期刊文献+
共找到40,758篇文章
< 1 2 250 >
每页显示 20 50 100
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
1
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries:Mechanisms,Strategies,and Prospects 被引量:2
2
作者 Guan Wang Guixin Wang +2 位作者 Linfeng Fei Lina Zhao Haitao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期169-195,共27页
The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut... The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance. 展开更多
关键词 low-temperature performance Anode materials Microstructural regulations Surface modifications
下载PDF
Abiotic stress treatment reveals expansin like A gene OfEXLA1 improving salt and drought tolerance of Osmanthus fragrans by responding to abscisic acid 被引量:1
3
作者 Bin Dong Qianqian Wang +7 位作者 Dan Zhou Yiguang Wang Yunfeng Miao Shiwei Zhong Qiu Fang Liyuan Yang Zhen Xiao Hongbo Zhao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期573-585,共13页
Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental st... Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental stresses. Currently, limited information is available regarding the genetic analysis and functional identification of expansin genes in response to abiotic stress in sweet osmanthus. In this study, a total of 29 expansin genes were identified and divided into four groups by genome-wide analysis from the sweet osmanthus genome. Transcriptome and quantitative Real-time PCR analysis showed that the cell wall-localized protein expansin-like A(OfEXLA1) gene was significantly induced by salt and drought treatment. Histochemical GUS staining of transgenic Arabidopsis lines in which GUS activity was driven with the OfEXLA1 promoter, GUS activity was significantly induced by salt, drought, and exogenous abscisic acid(ABA). In yeast, we found OfEXLA1overexpression significantly improved the population of cells compared with wild-type strains after NaCl and polyethylene glycol(PEG)treatment. Additionally, OfEXLA1 overexpression not only promoted plant growth, but also improved the salt and drought tolerance in Arabidopsis. To gain insight into the role of ABA signaling in the regulation of OfEXLA1 improving abiotic tolerance in sweet osmanthus, four differentially expressed ABA Insensitive 5(ABI5)-like genes(OfABL4, OfABL5, OfABL7, and OfABL8) were identified from transcriptome, and dualluciferase(dual-LUC) and yeast one hybrid(Y1H) assay showed that OfABL4 and OfABL5 might bind to OfEXLA1 promoter to accumulate the OfEXLA1 expression by responding to ABA signaling to improve abiotic tolerance in sweet osmanthus. These results provide the information for understanding the molecular functions of expansin-like A gene and molecular breeding of sweet osmanthus in future. 展开更多
关键词 Osmanthus fragrans Abiotic tolerance EXPANSIN Abscisic acid
下载PDF
Low-temperature characteristicsof rubbers and performance testsof type 120 emergencyvalve diaphragms 被引量:1
4
作者 Ming Gao Anhui Pan +5 位作者 Yi Huang Jiaqi Wang Yan Zhang Xiao Xie Huanre Han Yinghua Jia 《Railway Sciences》 2024年第1期47-58,共12页
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista... Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms. 展开更多
关键词 Natural rubber Chloroprene rubber low-temperature characteristic 120 emergency valve DIAPHRAGM
下载PDF
Compositional and Hollow Engineering of Silicon Carbide/Carbon Microspheres as High-Performance Microwave Absorbing Materials with Good Environmental Tolerance 被引量:1
5
作者 Lixue Gai Yahui Wang +5 位作者 Pan Wan Shuping Yu Yongzheng Chen Xijiang Han Ping Xu Yunchen Du 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期128-146,共19页
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M... Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications. 展开更多
关键词 SiC/C composites Compositional engineering Hollow engineering Microwave absorption Environmental tolerance
下载PDF
The UDP-glycosyltransferase OsUGT706D2 positively regulates cold and submergence stress tolerance in rice
6
作者 Qing Liu Lanlan Zhang +12 位作者 Shuwei Lyu Hang Yu Wenjie Huang Liqun Jiang Jing Zhang Bingrui Sun Xingxue Mao Pingli Chen Junlian Xing Wenfeng Chen Zhilan Fan Shijuan Yan Chen Li 《The Crop Journal》 SCIE CSCD 2024年第3期732-742,共11页
In a genome-wide association study,we identified a rice UDP-glycosyltransferase gene,OsUGT706D2,whose transcription was activated in response to cold and submergence stress and to exogenous abscisic acid(ABA).OsUGT706... In a genome-wide association study,we identified a rice UDP-glycosyltransferase gene,OsUGT706D2,whose transcription was activated in response to cold and submergence stress and to exogenous abscisic acid(ABA).OsUGT706D2 positively regulated the biosynthesis of tricin-4’-O-(syringyl alcohol)ether-7-O-glucoside at both the transcriptional and metabolic levels.OsUGT706D2 mediated cold and submergence tolerance by modulating the expression of stress-responsive genes as well as the abscisic acid(ABA)signaling pathway.Gain of function of OsUGT706D2 increased cold and submergence tolerance and loss of function of OsUGT706D2 reduced cold tolerance.ABA positively regulated OsUGT706D2-mediated cold tolerance but reduced submergence tolerance.These findings suggest the potential use of OsUGT706D2 for improving abiotic stress tolerance in rice. 展开更多
关键词 UDP-glycosyltransferase RICE Cold tolerance Submergence tolerance ABA
下载PDF
Heterogeneous expression of stearoyl-acyl carrier protein desaturase genes SAD1 and SAD2 from Linum usitatissimum enhances seed oleic acid accumulation and seedling cold and drought tolerance in Brassica napus
7
作者 Jianjun Wang Yanan Shao +4 位作者 Xin Yang Chi Zhang Yuan Guo Zijin Liu Mingxun Chen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1864-1878,共15页
Flax(Linum usitatissimum L.)is a versatile crop and its seeds are a major source of unsaturated fatty acids.Stearoyl-acyl carrier protein desaturase(SAD)is a dehydrogenase enzyme that plays a key role in oleic acid bi... Flax(Linum usitatissimum L.)is a versatile crop and its seeds are a major source of unsaturated fatty acids.Stearoyl-acyl carrier protein desaturase(SAD)is a dehydrogenase enzyme that plays a key role in oleic acid biosynthesis as well as responses to biotic and abiotic stresses.However,the function of SAD orthologs from L.usitatissimum has not been assessed.Here,we found that two LuSAD genes,LuSAD1 and LuSAD2,are present in the genome of L.usitatissimum cultivar‘Longya 10’.Heterogeneous expression of either LuSAD1 or LuSAD2 in Arabidopsis thaliana resulted in higher contents of total fatty acids and oleic acid in the seeds.Interestingly,ectopic expression of LuSAD2 in A.thaliana caused altered plant architecture.Similarly,the overexpression of either LuSAD1 or LuSAD2 in Brassica napus also resulted in increased contents of total fatty acids and oleic acid in the seeds.Furthermore,we demonstrated that either LuSAD1 or LuSAD2 enhances seedling resistance to cold and drought stresses by improving antioxidant enzyme activity and nonenzymatic antioxidant levels,as well as reducing membrane damage.These findings not only broaden our knowledge of the LuSAD functions in plants,but also offer promising targets for improving the quantity and quality of oil,and the abiotic stress tolerance of oil-producing crops,through molecular manipulation. 展开更多
关键词 LuSAD oleic acid cold tolerance drought tolerance Linum usitatissimum Brassica napus
下载PDF
Cardiac Tolerance of Hydroalcoholic Extract of Bark of Terminalia mantaly H. Perrier (HAEBTM) in Wistar Rats
8
作者 Irié Lou Bohila Emilie Kamo Kouakou Serge Kouassi +3 位作者 Virginie Atto Allico Joseph Djaman Jean David N’guessan Mireille Dosso 《American Journal of Molecular Biology》 CAS 2024年第3期126-137,共12页
Terminalia mantaly H. Perrier is a plant used in traditional medicine for the treatment of various pathologies. However, Terminalia mantaly H. Perrier could present potential health effects on patients. In order to de... Terminalia mantaly H. Perrier is a plant used in traditional medicine for the treatment of various pathologies. However, Terminalia mantaly H. Perrier could present potential health effects on patients. In order to determine the possible cardiotoxic effects of the hydro-alcoholic extract of the bark of Terminalia mantaly H. Perrier, (HAEBTM) forty (40) rats distributed randomly into 4 groups, including 10 animals per group (5 males and 5 females) were used. Animals in group 1 received distilled water and were used as a control group. On the other hand, groups 2, 3, 4 received oral administration a volume of the hydroalcoholic extract of Terminalia mantaly H. Perrier corresponding to 1 mL/100g of body weight at 150 mg/kg, 300 mg/kg, 600 mg/kg, respectively. The extract was administered daily at the same time for 28 days and serum was collected once a week to evaluate cardiac biochemical markers using spectrophotometric methods using a Cobas C311 HITACHI biochemistry system. After one month of study, all rats were euthanized by overdose of ether, and the hearts of the rats were removed for gross morphological and histopathological analysis. Results were analysed using variance analysis (ANOVA) to compare outcomes as a function of doses administered and treatment times. The biochemical parameters ALT, LDH, CPK, CPKMB showed no significant change (p Terminalia mantaly showed no lesions, edema and necrosis. These results suggest that the hydroalcoholic extract of Terminalia mantaly did not interfere with the functioning or alter the integrity of the heart. 展开更多
关键词 Terminalia mantaly Bio Cardiac tolerance Biochemical Markers HISTOPATHOLOGY
下载PDF
Leaf Morphology Genes SRL1 and RENL1 Co-Regulate Cellulose Synthesis and Affect Rice Drought Tolerance
9
作者 LIU Dan ZHAO Huibo +18 位作者 WANG Zi’an XU Jing LIU Yiting WANG Jiajia CHEN Minmin LIU Xiong ZHANG Zhihai CEN Jiangsu ZHU Li HU Jiang REN Deyong GAO Zhenyu DONG Guojun ZHANG Qiang SHEN Lan LI Qing QIAN Qian HU Songping ZHANG Guangheng 《Rice science》 SCIE CSCD 2024年第1期103-117,I0020-I0022,共18页
The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between... The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between the morphological development of leaves and adaptation to drought environment.In this study,a drought-sensitive,roll-enhanced,and narrow-leaf mutant(renl1)was induced from a semi-rolled leaf mutant(srl1)by ethyl methane sulfonate(EMS),which was obtained from Nipponbare(NPB)through EMS.Map-based cloning and functional validation showed that RENL1 encodes a cellulose synthase,allelic to NRL1/OsCLSD4.The RENL1 mutation resulted in reduced vascular bundles,vesicular cells,cellulose,and hemicellulose contents in cell walls,diminishing the water-holding capacity of leaves.In addition,the root system of the renl1 mutant was poorly developed and its ability to scavenge reactive oxygen species(ROS)was decreased,leading to an increase in ROS after drought stress.Meanwhile,genetic results showed that RENL1 and SRL1 synergistically regulated cell wall components.Our results revealed a theoretical basis for further elucidating the molecular regulation mechanism of cellulose on rice drought tolerance,and provided a new genetic resource for enhancing the synergistic regulation network of plant type and stress resistance,thereby realizing simultaneous improvement of multiple traits in rice. 展开更多
关键词 CELLULOSE cell wall drought tolerance leaf morphology RICE
下载PDF
Advances in sodium-ion batteries at low-temperature: Challenges and strategies
10
作者 Haoran Bai Xiaohui Zhu +3 位作者 Huaisheng Ao Guangyu He Hai Xiao Yinjuan Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期518-539,I0012,共23页
With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a h... With the continuing boost in the demand for energy storage,there is an increasing requirement for batteries to be capable of operation in extreme environmental conditions.Sodium-ion batteries(SIBs) have emerged as a highly promising energy storage solution due to their promising performance over a wide range of temperatures and the abundance of sodium resources in the earth's crust.Compared to lithiumion batteries(LIBs),although sodium ions possess a larger ionic radius,they are more easily desolvated than lithium ions.Fu rthermore,SIBs have a smaller Stokes radius than lithium ions,resulting in improved sodium-ion mobility in the electrolyte.Nevertheless,SIBs demonstrate a significant decrease in performance at low temperatures(LT),which constrains their operation in harsh weather conditions.Despite the increasing interest in SIBs,there is a notable scarcity of research focusing specifically on their mechanism under LT conditions.This review explores recent research that considers the thermal tolerance of SIBs from an inner chemistry process perspective,spanning a wide temperature spectrum(-70 to100℃),particularly at LT conditions.In addition,the enhancement of electrochemical performance in LT SIBs is based on improvements in reaction kinetics and cycling stability achieved through the utilization of effective electrode materials and electrolyte components.Furthermore,the safety concerns associated with SIBs are addressed and effective strategies are proposed for mitigating these issues.Finally,prospects conducted to extend the environmental frontiers of commercial SIBs are discussed mainly from three viewpoints including innovations in materials,development and research of relevant theoretical mechanisms,and intelligent safety management system establishment for larger-scale energy storage SIBs. 展开更多
关键词 low-temperature Sodium-ion batteries Reaction kinetics Cycle stability Safety concerns of Sodium-ion batteries
下载PDF
Temperature inversion enables superior stability for low-temperature Zn-ion batteries
11
作者 Fu-Da Yu Zhe-Jian Yi +10 位作者 Rui-Yang Li Wei-Hao Lin Jie Chen Xiao-Yue Chen Yi-Ming Xie Ji-Huai Wu Zhang Lan Lan-Fang Que Bao-Sheng Liu Hao Luo Zhen-Bo Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期245-253,共9页
It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ... It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems. 展开更多
关键词 Aqueous Zn-ion batteries low-temperature performance Opposite temperature dependence Zndendrite growth Vanadium dissolution
下载PDF
MIR1868 negatively regulates rice cold tolerance at both the seedling and booting stages
12
作者 Yang Shen Xiaoxi Cai +7 位作者 Yan Wang Wanhong Li Dongpeng Li Hao Wu Weifeng Dong Bowei Jia Mingzhe Sun Xiaoli Sun 《The Crop Journal》 SCIE CSCD 2024年第2期375-383,共9页
Low temperature causes rice yield losses of up to 30%–40%,therefore increasing its cold tolerance is a breeding target.Few genes in rice are reported to confer cold tolerance at both the vegetative and reproductive s... Low temperature causes rice yield losses of up to 30%–40%,therefore increasing its cold tolerance is a breeding target.Few genes in rice are reported to confer cold tolerance at both the vegetative and reproductive stages.This study revealed a rice-specific 24-nt miRNA,miR1868,whose accumulation was suppressed by cold stress.Knockdown of MIR1868 increased seedling survival,pollen fertility,seed setting,and grain yield under cold stress,whereas its overexpression conferred the opposite phenotype.Knockdown of MIR1868 increased reactive oxygen species(ROS)scavenging and soluble sugar content under cold stress by increasing the expression of peroxidase genes and sugar metabolism genes,and its overexpression produced the opposite effect.Thus,MIR1868 negatively regulated rice cold tolerance via ROS scavenging and sugar accumulation. 展开更多
关键词 RICE Cold tolerance MIRNA ROS scavenging Soluble sugar accumulation
下载PDF
Overexpression of the peroxidase gene ZmPRX1 increases maize seedling drought tolerance by promoting root development and lignification
13
作者 Xiuzhen Zhai Xiaocui Yan +6 位作者 Tinashe Zenda Nan Wang Anyi Dong Qian Yang Yuan Zhong Yue Xing Huijun Duan 《The Crop Journal》 SCIE CSCD 2024年第3期753-765,共13页
Drought is a main abiotic stress factor hindering plant growth,development,and crop productivity.Therefore,it is crucial to understand the mechanisms by which plants cope with drought stress.Here,the function of the m... Drought is a main abiotic stress factor hindering plant growth,development,and crop productivity.Therefore,it is crucial to understand the mechanisms by which plants cope with drought stress.Here,the function of the maize peroxidase gene ZmPRX1 in drought stress tolerance was investigated by measurement of its expression in response to drought treatment both in a ZmPRX1 overexpression line and a mutant line.The higher root lignin accumulation and seedling survival rate of the overexpression line than that of the wild type or mutant support a role for ZmPRX1 in maize drought tolerance by regulating root development and lignification.Additionally,yeast one-hybrid,Dule luciferase and ChIP-qPCR assays showed that ZmPRX1 is negatively regulated by a nuclear-localized ZmWRKY86 transcription factor.The gene could potentially be used for breeding of drought-tolerant cultivars. 展开更多
关键词 Drought tolerance MAIZE ZmPRX1 Root development Lignin biosynthesis
下载PDF
Humoral Response and Tolerance of Vaccination against SARS-CoV-2 in Adults Senegalese Patients Undergoing Hemodialysis: A Multicenter Prospective Study
14
作者 Lot Nehemie Motoula Latou Moustapha Mbow +3 位作者 Modou Ndongo Gnagna Faye Gora Lo Sidy Mohamed Seck 《Open Journal of Nephrology》 2024年第1期70-80,共11页
Introduction: Following the COVID-19 pandemic, vaccination has been proposed in several countries as the main preventive measure despite very limited data, particularly in dialysis patients. We conducted this study to... Introduction: Following the COVID-19 pandemic, vaccination has been proposed in several countries as the main preventive measure despite very limited data, particularly in dialysis patients. We conducted this study to assess the immunological response to vaccination in Senegalese hemodialysis patients. Patients and Methods: We conducted a prospective study, in two dialysis centers in Dakar from March 30<sup>th</sup> to August 30<sup>th</sup>, 2021 including patients on hemodialysis for >6 months, vaccinated against SARS-CoV-2 according to the vaccination schedule recommended by WHO. A vaccine response was considered positive when seroconversion was observed after one dose of vaccine. The clinical efficacy of immunization was defined as the absence of new COVID-19 infection in patients who received a complete vaccination. Results: Among the 81 patients included in the study, 7.4% had anti-Spike IgM antibodies before their first vaccination. Seroprevalence of IgM antibodies was 38.3% one month after the first vaccine dose (at M1) and 8.6% one month after the second dose (at M4). Anti-Spike IgG antibodies were present in 40.3% of patients before vaccination, in 90.1% at M1, and in 59.7% at M4. Among patients previously infected with SARS-CoV-2, 10.2% had IgM antibodies at M0, 31.6% at M1, and 10.5% at M4 post-vaccination. Similarly, seroprevalences of IgG antibodies in this subgroup were 31.5%, 61.3%, and 50.0% respectively at M0, M1, and M4 post-vaccination. A comparison of seroconversion rates between M0 and M4 showed significant differences only for IgG in COVID-19 naive patients. Mean duration in dialysis and the existence of previous COVID-19 infection were associated with patients’ vaccinal response after the two doses. Age, gender and the use of immunosuppressive treatment did not influence post-vaccinal antibody production. Conclusion: Vaccination against COVID-19 in Senegalese hemodialysis patients induced a low seroconversion rate but it was well tolerated. Moreover, the induced protection was neither strong nor durable, particularly in patients with longer duration in dialysis. 展开更多
关键词 SARS-Cov2 Vaccination Humoral Response tolerance HEMODIALYSIS Senegal
下载PDF
Alkali Tolerance of Concrete Internal Curing Agent Based on Sodium Carboxymethyl Starch
15
作者 陈梅花 刘荣进 +3 位作者 CHEN Ping JING Daiyan WAN Dandan FU Siyuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期82-90,共9页
Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using ... Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength. 展开更多
关键词 alkali tolerance sodium carboxymethyl starch internal curing agent compressive strength
下载PDF
Degree of shade tolerance shapes seasonality of chlorophyll, nitrogen and phosphorus levels of trees and herbs in a temperate deciduous forest
16
作者 Jiajia Zeng Fan Liu +5 位作者 Yuan Zhu Jiayi Li Ying Ruan Xiankui Quan Chuankuan Wang Xingchang Wang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第4期60-72,共13页
Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types withi... Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production. 展开更多
关键词 Leaf traits Leaf nutrients Seasonal variations CHLOROPHYLL Nitrogen Phosphorus Shade tolerance Canopy layers
下载PDF
Screening and identification of salt tolerance soybean varieties and germplasms
17
作者 Limiao Chen Lihua Peng +11 位作者 Wenqi Ouyang Haowen Yao Yuxin Ye Zhihui Shan Dong Cao Shuilian Chen Zhonglu Yang Yi Huang Bei Han Aihua Sha Xinan Zhou Haifeng Chen 《Oil Crop Science》 CSCD 2024年第3期204-210,共7页
Soil salinization is a globally prevalent abiotic environmental stress.The imbalance of ions caused by high concentrations of sodium chloride results in a 40%reduction in soybean yield.Soybean,as an important crop for... Soil salinization is a globally prevalent abiotic environmental stress.The imbalance of ions caused by high concentrations of sodium chloride results in a 40%reduction in soybean yield.Soybean,as an important crop for soil quality improvement,necessitates the identification of salt-tolerant varieties and germplasms to effectively utilize and enhance saline-alkali land.In this study,we assessed the salt tolerance of 435 soybean varieties and germplasms during the seedling stage.Among them,Qihuang34,You2104,Hongzhudou,Pamanheidou,and Osage exhibited grade 1 salt tolerance rates surpassing other tested materials.Furthermore,Hongzhudou and Qihuang34 demonstrated higher salt tolerance during germination and emergence stages based on their elevated rates of emergence,salt tolerance index,chlorophyll content,and shoot fresh weights.Overall findings provide valuable resources for molecular breeding efforts aimed at developing salt-tolerant soybean varieties suitable for cultivation in saline-alkali soils. 展开更多
关键词 SOYBEAN VARIETIES Germplasms Salt tolerance Seedling stage Germination and emergence stage
下载PDF
A Data Intrusion Tolerance Model Based on an Improved Evolutionary Game Theory for the Energy Internet
18
作者 Song Deng Yiming Yuan 《Computers, Materials & Continua》 SCIE EI 2024年第6期3679-3697,共19页
Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suf... Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources. 展开更多
关键词 Energy Internet Intrusion tolerance game theory racial competition adaptive intrusion response
下载PDF
Cellular strategies to induce immune tolerance after liver transplantation:Clinical perspectives
19
作者 Ai-Wei Zhou Jing Jin Yuan Liu 《World Journal of Gastroenterology》 SCIE CAS 2024年第13期1791-1800,共10页
Liver transplantation(LT)has become the most efficient treatment for pediatric and adult end-stage liver disease and the survival time after transplantation is becoming longer due to the development of surgical techni... Liver transplantation(LT)has become the most efficient treatment for pediatric and adult end-stage liver disease and the survival time after transplantation is becoming longer due to the development of surgical techniques and perioperative management.However,long-term side-effects of immunosuppressants,like infection,metabolic disorders and malignant tumor are gaining more attention.Immune tolerance is the status in which LT recipients no longer need to take any immunosuppressants,but the liver function and intrahepatic histology maintain normal.The approaches to achieve immune tolerance after transplantation include spontaneous,operational and induced tolerance.The first two means require no specific intervention but withdrawing immunosuppressant gradually during follow-up.No clinical factors or biomarkers so far could accurately predict who are suitable for immunosuppressant withdraw after transplantation.With the understanding to the underlying mechanisms of immune tolerance,many strategies have been developed to induce tolerance in LT recipients.Cellular strategy is one of the most promising methods for immune tolerance induction,including chimerism induced by hematopoietic stem cells and adoptive transfer of regulatory immune cells.The safety and efficacy of various cell products have been evaluated by prospective preclinical and clinical trials,while obstacles still exist before translating into clinical practice.Here,we will summarize the latest perspectives and concerns on the clinical application of cellular strategies in LT recipients. 展开更多
关键词 Cellular therapy Induced tolerance Liver transplantation Regulatory T cells Regulatory dendritic cells
下载PDF
Multidimensional evaluation of salt tolerance in groundnut genotypes through biochemical responses
20
作者 Rushita D.Parmar Vaishali G.Varsani +2 位作者 Vijay Parmar Suhas Vyas Dushyant Dudhagara 《Oil Crop Science》 CSCD 2024年第2期102-110,共9页
The manuscript explores the complex interplay between groundnut genotypes,salt tolerance and hormonal influence,shedding light on the dynamic responses of three specific groundnut genotypes,KDG-128,TG-37 A and GG-20,t... The manuscript explores the complex interplay between groundnut genotypes,salt tolerance and hormonal influence,shedding light on the dynamic responses of three specific groundnut genotypes,KDG-128,TG-37 A and GG-20,to salt treatments and gibberellic acid(GA3).The study encompasses germination,plant growth,total protein content and oil content as key parameters.Through comprehensive analysis,it identifies TG-37 A and KDG-128 as salt-tolerant genotypes,and GG-20 as salt-susceptible genotypes,which highlighting the potential for targeted breeding efforts to develop more resilient groundnut varieties.Moreover,the quantification of protein and oil content under different treatments provides vital data for optimizing nutritional profiles in groundnut cultivars.Principal Component Analysis(PCA) underscores the significance of the first principal component(PC1)in explaining the majority of variance,capturing primary trends and differences in plant length.Analysis of Variance(ANOVA) and hierarchical analysis confirm the presence of statistically significant differences in protein and oil content among the genotypes.Pearson's correlation coefficient matrix analysis reveals strong positive correlations between plant length and protein content,plant length and oil content,and a moderately positive correlation between protein content and oil content.These findings provide valuable insights into groundnut physiology,salt tolerance,and nutritional composition,with implications for future research in sustainable agriculture and crop improvement. 展开更多
关键词 GROUNDNUT Salt tolerance GENOTYPES Salt-hormone interaction Protein and oil content Statistical analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部