期刊文献+
共找到438篇文章
< 1 2 22 >
每页显示 20 50 100
Traffic Flow Prediction with Heterogeneous Spatiotemporal Data Based on a Hybrid Deep Learning Model Using Attention-Mechanism
1
作者 Jing-Doo Wang Chayadi Oktomy Noto Susanto 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1711-1728,共18页
A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow acc... A significant obstacle in intelligent transportation systems(ITS)is the capacity to predict traffic flow.Recent advancements in deep neural networks have enabled the development of models to represent traffic flow accurately.However,accurately predicting traffic flow at the individual road level is extremely difficult due to the complex interplay of spatial and temporal factors.This paper proposes a technique for predicting short-term traffic flow data using an architecture that utilizes convolutional bidirectional long short-term memory(Conv-BiLSTM)with attention mechanisms.Prior studies neglected to include data pertaining to factors such as holidays,weather conditions,and vehicle types,which are interconnected and significantly impact the accuracy of forecast outcomes.In addition,this research incorporates recurring monthly periodic pattern data that significantly enhances the accuracy of forecast outcomes.The experimental findings demonstrate a performance improvement of 21.68%when incorporating the vehicle type feature. 展开更多
关键词 traffic flow prediction sptiotemporal data heterogeneous data Conv-BiLSTM data-CENTRIC intra-data
下载PDF
Classified VPN Network Traffic Flow Using Time Related to Artificial Neural Network
2
作者 Saad Abdalla Agaili Mohamed Sefer Kurnaz 《Computers, Materials & Continua》 SCIE EI 2024年第7期819-841,共23页
VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and c... VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions. 展开更多
关键词 VPN network traffic flow ANN classification intrusion detection data exfiltration encrypted traffic feature extraction network security
下载PDF
Traffic flow prediction based on BILSTM model and data denoising scheme 被引量:4
3
作者 Zhong-Yu Li Hong-Xia Ge Rong-Jun Cheng 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期191-200,共10页
Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management depar... Accurate prediction of road traffic flow is a significant part in the intelligent transportation systems.Accurate prediction can alleviate traffic congestion,and reduce environmental pollution.For the management department,it can make effective use of road resources.For individuals,it can help people plan their own travel paths,avoid congestion,and save time.Owing to complex factors on the road,such as damage to the detector and disturbances from environment,the measured traffic volume can contain noise.Reducing the influence of noise on traffic flow prediction is a piece of very important work.Therefore,in this paper we propose a combination algorithm of denoising and BILSTM to effectively improve the performance of traffic flow prediction.At the same time,three denoising algorithms are compared to find the best combination mode.In this paper,the wavelet(WL) denoising scheme,the empirical mode decomposition(EMD) denoising scheme,and the ensemble empirical mode decomposition(EEMD) denoising scheme are all introduced to suppress outliers in traffic flow data.In addition,we combine the denoising schemes with bidirectional long short-term memory(BILSTM)network to predict the traffic flow.The data in this paper are cited from performance measurement system(PeMS).We choose three kinds of road data(mainline,off ramp,on ramp) to predict traffic flow.The results for mainline show that data denoising can improve prediction accuracy.Moreover,prediction accuracy of BILSTM+EEMD scheme is the highest in the three methods(BILSTM+WL,BILSTM+EMD,BILSTM+EEMD).The results for off ramp and on ramp show the same performance as the results for mainline.It is indicated that this model is suitable for different road sections and long-term prediction. 展开更多
关键词 traffic flow prediction bidirectional long short-term memory network data denoising
下载PDF
Traffic Flow Prediction with Heterogenous Data Using a Hybrid CNN-LSTM Model 被引量:1
4
作者 Jing-Doo Wang Chayadi Oktomy Noto Susanto 《Computers, Materials & Continua》 SCIE EI 2023年第9期3097-3112,共16页
Predicting traffic flow is a crucial component of an intelligent transportation system.Precisely monitoring and predicting traffic flow remains a challenging endeavor.However,existingmethods for predicting traffic flo... Predicting traffic flow is a crucial component of an intelligent transportation system.Precisely monitoring and predicting traffic flow remains a challenging endeavor.However,existingmethods for predicting traffic flow do not incorporate various external factors or consider the spatiotemporal correlation between spatially adjacent nodes,resulting in the loss of essential information and lower forecast performance.On the other hand,the availability of spatiotemporal data is limited.This research offers alternative spatiotemporal data with three specific features as input,vehicle type(5 types),holidays(3 types),and weather(10 conditions).In this study,the proposed model combines the advantages of the capability of convolutional(CNN)layers to extract valuable information and learn the internal representation of time-series data that can be interpreted as an image,as well as the efficiency of long short-term memory(LSTM)layers for identifying short-term and long-term dependencies.Our approach may utilize the heterogeneous spatiotemporal correlation features of the traffic flowdataset to deliver better performance traffic flow prediction than existing deep learning models.The research findings show that adding spatiotemporal feature data increases the forecast’s performance;weather by 25.85%,vehicle type by 23.70%,and holiday by 14.02%. 展开更多
关键词 Heterogeneous data traffic flow prediction deep learning CNN LSTM
下载PDF
Analysing Traffic Flow and Traffic Hotspots from Historic and Real-Time GPS Data
5
作者 Christopher Bartolo Thiago Matos Pinto 《通讯和计算机(中英文版)》 2015年第6期318-325,共8页
关键词 交通流分析 数据分析 历史 实时 数据采集方法 全球定位系统 道路网络 数据收集
下载PDF
Gaussian mixture models for clustering and classifying traffic flow in real-time for traffic operation and management 被引量:1
6
作者 孙璐 张惠民 +3 位作者 高荣 顾文钧 徐冰 陈鲤梁 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期174-179,共6页
Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM ... Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc. 展开更多
关键词 traffic flow patterns Gaussian mixture model level of service data mining cluster analysis CLASSIFIER
下载PDF
Hourly traffic flow forecasting using a new hybrid modelling method 被引量:9
7
作者 LIU Hui ZHANG Xin-yu +2 位作者 YANG Yu-xiang LI Yan-fei YU Cheng-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1389-1402,共14页
Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department t... Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series. 展开更多
关键词 traffic flow forecasting intelligent transportation system imperialist competitive algorithm variational mode decomposition group method of data handling bi-directional long and short term memory ELMAN
下载PDF
基于NetFlow的流量统计系统的设计与实现 被引量:7
8
作者 曹建业 董永吉 +1 位作者 冶晓隆 龚莉萍 《计算机工程与设计》 CSCD 北大核心 2014年第2期381-385,共5页
针对以往基于微处理器的流量统计技术已不能满足网络接口带宽快速增长的实际应用需求问题,提出一种基于硬件实现NetFlow的流量统计系统的实现方案。通过充分利用FPGA并行处理的优势,以FPGA+DDRII为核心处理单元,采用全流统计模式,解决... 针对以往基于微处理器的流量统计技术已不能满足网络接口带宽快速增长的实际应用需求问题,提出一种基于硬件实现NetFlow的流量统计系统的实现方案。通过充分利用FPGA并行处理的优势,以FPGA+DDRII为核心处理单元,采用全流统计模式,解决了以往采用抽样统计造成的信息偏差问题。实际测试结果表明,该系统满足10Gbps带宽下的实时处理和高精度的识别,与传统软件实现相比,流识别的准确率最大能提高约37%。 展开更多
关键词 微处理器 网流 流量采集 现场可编程逻辑阵列 流统计
下载PDF
Comprehensive Evaluation Method for Traffic Flow Data Quality Based on Grey Correlation Analysis and Particle Swarm Optimization
9
作者 Wei Ba Baojun Chen Qi Li 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2024年第1期106-128,共23页
Nowadays,data are more and more used for intelligent modeling and prediction,and the comprehensive evaluation of data quality is getting more and more attention as a necessary means to measure whether the data are usa... Nowadays,data are more and more used for intelligent modeling and prediction,and the comprehensive evaluation of data quality is getting more and more attention as a necessary means to measure whether the data are usable or not.However,the comprehensive evaluation method of data quality mostly contains the subjective factors of the evaluator,so how to comprehensively and objectively evaluate the data has become a bottleneck that needs to be solved in the research of comprehensive evaluation method.In order to evaluate the data more comprehensively,objectively and differentially,a novel comprehensive evaluation method based on particle swarm optimization(PSO)and grey correlation analysis(GCA)is presented in this paper.At first,an improved GCA evaluation model based on the technique for order preference by similarity to an ideal solution(TOPSIS)is proposed.Then,an objective function model of maximum difference of the comprehensive evaluation values is built,and the PSO algorithm is used to optimize the weights of the improved GCA evaluation model based on the objective function model.Finally,the performance of the proposed method is investigated through parameter analysis.A performance comparison of traffic flow data is carried out,and the simulation results show that the maximum average difference between the evaluation results and its mean value(MDR)of the proposed comprehensive evaluation method is 33.24%higher than that of TOPSIS-GCA,and 6.86%higher than that of GCA.The proposed method has better differentiation than other methods,which means that it objectively and comprehensively evaluates the data from both the relevance and differentiation of the data,and the results more effectively reflect the differences in data quality,which will provide more effective data support for intelligent modeling,prediction and other applications. 展开更多
关键词 data quality comprehensive evaluation particle swarm optimization grey correlation analysis traffic flow data
原文传递
PURP: A Scalable System for Predicting Short-Term Urban TrafficFlow Based on License Plate Recognition Data
10
作者 Shan Zhang Qinkai Jiang +2 位作者 Hao Li Bin Cao Jing Fan 《Big Data Mining and Analytics》 EI CSCD 2024年第1期171-187,共17页
Accurate and efficient urban traffic flow prediction can help drivers identify road traffic conditions in real-time,consequently helping them avoid congestion and accidents to a certain extent.However,the existing met... Accurate and efficient urban traffic flow prediction can help drivers identify road traffic conditions in real-time,consequently helping them avoid congestion and accidents to a certain extent.However,the existing methods for real-time urban traffic flow prediction focus on improving the model prediction accuracy or efficiency while ignoring the training efficiency,which results in a prediction system that lacks the scalability to integrate real-time traffic flow into the training procedure.To conduct accurate and real-time urban traffic flow prediction while considering the latest historical data and avoiding time-consuming online retraining,herein,we propose a scalable system for Predicting short-term URban traffic flow in real-time based on license Plate recognition data(PURP).First,to ensure prediction accuracy,PURP constructs the spatio-temporal contexts of traffic flow prediction from License Plate Recognition(LPR)data as effective characteristics.Subsequently,to utilize the recent data without retraining the model online,PURP uses the nonparametric method k-Nearest Neighbor(namely KNN)as the prediction framework because the KNN can efficiently identify the top-k most similar spatio-temporal contexts and make predictions based on these contexts without time-consuming model retraining online.The experimental results show that PURP retains strong prediction efficiency as the prediction period increases. 展开更多
关键词 traffic flow prediction k-Nearest Neighbor(KNN) License Plate Recognition(LPR)data spatio-temporalcontext
原文传递
Three-stage approach for dynamic traffic temporal-spatial model
11
作者 陆化普 孙智源 屈闻聪 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2728-2734,共7页
In order to describe the characteristics of dynamic traffic flow and improve the robustness of its multiple applications, a dynamic traffic temporal-spatial model(DTTS) is established. With consideration of the tempor... In order to describe the characteristics of dynamic traffic flow and improve the robustness of its multiple applications, a dynamic traffic temporal-spatial model(DTTS) is established. With consideration of the temporal correlation, spatial correlation and historical correlation, a basic DTTS model is built. And a three-stage approach is put forward for the simplification and calibration of the basic DTTS model. Through critical sections pre-selection and critical time pre-selection, the first stage reduces the variable number of the basic DTTS model. In the second stage, variable coefficient calibration is implemented based on basic model simplification and stepwise regression analysis. Aimed at dynamic noise estimation, the characteristics of noise are summarized and an extreme learning machine is presented in the third stage. A case study based on a real-world road network in Beijing, China, is carried out to test the efficiency and applicability of proposed DTTS model and the three-stage approach. 展开更多
关键词 dynamic traffic flow temporal-spatial model big-data driven
下载PDF
考虑交通流量俘获的电动汽车充电负荷预测和充电站规划 被引量:1
12
作者 孙亮 申畅 +3 位作者 朱童生 杨格林 杨茂 孙艳学 《电力自动化设备》 EI CSCD 北大核心 2024年第7期263-270,共8页
针对电动汽车(EV)的充电需求,考虑路径的交通流量,以最大交通流量俘获、最小配电系统网络损耗和最小节点电压偏移为目标,构建了一个多目标决策模型对EV充电站进行规划。运用网络扩展技术确定交通流量俘获路径;运用蒙特卡罗模拟算法,确... 针对电动汽车(EV)的充电需求,考虑路径的交通流量,以最大交通流量俘获、最小配电系统网络损耗和最小节点电压偏移为目标,构建了一个多目标决策模型对EV充电站进行规划。运用网络扩展技术确定交通流量俘获路径;运用蒙特卡罗模拟算法,确定规划区内EV的最大充电负荷,从而推算得到充电站的容量;运用超效率数据包络分析评价方法,确定经过归一化处理后各目标函数的权重系数,从而将多目标优化问题转化为单目标优化问题,并采用改进的二进制粒子群优化算法进行求解。以一个包含25个节点的交通网络耦合33节点配电系统为算例进行仿真,验证所建模型和所提方法的有效性,并进一步分析EV最大行驶里程、充电站负荷接入不同节点以及不同时刻对各目标函数的影响。 展开更多
关键词 电动汽车 充电站 交通流量俘获 网络扩展技术 蒙特卡罗模拟算法 超效率数据包络分析
下载PDF
A Data-Driven Car-Following Model Based on the Random Forest
13
作者 Huili Shi Tingli Wang +3 位作者 Fusheng Zhong Hanqing Wang Junyan Han Xiaoyuan Wang 《World Journal of Engineering and Technology》 2021年第3期503-515,共13页
The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare... The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare. In recent years, the related technologies of Intelligent Transportation System (ITS) re</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">presented by the Vehicles to Everything (V2X) technology have been developing rapidly. Utilizing the related technologies of ITS, the large-scale vehicle microscopic trajectory data with high quality can be acquired, which provides the research foundation for modeling the car-following behavior based on the data-driven methods. According to this point, a data-driven car-following model based on the Random Forest (RF) method was constructed in this work, and the Next Generation Simulation (NGSIM) dataset was used to calibrate and train the constructed model. The Artificial Neural Network (ANN) model, GM model, and Full Velocity Difference (FVD) model are em</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">ployed to comparatively verify the proposed model. The research results suggest that the model proposed in this work can accurately describe the car-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">following behavior with better performance under multiple performance indicators. 展开更多
关键词 traffic flow Car-Following Model data-Driven Method Random Forest Intelligent Transportation System
下载PDF
基于起点-终点数据的成山角船舶交通流特征分析
14
作者 任律珍 温建东 周世波 《武汉理工大学学报(交通科学与工程版)》 2024年第3期603-608,共6页
文中提出了一种基于起点-终点(origin-destination,OD)数据的船舶AIS(automatic identification system)轨迹聚类模型.该模型通过对船舶AIS轨迹的OD数据聚类,得到起点标签和终点标签的OD类别组合,从而将行为相似的船舶轨迹划分到同一个... 文中提出了一种基于起点-终点(origin-destination,OD)数据的船舶AIS(automatic identification system)轨迹聚类模型.该模型通过对船舶AIS轨迹的OD数据聚类,得到起点标签和终点标签的OD类别组合,从而将行为相似的船舶轨迹划分到同一个簇中,实现船舶AIS轨迹的有效聚类,并识别噪声轨迹.在此基础上,分析了成山角定线制水域船舶航行偏好、OD位置特点和船舶的群体性活动规律等交通流特征. 展开更多
关键词 船舶AIS轨迹 OD数据 聚类 交通流特征
下载PDF
交通流数据的概念漂移探析
15
作者 李玲玲 辛浩 《淮北职业技术学院学报》 2024年第2期113-116,共4页
概念漂移在很大程度上影响着交通流预测的结果,当数据分布或属性发生了变化,而模型的参数和结构没有及时调整时,模型预测结果的准确性就会大幅度下降,甚至完全失效。研究交通流数据及特点,概念漂移及检测步骤、检测方法,对交通流数据概... 概念漂移在很大程度上影响着交通流预测的结果,当数据分布或属性发生了变化,而模型的参数和结构没有及时调整时,模型预测结果的准确性就会大幅度下降,甚至完全失效。研究交通流数据及特点,概念漂移及检测步骤、检测方法,对交通流数据概念漂移发现和检测模型的建立、后期调整和优化交通流预测模型具有重要意义。 展开更多
关键词 交通流数据 概念漂移 检测
下载PDF
基于YOLO模型的车流量实时采集系统研究
16
作者 王金环 李宝敏 《计算机技术与发展》 2024年第9期209-214,共6页
对于一座现代化城市来说,合理的交通规划是一个城市高效运行的关键,作为交通规划的关键信息的城市车流量信息,原本需要人工进行识别、获取、验证的提取方式,随着计算机视觉技术的蓬勃发展弊端尽显,终将退出历史的舞台。为了提高城市车... 对于一座现代化城市来说,合理的交通规划是一个城市高效运行的关键,作为交通规划的关键信息的城市车流量信息,原本需要人工进行识别、获取、验证的提取方式,随着计算机视觉技术的蓬勃发展弊端尽显,终将退出历史的舞台。为了提高城市车流量信息的准确性和及时性,利用现有的计算机技术设计一种基于YOLO模型的车流量实时采集系统。该系统基于YOLO视觉检测模型,采用DeepSORT算法对检测到的目标车辆进行跟踪识别、判断车辆的运行状态、实现当前路段的车流量统计、对已记录车流量信息进行可视化展示以及数据输出等。该系统可以有效地代替传统消耗人力的死板工作,实现自动化数据收集以及道路交通情况的快速监测。该系统操作简单,交互性强,为城市的交通管理和交通规划提供准确实时的信息数据。 展开更多
关键词 目标检测 目标跟踪算法 数据处理 YOLO模型 车流量 实时采集
下载PDF
基于轨迹数据的快速路交织区拥堵演变特征研究
17
作者 汪春 范生海 《盐城工学院学报(自然科学版)》 CAS 2024年第2期38-42,共5页
对快速路交织区拥堵演变过程中宏观交通流参数与交通状态的时变关系进行研究,可以为快速路交织区交通状态判别提供科学依据。利用YOLO算法从高清视频中提取车辆轨迹数据后,利用卡尔曼滤波对原始轨迹数据进行降噪平滑处理;对快速路交织... 对快速路交织区拥堵演变过程中宏观交通流参数与交通状态的时变关系进行研究,可以为快速路交织区交通状态判别提供科学依据。利用YOLO算法从高清视频中提取车辆轨迹数据后,利用卡尔曼滤波对原始轨迹数据进行降噪平滑处理;对快速路交织区拥堵演变过程中速度、流量、密度等宏观交通流参数与交通状态进行时变分析,揭示快速路交织区宏观交通流参数在拥堵演变过程中的时变特征。结果表明,在快速路交织区交通状态判别时,融合平均行程速度和交通流密度等指标,可以有效提高交通状态判别精度。 展开更多
关键词 快速路交织区 拥堵演变 轨迹数据 宏观交通流参数 交通状态
下载PDF
城市轨道交通系统的层次化功能结构解析——以上海为例
18
作者 焦洪赞 黄世彪 +1 位作者 杨珊珊 周煜 《西部人居环境学刊》 CSCD 北大核心 2024年第3期28-34,共7页
解析城市轨道交通系统的功能结构对于建立以轨道交通为骨架的城市空间结构至关重要,其有助于优化城市空间布局,促进交通与土地利用融合,进而推动城市可持续发展。本文利用交通刷卡大数据,基于轨道交通站域的功能相似性和邻接关系提出了... 解析城市轨道交通系统的功能结构对于建立以轨道交通为骨架的城市空间结构至关重要,其有助于优化城市空间布局,促进交通与土地利用融合,进而推动城市可持续发展。本文利用交通刷卡大数据,基于轨道交通站域的功能相似性和邻接关系提出了功能站组的概念,并形成了一套“站域功能分类—站组范围划定—站群结构识别”的方法体系。以上海市轨道交通系统为例,针对单个站域,构建表征站域土地利用功能的连续客流时间序列,并依据时间序列特征分类得到站域功能类型;将多个具有相似的出行模式和土地利用功能的相邻站域划定为功能站组;以功能站组为基本单元,采用社区发现算法,对功能站组间的客流交互网络进行分析以识别站群。研究结果表明,城市轨道交通系统的“站域—站组—站群”层次化功能结构解析方法综合了场所空间和流空间视角,有助于认识特大城市轨道交通系统的功能结构特征,并为轨道交通系统的发展提供多层次的空间优化建议。 展开更多
关键词 城市轨道交通 功能结构 社区发现算法 交通刷卡大数据 流空间
下载PDF
多视角融合的时空动态GCN城市交通流量预测 被引量:2
19
作者 赵文竹 袁冠 +3 位作者 张艳梅 乔少杰 王森章 张雷 《软件学报》 EI CSCD 北大核心 2024年第4期1751-1773,共23页
城市交通流量预测是构建绿色低碳、安全高效的智能交通系统的重要组成部分.时空图神经网络由于具有强大的时空数据表征能力,被广泛应用于城市交通流量预测.当前,时空图神经网络在城市交通流量预测中仍存在以下两方面局限性:1)直接构建... 城市交通流量预测是构建绿色低碳、安全高效的智能交通系统的重要组成部分.时空图神经网络由于具有强大的时空数据表征能力,被广泛应用于城市交通流量预测.当前,时空图神经网络在城市交通流量预测中仍存在以下两方面局限性:1)直接构建静态路网拓扑图对城市空间相关性进行表示,忽略了节点的动态交通模式,难以表达节点流量之间的时序相似性,无法捕获路网节点之间在时序上的动态关联;2)只考虑路网节点的局部空间相关性,忽略节点的全局空间相关性,无法建模交通路网中局部区域和全局空间之间的依赖关系.为打破上述局限性,提出了一种多视角融合的时空动态图卷积模型用于预测交通流量:首先,从静态空间拓扑和动态流量模式视角出发,构建路网空间结构图和动态流量关联图,并使用动态图卷积学习节点在两种视角下的特征,全面捕获城市路网中多元的空间相关性;其次,从局部视角和全局视角出发,计算路网的全局表示,将全局特征与局部特征融合,增强路网节点特征的表现力,发掘城市交通流量的整体结构特征;接下来,设计了局部卷积多头自注意力机制来获取交通数据的动态时间相关性,实现在多种时间窗口下的准确流量预测;最后,在4种真实交通数据上的实验结果,证明了该模型的有效性和准确性. 展开更多
关键词 交通流量预测 多视角时空特征 图卷积网络(GCN) 时空图数据 注意力机制
下载PDF
基于流计算和大数据平台的实时交通流预测 被引量:1
20
作者 李星辉 曾碧 魏鹏飞 《计算机工程与设计》 北大核心 2024年第2期553-561,共9页
目前交通流预测实时性差,很难满足在线分析和预测任务的需求,基于此提出一种Flink流计算框架和大数据平台结合的实时交通流预测方法。基于流计算框架实时捕捉和预处理数据,包括采用Flink的transform算子对数据进行校验和处理,将处理后... 目前交通流预测实时性差,很难满足在线分析和预测任务的需求,基于此提出一种Flink流计算框架和大数据平台结合的实时交通流预测方法。基于流计算框架实时捕捉和预处理数据,包括采用Flink的transform算子对数据进行校验和处理,将处理后的数据sink到大数据的HDFS文件系统,交由下一步的大数据并行框架进行分析建模与训练,实现基于流计算和大数据平台的实时交通流预测。实验结果表明,Flink能够实时捕捉和预处理交通流数据,把数据准时无误送入分布式文件系统中,在此基础上借助大数据框架下的并行分析和建模优势,在实时性数据分析与预测方面取得了较好的效果。 展开更多
关键词 大数据 数据并行 流计算框架 实时处理 交通流预测 分布式系统 实时性分析
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部