This paper focuses on optimization of the geo-metrical parameters of peripheral milling tools by takinginto account the dynamic effect. A substructure synthesistechnique is used to calculate the frequency responsefunc...This paper focuses on optimization of the geo-metrical parameters of peripheral milling tools by takinginto account the dynamic effect. A substructure synthesistechnique is used to calculate the frequency responsefunction of the tool point, which is adopted to determinethe stability lobe diagram. Based on the Taguchi designmethod, simulations are first conducted for varying com-binations of tool overhang length, helix angle, and teethnumber. The optimal geometrical parameters of the tool aredetermined through an orthogonal analysis of the maxi-mum axial depth of cut, which is obtained from the pre-dicted stability lobe diagram. It was found that thesequence of every factor used to determine the optimal toolgeometrical parameters was the tool overhang length, teethnumber, and helix angle. Finally, a series of experimentswere carried out as a parameter study to determine theinfluence of the tool overhang length, helix angle, and teethnumber on the cutting stability of a mill. The same con-clusion as that obtained through the simulation wasobserved.展开更多
The presented work will show the highest relevance of solving all the issues related to this problem and present the results of the analysis of the main expected potential problems,which may occur in the implementatio...The presented work will show the highest relevance of solving all the issues related to this problem and present the results of the analysis of the main expected potential problems,which may occur in the implementation of the INDUSTRY-4.0 reform.It is proved that the pace and level of development of this reform will be determined to a large extent by the effectiveness of the individual nodes used and the entire mechatronic system.It has also been established that as a result of systematic miniaturization of the nodes of radio-electronic equipment and microelectronic equipment and microelectronic technology,the main problem of these reforms and the implementation of complex technological processes is instrumental and technological support,especially with cutting micro-tools and equipment.Therefore,on the example of these investigations,methods for improving their performance are shown.展开更多
文摘This paper focuses on optimization of the geo-metrical parameters of peripheral milling tools by takinginto account the dynamic effect. A substructure synthesistechnique is used to calculate the frequency responsefunction of the tool point, which is adopted to determinethe stability lobe diagram. Based on the Taguchi designmethod, simulations are first conducted for varying com-binations of tool overhang length, helix angle, and teethnumber. The optimal geometrical parameters of the tool aredetermined through an orthogonal analysis of the maxi-mum axial depth of cut, which is obtained from the pre-dicted stability lobe diagram. It was found that thesequence of every factor used to determine the optimal toolgeometrical parameters was the tool overhang length, teethnumber, and helix angle. Finally, a series of experimentswere carried out as a parameter study to determine theinfluence of the tool overhang length, helix angle, and teethnumber on the cutting stability of a mill. The same con-clusion as that obtained through the simulation wasobserved.
基金This work was supported by Shota Rustaveli National Science Foundation(SRNSF)[PHDF-19-2224,Improving the efficiency of mechatronic systems in order to ensure the reform of“Industry-4.0”].
文摘The presented work will show the highest relevance of solving all the issues related to this problem and present the results of the analysis of the main expected potential problems,which may occur in the implementation of the INDUSTRY-4.0 reform.It is proved that the pace and level of development of this reform will be determined to a large extent by the effectiveness of the individual nodes used and the entire mechatronic system.It has also been established that as a result of systematic miniaturization of the nodes of radio-electronic equipment and microelectronic equipment and microelectronic technology,the main problem of these reforms and the implementation of complex technological processes is instrumental and technological support,especially with cutting micro-tools and equipment.Therefore,on the example of these investigations,methods for improving their performance are shown.