplates and the thickness of secondaryαplatelets were important microstructural features influencing the fracture toughness.Both increasing the content ofαplates and thickeningαplates(or secondaryαplatelets)could enhance the fracture toughness of TC21alloy.Based on energy consumption by the plastic zone of crack tip inαplates,a toughening mechanism for titanium alloys was proposed.
文摘Vacuum diffusion bonding of a TiAl based alloy (TAD) to a titanium alloy (TC2) was carried out at 1 273 K for 15~120 min under a pressure of 25 MPa . The kinds of the reaction products and the interface structures of the joints were investigated by SEM, EPMA and XRD. Based on this, a formation mechanism of the interface structure was elucidated. Experimental and analytical results show that two reaction layers have formed during the diffusion bonding of TAD to TC2. One is Al rich α(Ti)layer adjacent to TC2,and the other is (Ti 3Al+TiAl)layer adjacent to TAD,thus the interface structure of the TAD/TC2 joints is TAD/(Ti 3Al+TiAl)/α(Ti)/TC2.This interface structure forms according to a three stage mechanism,namely(a)the occurrence of a single phase α(Ti)layer;(b)the occurrence of a duplex phase(Ti 3Al+TiAl)layer;and(c)the growth of the α(Ti)and (Ti 3Al+TiAl)layers.
基金Project(J51504) supported by Shanghai Leading Academic Discipline Project,China
文摘In order to establish the rolling process parameters of grade-2 commercially pure titanium (CP-Ti), it is necessary to understand the transformation mechanism and mechanical properties of this material. The β→α transformation kinetics of the grade-2 CP-Ti during continuous cooling was measured and its hot compression behavior was investigated using Gleeble-1500 thermal mechanical simulator. Dynamic CCT diagram confirms that cooling rate has an obvious effect on the start and finishing transformation and microstructures at room temperature. The critical cooling rate for γ-phase transforms to a phase is about 15℃/s. When the cooling rate is higher than 15 ℃/s, some β phases with fine granular shape remain residually into plate-like structure. The plate-like a phase forms at cooling rate lower than 2 ℃/s, serrate a phase forms at medium cooling rates, about 5-15℃/s. The flow stress behavior of grade-2 CP-Ti was investigated in a temperature range of 700-900℃ and strain rate of 3.6-40 mm/min. The results show that dynamic recrystallization, dynamic recovery and work-hardening obviously occur during hot deformation. Constitutive equation of grade-2 CP-Ti was established by analyzing the relationship of the deformation temperature, strain rate, deformation degree and deformation resistance.
文摘Isothermal compression tests are applied to study the deformation mechanisms of TCll titanium alloy with lamellar structure under the deformation temperature range of 890-995 ℃ and strain rate range of 0.01-10 s^-1. According to the flow stress data obtained by compression tests, the deformation activations are calculated based on kinetics analysis of high temperature deformation, which are then used for deformation mechanism analysis combined with microstructure investigation. The results show that deformation mechanisms vary with deformation conditions: at low strain rate range, the deformation mechanism is mainly dislocation slip; at low temperature and high strain rate range, twinning is the main mechanism; at high temperature and high strain rate range, the deformation is mainly controlled by diffusion offl phase.
文摘Ti - 40 alloy is a single β phase burn resistant titanium alloy.Its high temperature deformation mech- anism is studied and its stress - strain curves are examined he use of Gleeble - 1500 thermal -simulator. The results reveal that there are abrupt flow stress drops followed b steady state.The magnitude of the flow stress drop increases with strain rote and decreases with temperature.Deformation activation energy, Q, is 247. 5 KJ/mol. The deformation mechanism of Ti - 40 alloy is controlled by the lattice diffusion Its constitutive equation is set up, i. e.
基金supported by Liaoning Doctoral Research Start-up Fund project(Grant No.2023-BS-215).
文摘The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6Al-2Zr-1Mo-1V alloy were investigated in this work.The result shows that laser power acts a dominant role in determining the relative density in comparison with scanning speed and hatch space.The optimal SLM process window for fabricating relative density>99%samples is located in the energy density range of 34.72 J·mm^(-3)to 52.08 J·mm^(-3),where the laser power range is between 125 W and 175 W.An upward trend is found in the micro-hardness as the energy density is increased.The optimum SLM processing parameters of Ti-6Al-2Zr-1Mo-1V alloy are:laser power of 150 W,scanning speed of 1,600 mm·s^(-1),hatch space of 0.08 mm,and layer thickness of 0.03 mm.The highest ultimate tensile strength,yield strength,and ductility under the optimum processing parameter are achieved,which are 1,205 MPa,1,099 MPa,and 8%,respectively.The results of this study can be used to guide SLM production Ti-6Al-2Zr-1Mo-1V alloy parts.
基金financed by the European Union-Next Generation EU(National Sustainable Mobility Center CN00000023,Italian Ministry of University and Research Decree n.1033-17/06/2022,Spoke 11-Innovative Materials&Lightweighting)。
文摘Ti-6Al-4Zr-2Sn-6Mo alloy is one of the most recent titanium alloys processed using powder bed fusion-laser beam(PBF-LB)technology.This alloy has the potential to replace Ti-6Al-4V in automotive and aerospace applications,given its superior mechanical properties,which are approximately 10%higher in terms of ultimate tensile strength(UTS)and yield strength after appropriate heat treatment.In as-built conditions,the alloy is characterized by the presence of soft orthorhombicα″martensite,necessitating a postprocessing heat treatment to decompose this phase and enhance the mechanical properties of the alloy.Usually,PBFed Ti6246 components undergo an annealing process that transforms theα″martensite into anα-βlamellar microstructure.The primary objective of this research was to develop a solution treatment and aging(STA)heat treatment tailored to the unique microstructure produced by the additive manufacturing process to achieve an ultrafine bilamellar microstructure reinforced by precipitation hardening.This study investigated the effects of various solution temperatures in theα-βfield(ranging from 800 to 875℃),cooling media(air and water),and aging time to determine the optimal heat treatment parameters for achieving the desired bilamellar microstructure.For each heat treatment condition,differentα-βmicrostructures were found,varying in terms of theα/βratio and the size of the primaryα-phase lamellae.Particular attention was given to how these factors were influenced by increases in solution temperature and how microhardness correlated with the percentage of the metastableβphase present after quenching.Tensile tests were performed on samples subjected to the most promising heat treatment parameters.A comparison with literature data revealed that the optimized STA treatment enhanced hardness and UTS by13%and 23%,respectively,compared with those of the annealed alloy.Fracture surface analyses were conducted to investigate fracture mechanisms.
基金supported by the Science and Technology Plan Foundation of Guizhou(Guizhou Science Support[2021]General 337)Anhui University Natural Science Key Research Project(2022AH052357).
文摘The fiber laser welding tests for 3 mm thick TC4 titanium alloy plates are carried out,and the microstructures of the joints are analyzed by the OM and SEM,and the mechanical properties of the joints are described by tensile and hardness tests,and the SEM morpho-logies of the tensile fracture are observed.The results show that the weld zone is composed of columnarβphase with coarse grains and acicular martensiteα',and small secondaryα'phases in different directions are formed acicular martensiteα'.The microstructure at the boundary between the HAZ and the weld is composed ofα'andαphases,the microstructure at the boundary between the HAZ and the base metal is composed of the initial(αandβ)andαphases,and the microstructure of the middle transition zone of the HAZ is composed of a small amount ofα'andαphase of high temperatureβphase’transformation and initial(αandβ)phases.The average tensile strength of TC4 titanium alloy laser beam welded joints is 1056 MPa,and the average elongation is 9.0%,which are lower than the tensile strength and the elongation of the base metal respectively.The fracture is ductile fracture,and the hardness of the weld zone is the highest and that of the HAZ is the lowest.
文摘The high-temperature deformation strengthening and toughening mechanisms of titanium alloys have been investigated in this paper. The materials processed by this method produce a new tri-modal microstrvcture, which consists of 10-20% equiaxed alpha, streaky alpha and transformed beta matrix. It is found that the higher ductility of tri-modal microstructure is attributed to the equiaxed alpha's coopemtive slip and coordinated deformation with the transformed beta matrix. The streaky alpha phases not only increase the strength and creep properties, but also increase the fracture toughness. Propagating along grain boundaries between two neighboring streaky alpha phases, cracks in tri-modal microstructure make a more tortuous way, and then the materials show a higher fracture toughness. This new method is applicable to α, near α,α+β and near β titanium alloys.
文摘Phosphorus (P) and metal (M) components were incorporated into promoters for enhancing FCC propylene yield, and the reactive behavior of promoters, before and after modification, were investigated. The results showed that both LPG and propylene yields were increased, and propylene selectivity was improved after the incorporation of P or M into the matrix, resulting in an increased C3 to C4 ratio in LPG during FCC process. But the sole incorporation of M into the matrix also led to an increase in coke and H2 yields on the other hand. Simultaneous modification of the matrix by P and M components resulted in more enhancement in propylene yield and selectivity along with little influence on FCC product distribution. Physico-chemical characterizations and model compound reactions were used to assist in analyzing the mechanism for improving propylene selectivity. Two types of active centers could strengthen the oligomerization of C4 olefins in LPG and these oligomers could be further cracked into C3 olefins on ZSM-5 zeolite, therefore maximizing the ratio of C3 to C4 in liquefied petroleum gas obtained during FCC process.
基金Sponsored by Zhejiang Provincial Philosophy and Social Science Planning Project(17NDJC218YB)Project of Hangzhou Col ege of Commerce,Zhejiang Gongshang University(2016YJ-06)+1 种基金National Natural Science Foundation of China(41661034)Public Welfare Project of International Scientific and Technology Cooperation Project of Science Technology Department of Zhejiang Province(2016C34003)
文摘The overall promotion of all-for-one tourism requires tourists' civilized behaviors. This paper focused on tourists' environmental responsible behaviors in the context of all-for-one tourism. On the basis of clarifying the connotation, dimension and driving factors of tourists' environmental responsible behaviors, this paper firstly analyzed the relationship between all-for-one tourism and tourists' environmental responsible behaviors, and proposed that the development of all-for-one tourism was an important path to optimize and upgrade China's tourism industry and a new concept of sustainable development of tourism industry. The emergence of all-for-one tourism has formed a new tourism trend, which will drive tourists to behave more civilly. Tourists' environmental responsible behaviors are a "subject and share" concept, and from tourists' point of view, all-for-one tourism development is the most basic requirement. Secondly, based on the theory of "value-belief-norm", this paper focused on the strengthening mechanism of "interaction effect" between all-for-one tourism and tourists' environmental responsible behaviors, and put forward the idea of "double internalization strengthening" to guide tourists' environmental responsible behaviors from being passive to active, from individuals to groups. Finally, this paper discussed the promotion of environmental responsible behaviors of tourist's specific strategies from two aspects, "external drive" and "internal drive" to enhance the level of all-for-one tourism construction and strengthen the environment responsibility of tourists. "External drives" were as follows:(1) to make a scientific development plan to implement the "host and guest sharing" mechanism;(2) to optimize the landscape, the environment, services, enhance the local attachment of visitors;(3) to improve the infrastructure system, pay attention to the details of visitors' experience;(4) to strengthen environment education and publicity, deepening the quality of tourists' civilization construction, and strengthen the environmental responsible behaviors of tourists. "Internal drives" were as follows:(1) to strengthen the sense of environmental responsibility of tourists;(2) to establish a model of environmental responsible behaviors;(3) to strengthen the supervision of environmental responsible behaviors.
基金Supported by Innovation Incentive Project of Qiqihar Science and Technology Bureau (CNYGG-2021029)Special Program of "Agricultural Science and Technology Innovation Leapfrogging Project" of Heilongjiang Academy of Agricultural Sciences "Green and Efficient Prevention and Control Technology of Main Insect Pests in Facility Vegetables"(HNK2019CX10-18)。
文摘In order to promote the development and application of environmental-friendly,efficient and safe beneficial Bacillus sp.preparations,the paper summarizes and systematically elaborates the colonization of Bacillus sp.in host plants and the mechanism of synergistic effect on disease prevention of host plants,further reviews the application of rhizospheric Bacillus sp.in promoting the growth of agricultural and forestry crops and controlling plant diseases,and prospects the scientific issues and application of plant rhizospheric Bacillus sp.in the future.
文摘The effects of riboflavin deficiency and simultaneously nitrosodimethylamine (NDMA) given by gastric intubation on the hepatic glutathione (GSH) content were examined in rats. On different days of the experiment, hepatic GSH content of the riboflavin deficient rats decreased to 55-61% of the control rats. When NDMA was given 6 mg kg by gastric intubation to riboflavin deficient rats, hepatic GSH content decreased markedly to 39-43% of the control rats. After supplying riboflavin, hepatie GSH content of the deficient rats recovered to the level of the control rats. These results suggest that alterations of rat hepatic GSH content during riboflavin deficiency may imply as one of the promoting effects of riboflavin deficiency on the carcinogenesis of nitrosamines.
基金Supported by The 12 th Batch of Teaching Reform Research Project of Taishan University(201902).
文摘This paper studies the operation mechanism of crowdfunding for rural tourism from three aspects:the main body of crowdfunding for rural tourism,driving factors and operating stage.At the same time,this paper analyzes the operation risk of crowdfunding for rural tourism from five aspects:legal risk,information asymmetry risk,capital security risk,interest subject conflict risk and industry development risk.It also puts forward measures and suggestions on the promotion of crowdfunding for rural tourism from four aspects:improving market awareness,providing professional services,issuing relevant laws and regulations and regulating the development of the industry.
文摘Science and Technology Park, which plays a very important role in promoting rapid development of regional economy, has enjoyed various preferential policies in its unique development since China’s reform and opening up, which oppositely shows that the government has overlooked development outside the park and resulted in negative competition between the science and technology park and surrounding areas in resources and industry development, etc. Therefore, it is necessary and urgent to overcome the existing obstacles against coordinative development between the park and surrounding areas, to explore paths where the two can development coordinately and to achieve new breakthrough and innovation in coordinative development in subject, object, platform and mechanism.
文摘The rise and fall of a country are closely associated with the country's intellectuals, and knowledge is a fundamental method of changing the fate of a country. Wake up the national ideology of reading. In this context of the times, the Library undertakes the important task of advancing the national reading, libraries should continue to strengthen self-construction, and work together with other institutions and government, strangthaning our universal reading mechanism and developing it into a mature career.
文摘On the basis of clarifying the teachers'Ethics internalization theory,this paper analyzes the typical dilemma in teachers'Ethics internalization.To resolve these problems,this paper construct an overall framework,including security mechanism,normative mechanism,education mechanism,evaluation mechanism and supervision mechanism,which the external conditions are used to constantly strengthen the moral needs of the subject,then enhance the consciousness of moral internalization,improve the effectiveness of teachers'moral construction.