期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
基于机器学习的刀具磨损状态智能预测方法研究 被引量:2
1
作者 梁璐娜 魏建安 +2 位作者 袁雅阁 吴国阳 徐军 《机电工程技术》 2024年第2期29-34,123,共7页
以刀具为研究载体,运用人工智能和智能优化等先进技术,成功实现了刀具磨损状态的智能预测。研究重点在于建立有效的刀具磨损状态预测方法,全面解析刀具磨损机理、形式及磨钝标准等关键信息。同时,构建了自采刀具磨损状态监测平台,以便... 以刀具为研究载体,运用人工智能和智能优化等先进技术,成功实现了刀具磨损状态的智能预测。研究重点在于建立有效的刀具磨损状态预测方法,全面解析刀具磨损机理、形式及磨钝标准等关键信息。同时,构建了自采刀具磨损状态监测平台,以便收集并处理相关数据。在数据处理过程中,采用小波滤噪和EMD-Shannon能量熵进行特征筛选,构建出特征空间数据集,为后续构建预测模型提供坚实的数据基础。结合支持向量机分类算法和智能优化算法,构建出刀具磨损状态的智能预测框架。此框架不仅提高了预测精度,也为维护人员提供了强有力的工具,利于更好地进行刀具磨损状态的预测和维护工作。为增强实际应用价值,将所取得的成果整合至基于MATLAB GUI的刀具磨损状态智能监测原型系统,以图形界面方式呈现预测结果,使用户直观地了解和掌握刀具的磨损状态。结果表明,该方法具有高精度,刀具磨损状态的识别精度可达84%,为相关领域提供了可靠的技术支持。 展开更多
关键词 刀具磨损 智能监测系统 特征选择 智能优化算法 支持向量机
下载PDF
基于数字孪生的铣刀磨损状态识别方法研究
2
作者 水星 容芷君 +2 位作者 但斌斌 何强鉴 杨鑫 《组合机床与自动化加工技术》 北大核心 2024年第9期20-24,共5页
实时精准地监测铣刀磨损状态对于提高加工质量与加工效率具有重要意义,提出一种基于数字孪生的铣刀磨损状态识别方法,该方法通过结合VMD-MPE特征提取方法和GA-SVM状态识别模型构建数字孪生体对铣刀磨损状态进行实时监测。首先,利用变分... 实时精准地监测铣刀磨损状态对于提高加工质量与加工效率具有重要意义,提出一种基于数字孪生的铣刀磨损状态识别方法,该方法通过结合VMD-MPE特征提取方法和GA-SVM状态识别模型构建数字孪生体对铣刀磨损状态进行实时监测。首先,利用变分模态分解算法(VMD)分解铣刀振动信号得到包含磨损状态信息的模态分量;其次,引入多尺度排列熵(MPE)从包含磨损状态信息的模态分量中提取铣刀的非线性动力学特征,并取各有效模态分量的多尺度排列熵平均值作为特征矩阵;最后,通过遗传算法(GA)优化支持向量机(SVM)构建铣刀磨损状态识别模型。实验结果表明,所构建的数字孪生体具有良好识别效果,其识别精度可达97.33%。 展开更多
关键词 数字孪生 刀具磨损 状态识别 变分模态分解 多尺度排列熵 支持向量机
下载PDF
基于PCC-GWO-SVM算法的刀具磨损预测
3
作者 蒋忞源 罗敏 +1 位作者 刘翰林 夏弋涵 《工具技术》 北大核心 2024年第11期131-138,共8页
针对在刀具磨损实时监测过程中受外界噪声影响而导致预测准确度较低问题,提出一种基于皮尔逊相关系数(Pearson Correlation Coefficient,PCC)和灰狼优化支持向量机(Grey Wolf Optimization Support Vector Machine,GWO-SVM)的刀具磨损... 针对在刀具磨损实时监测过程中受外界噪声影响而导致预测准确度较低问题,提出一种基于皮尔逊相关系数(Pearson Correlation Coefficient,PCC)和灰狼优化支持向量机(Grey Wolf Optimization Support Vector Machine,GWO-SVM)的刀具磨损量预测模型。该模型采用时域、频域和时频联合域上的特征提取方法,能有效捕捉刀具磨损过程中不同方面的信息;通过PCC优化方法筛选与刀具磨损高度相关的特征数据,提高模型的特征提取能力;利用灰狼算法获取搜索狼群中具有最佳适应度值的位置,即对应的SVM惩罚因子C和核函数参数σ作为SVM的最优参数进行构建和训练,提高预测精度。实验结果表明,PCC-GWO-SVM模型在球头铣刀磨损预测任务中的均方误差MSE为0.0181mm^(2),平均相对误差MAPE为0.187%,决定系数R^(2)为0.9827,均优于预测模型GA-SVM和BES-LSSVM,验证了该模型的有效性和可行性。 展开更多
关键词 皮尔逊相关系数 灰狼优化算法 支持向量机 刀具磨损预测
下载PDF
基于多传感器多元特征融合决策的铣刀磨损辨识方法
4
作者 贺明茹 吴双峰 +1 位作者 李萌 张威 《机电工程》 CAS 北大核心 2024年第11期2019-2028,共10页
针对铣削加工过程中刀具磨损预测准确率低、单一传感器覆盖特征缺乏对照的问题,提出了一种结合粒子群优化(PSO)-最小二乘支持向量机(LS-SVM)算法与多传感器特征的刀具磨损判断方法。首先,构建了以振动、切削力和声发射为刀具磨损监测信... 针对铣削加工过程中刀具磨损预测准确率低、单一传感器覆盖特征缺乏对照的问题,提出了一种结合粒子群优化(PSO)-最小二乘支持向量机(LS-SVM)算法与多传感器特征的刀具磨损判断方法。首先,构建了以振动、切削力和声发射为刀具磨损监测信号的磨损辨识系统;然后,采用时域特征:最大值p1、均方根p2、标准差p3、绝对值均值p4结合小波频段能量特征分析的方法进行了铣削加工信号分析,采用PSO-LS-SVM算法建立了刀具磨损状态识别模型和刀具磨损量预测模型;最后,通过时域与小波分析,从采集到的振动、铣削力及声发射信号中提取了71维信号特征,并优化降维至24维;以24维特征作为输入,刀具磨损状态和刀具磨损量为输出,对该刀具磨损识别及预测算法进行了验证。研究结果表明:基于PSO-LS-SVM算法的刀具磨损状态辨识模型在多传感器特征方面的磨损识别准确率为99.39%,相比单传感器特征,其识别准确率更高;刀具磨损量预测模型的预测精度达到了99.75%,相比其他模型,平均准确率提高了8.02%。 展开更多
关键词 刀具磨损监测 多传感器特征 特征提取 粒子群优化 最小二乘支持向量机 磨损识别与预测
下载PDF
基于混沌时序分析方法与支持向量机的刀具磨损状态识别 被引量:23
5
作者 张栋梁 莫蓉 +3 位作者 孙惠斌 李春磊 苗春生 李冀 《计算机集成制造系统》 EI CSCD 北大核心 2015年第8期2138-2146,共9页
为了表征、获取与识别刀具的磨损状态,提出一种基于混沌时序分析方法与支持向量机的刀具磨损状态识别方法。该方法利用混沌时序分析方法重构了刀具声发射信号的相空间,并提取了嵌入维数与Lyapunov系数建立了特征空间。使用支持向量机作... 为了表征、获取与识别刀具的磨损状态,提出一种基于混沌时序分析方法与支持向量机的刀具磨损状态识别方法。该方法利用混沌时序分析方法重构了刀具声发射信号的相空间,并提取了嵌入维数与Lyapunov系数建立了特征空间。使用支持向量机作为分类器,实现了刀具磨损状态的识别。实验证明,在小样本学习情况下,基于混沌时序分析方法与支持向量机的刀具磨损状态识别方法具有良好的学习能力,获得了较高的识别准确率。 展开更多
关键词 刀具磨损 支持向量机 混沌时序分析方法
下载PDF
基于超球面支持向量机的刀具磨损状态识别 被引量:14
6
作者 刘路 王太勇 +2 位作者 蒋永翔 胡淼 宁倩 《农业机械学报》 EI CAS CSCD 北大核心 2011年第1期218-222,共5页
提出一种基于超球面支持向量机的刀具磨损状态识别方法。该方法提取切削力与振动信号中的多项特征,对各项特征分别进行刀具磨损量相关性分析,选择与刀具磨损变化量最相关的均值、均方根、小波系数能量以及小波系数近似熵组成特征向量。... 提出一种基于超球面支持向量机的刀具磨损状态识别方法。该方法提取切削力与振动信号中的多项特征,对各项特征分别进行刀具磨损量相关性分析,选择与刀具磨损变化量最相关的均值、均方根、小波系数能量以及小波系数近似熵组成特征向量。采用超球面支持向量机作为分类器,实现了刀具磨损状态的自动识别。实验证明,在小样本学习情况下,基于超球面支持向量机的刀具磨损状态识别方法具有良好的学习和泛化能力,获得较高的识别正确率。 展开更多
关键词 刀具磨损 超球面支持向量机 小波变换 近似熵 模式识别
下载PDF
支持向量机在刀具磨损多状态监测中的应用 被引量:19
7
作者 王国锋 李启铭 +3 位作者 秦旭达 喻秀 崔银虎 彭东彪 《天津大学学报》 EI CAS CSCD 北大核心 2011年第1期35-39,共5页
基于多传感器信号、采用多分类支持向量机(support-vector-machine,SVM)实现了刀具监测的多状态辨识.通过对切削过程中的多向切削力和振动信号等多传感器信息进行分析,分别获得时域、频域和小波域的信息作为磨损分类特征;同时,运用基于... 基于多传感器信号、采用多分类支持向量机(support-vector-machine,SVM)实现了刀具监测的多状态辨识.通过对切削过程中的多向切削力和振动信号等多传感器信息进行分析,分别获得时域、频域和小波域的信息作为磨损分类特征;同时,运用基于一对多(one-versus-all,OVA)的多分类支持向量机对刀具不同磨损状态下的特征数据样本进行训练和识别.对切削过程中不同磨损状态的分类结果表明,多分类支持向量机具有出色的学习能力,能够实现在小样本情况下的不同磨损阶段分类,并具有较高的识别精度. 展开更多
关键词 刀具磨损监测 支持向量机 一对多 多状态识别
下载PDF
基于主成分分析与C-支持向量机的刀具磨损状态监测 被引量:23
8
作者 谢楠 马飞 +1 位作者 段明雷 李爱平 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第3期434-439,共6页
为了监测刀具磨损状态,建立了一个基于功率传感器的刀具磨损状态监测系统.提出了一种基于主成分分析(PCA)与C-支持向量机(C-SVM)相结合的刀具磨损状态监测模型.通过功率传感器采集切削过程中的电流和功率信号,采用PCA对采集的参数进行... 为了监测刀具磨损状态,建立了一个基于功率传感器的刀具磨损状态监测系统.提出了一种基于主成分分析(PCA)与C-支持向量机(C-SVM)相结合的刀具磨损状态监测模型.通过功率传感器采集切削过程中的电流和功率信号,采用PCA对采集的参数进行特征提取,选择对刀具磨损状态影响最大的主成分作为C-SVM的输入样本,实现对刀具磨损状态的准确识别.通过数控车床切削实验表明,即使在较少的样本条件下,该方法仍然有效,并与反向传播(BP)神经网络进行了性能比较. 展开更多
关键词 刀具磨损 监测 主成分分析 C-支持向量机
下载PDF
基于云理论与LS-SVM的刀具磨损识别方法 被引量:9
9
作者 关山 康振兴 彭昶 《振动.测试与诊断》 EI CSCD 北大核心 2017年第5期996-1003,共8页
针对刀具磨损过程中产生声发射信号的不确定性以及神经网络学习算法收敛速度慢、易陷入局部极小值、对特征要求较高等问题,提出了基于云理论和最小二乘支持向量机的刀具磨损状态识别方法。首先,对声发射信号进行小波包分解与重构,滤除... 针对刀具磨损过程中产生声发射信号的不确定性以及神经网络学习算法收敛速度慢、易陷入局部极小值、对特征要求较高等问题,提出了基于云理论和最小二乘支持向量机的刀具磨损状态识别方法。首先,对声发射信号进行小波包分解与重构,滤除干扰频段对求取特征参数的影响;其次,对重构后的信号利用逆向云算法提取云特征参数:期望、熵、超熵,分析刀具磨损声发射信号的云特性及磨损状态与云特征参数之间的关系;最后,将云特征参数组成特征向量送入最小二乘支持向量机进行识别。研究结果表明:所提取的特征可以很好地反映刀具的磨损状态,云-支持向量机方法可以有效地实现刀具磨损状态的识别,与传统神经网络识别方法相比具有更高的识别率,识别率达到96.67%。 展开更多
关键词 刀具磨损 状态识别 云理论 支持向量机 神经网络
下载PDF
基于谐波小波包和BSA优化LS-SVM的铣刀磨损状态识别研究 被引量:12
10
作者 董彩云 张超勇 +3 位作者 孟磊磊 肖鹏飞 罗敏 林文文 《中国机械工程》 EI CAS CSCD 北大核心 2017年第17期2080-2089,2108,共11页
针对铣削刀具磨损状态识别问题,提出谐波小波包和最小二乘支持向量机(LS-SVM)的状态识别方法。为克服传统小波包分解的频带交叠问题,采用谐波小波包提取不同磨损状态下铣削力信号的各频段信号能量,归一化处理后,输入LS-SVM多类分类器,... 针对铣削刀具磨损状态识别问题,提出谐波小波包和最小二乘支持向量机(LS-SVM)的状态识别方法。为克服传统小波包分解的频带交叠问题,采用谐波小波包提取不同磨损状态下铣削力信号的各频段信号能量,归一化处理后,输入LS-SVM多类分类器,实现铣削刀具磨损状态的识别。针对LS-SVM的惩罚因子和核参数对模型识别精度影响较大的问题,提出回溯搜索算法(BSA)进行自动参数寻优。实验结果表明,谐波小波包比小波包在刀具磨损状态特征提取时具有更好的识别效果。与粒子群算法进行比较,证明BSA优化LS-SVM具有更高的识别精度。 展开更多
关键词 刀具磨损 谐波小波包 回溯搜索算法 最小二乘支持向量机
下载PDF
基于EMD与LS-SVM的刀具磨损识别方法 被引量:15
11
作者 关山 王龙山 聂鹏 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2011年第2期144-148,共5页
针对刀具磨损声发射信号的非平稳特征和BP神经网络学习算法收敛速度慢、易陷入局部极小值等问题,提出了基于经验模态分解和最小二乘支持向量机的刀具磨损状态识别方法.首先对声发射信号进行经验模态分解,将其分解为若干个固有模态函数之... 针对刀具磨损声发射信号的非平稳特征和BP神经网络学习算法收敛速度慢、易陷入局部极小值等问题,提出了基于经验模态分解和最小二乘支持向量机的刀具磨损状态识别方法.首先对声发射信号进行经验模态分解,将其分解为若干个固有模态函数之和,然后分别对每一个固有模态函数进行自回归建模,最后提取每一个自回归模型的系数组成特征向量,特征向量被分为两组,一组用于对最小二乘支持向量机训练,另一组用于识别刀具磨损状态.试验结果表明:该方法能很好地识别刀具磨损状态,与BP神经网络相比具有更高的识别率. 展开更多
关键词 刀具磨损状态识别 最小二乘支持向量机 经验模态分解 自回归模型
下载PDF
基于核主成分和灰狼优化算法的刀具磨损状态识别 被引量:21
12
作者 廖小平 黎宇嘉 +4 位作者 陈超逸 张振坤 鲁娟 马俊燕 薛斌 《计算机集成制造系统》 EI CSCD 北大核心 2020年第11期3031-3039,共9页
为了提高刀具磨损状态实时监控的准确性和泛化能力,提出一种基于切削力特征间接识别刀具磨损状态的方法。该方法建立了切削力信号与刀具磨损的非线性映射关系,并进行刀具生命周期内的性能试验,采集切削力信号,提取信号的时域、频域和小... 为了提高刀具磨损状态实时监控的准确性和泛化能力,提出一种基于切削力特征间接识别刀具磨损状态的方法。该方法建立了切削力信号与刀具磨损的非线性映射关系,并进行刀具生命周期内的性能试验,采集切削力信号,提取信号的时域、频域和小波域特征,采用核主成分分析法进行数据降维,利用灰狼优化的支持向量机得到刀具磨损的分类等级。最后与其他文献中的方法进行对比,结果表明该模型能够更准确地反映刀具的磨损状态,具有较高的泛化能力。 展开更多
关键词 刀具状态识别 核主成分分析 切削力特征 支持向量机 灰狼优化算法
下载PDF
基于MF-DFA特征和LS-SVM算法的刀具磨损状态识别 被引量:9
13
作者 关山 庞弘阳 +1 位作者 宋伟杰 康振兴 《农业工程学报》 EI CAS CSCD 北大核心 2018年第14期61-68,共8页
鉴于多重分形理论在精细刻画系统非线性现象和过程方面具有的独特优势,该文提出了基于多重分形去趋势波动分析和最小二乘支持向量机的刀具磨损状态识别方法。首先,用MF-DFA(multifractal detrended fluctuations analysis)方法处理去噪... 鉴于多重分形理论在精细刻画系统非线性现象和过程方面具有的独特优势,该文提出了基于多重分形去趋势波动分析和最小二乘支持向量机的刀具磨损状态识别方法。首先,用MF-DFA(multifractal detrended fluctuations analysis)方法处理去噪后的刀具磨损声发射信号,讨论其长程相关性和分形特性;然后,分析对比了不同磨损阶段下多重分形谱参数的变化,筛选出能灵敏表征刀具磨损状态的多重分形谱参数:分形维数最大值点对应的奇异指数α_0,多重分形谱谱宽△α和广义Hurst指数波动均值△h(q)作为特征量;最后,利用LS-SVM(least square support vector machine)算法并对比支持向量机和神经网络算法实现刀具磨损状态识别,结果表明LS-SVM算法识别率最高,平均识别准确率达97.78%,验证了本文所提方法的有效性。试验结果表明,提取的特征对刀具磨损状态的变化非常敏感,可以分离相近的磨损状态,为刀具状态监测提供一种参考方法。 展开更多
关键词 切削刀具 刀具磨损 声发射 状态识别 多重分形 去趋势波动分析 支持向量机
下载PDF
基于鲸鱼算法优化LSSVM的铣刀磨损监测 被引量:6
14
作者 张庆华 龙伟 +1 位作者 李炎炎 林懿 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第1期62-68,共7页
为解决铣刀磨损状态监测问题,提出一种改进的鲸鱼算法优化最小二乘支持向量机的状态识别方法.首先,采用变分模态分解处理铣削过程中的振动信号,分解得到的固有模态分量进行特征提取;然后,针对鲸鱼算法易陷入局部最优解、收敛精度低的问... 为解决铣刀磨损状态监测问题,提出一种改进的鲸鱼算法优化最小二乘支持向量机的状态识别方法.首先,采用变分模态分解处理铣削过程中的振动信号,分解得到的固有模态分量进行特征提取;然后,针对鲸鱼算法易陷入局部最优解、收敛精度低的问题,引入混合反向学习算法和非线性收敛因子进行改进,并采用基准测试函数验证改进后的鲸鱼算法的有效性;最后,将改进的鲸鱼算法优化LSSVM模型应用于铣刀磨损状态识别仿真实验.实验结果表明,相较于粒子群算法与传统鲸鱼算法,改进的鲸鱼算法优化LSSVM具有更高的识别精度. 展开更多
关键词 刀具磨损 鲸鱼算法 反向学习 最小二乘支持向量机
下载PDF
基于支持向量机的刀具磨损决策融合技术 被引量:5
15
作者 彭美武 陈洪涛 钟成明 《组合机床与自动化加工技术》 北大核心 2014年第4期89-93,共5页
针对常用的贝叶斯算法和D-S证据论的局限性提出了基于支持向量机(SVM)的决策融合方法。建立了能够实时监测车削加工过程中振动和声发射信号的刀具磨损状态监测系统,在对分析信号进行BP和Elman神经网络识别的基础上,利用支持向量机实现... 针对常用的贝叶斯算法和D-S证据论的局限性提出了基于支持向量机(SVM)的决策融合方法。建立了能够实时监测车削加工过程中振动和声发射信号的刀具磨损状态监测系统,在对分析信号进行BP和Elman神经网络识别的基础上,利用支持向量机实现了决策融合。实验结果证明,基于支持向量机的决策融合方法具有良好的识别率和鲁棒性,且比单用某一种网络节省时间,更有利于实现切削加工刀具状态的在线监测。 展开更多
关键词 刀具磨损 支持向量机 神经网络 决策融合
下载PDF
EEMD方法在刀具磨损状态识别的应用 被引量:10
16
作者 聂鹏 徐洪垚 +1 位作者 刘新宇 李正强 《传感器与微系统》 CSCD 北大核心 2012年第5期147-149,152,共4页
总体经验模态分解(EEMD)方法在EMD的基础上消除了模态混叠的现象,从而更能准确地揭露出信号特征信息。根据声发射信号的非稳态、非线性的特点,提出一种基于EEMD应用于刀具磨损状态识别的方法。通过EEMD获取无模态混叠的IMF分量;通过敏... 总体经验模态分解(EEMD)方法在EMD的基础上消除了模态混叠的现象,从而更能准确地揭露出信号特征信息。根据声发射信号的非稳态、非线性的特点,提出一种基于EEMD应用于刀具磨损状态识别的方法。通过EEMD获取无模态混叠的IMF分量;通过敏感度评估算法从所有IMF分量中提取敏感的IMF;提取敏感IMF的能量作为支持向量机(SVM)分类器的输入,将刀具分成正常切削、中期磨损和严重磨损3种状态。通过比较EEMD与应用EMD等方法的分类准确率,确立了基于EEMD的方法在提取刀具磨损状态特征信息的优势。 展开更多
关键词 刀具磨损 状态识别 总体经验模态分解 经验模态分解 支持向量机
下载PDF
基于EEMD-SVM的刀具磨损状态研究 被引量:7
17
作者 江雁 傅攀 李晓晖 《中国测试》 CAS 北大核心 2016年第1期87-91,共5页
针对刀具磨损监测中信号的非平稳特性和小样本建模中神经网络容易陷入局部值的问题,提出基于多传感器信号,运用集合经验模态分解(ensemble empirical mode decomposition,EEMD)和支持向量机(support vector machine,SVM)相结合的算法,... 针对刀具磨损监测中信号的非平稳特性和小样本建模中神经网络容易陷入局部值的问题,提出基于多传感器信号,运用集合经验模态分解(ensemble empirical mode decomposition,EEMD)和支持向量机(support vector machine,SVM)相结合的算法,实现对刀具磨损多状态的识别。首先对振动信号进行集合经验模态分解,将其分解为若干个本征模态函数(intrinsic mode function,IMF)之和,然后计算得到三向切削力信号的均值和各本征模态函数分量的能量百分比值作为磨损状态分类特征,最后运用支持向量机和Elman神经网络对刀具在不同磨损状态下的特征数据样本进行训练和识别。实验结果证明该方法能很好地实现对刀具磨损状态的识别,与Elman神经网络相比,支持向量机具有更高的识别率,更适合小样本情况下刀具磨损状态的分类识别。 展开更多
关键词 刀具磨损状态识别 集合经验模态分解 支持向量机 多传感器
下载PDF
基于麻雀搜索算法优化支持向量机的刀具磨损识别 被引量:16
18
作者 胡鸿志 覃畅 +2 位作者 管芳 张洪波 安晟佳 《科学技术与工程》 北大核心 2021年第25期10755-10761,共7页
针对微小深孔钻削刀具磨损状态检测的工程需求,提出了基于钻削声信号的麻花钻头磨损状态识别方法。根据不同磨损程度的麻花钻在钻削过程中的声信号,使用经验模态分解(empirical mode decomposition,EMD)将声信号分解成若干个固有模态函... 针对微小深孔钻削刀具磨损状态检测的工程需求,提出了基于钻削声信号的麻花钻头磨损状态识别方法。根据不同磨损程度的麻花钻在钻削过程中的声信号,使用经验模态分解(empirical mode decomposition,EMD)将声信号分解成若干个固有模态函数(intrinsic mode functions,IMFs),通过时频联合分析探索刀具磨损与声信号特征之间的关联规律;再使用麻雀搜索算法(sparrow search algorithm,SSA)优化支持向量机(support vector machine,SVM)的参数,并利用SVM实现基于声信号特征的刀具磨损状态识别。实验结果表明,微小深孔钻头磨损程度与钻削声信号特征之间存在非线性耦合关系,声信号高频特征对钻头磨损程度的变化非常敏感;采用经过SSA优化后的SVM算法,基于优选的IMF特征能够准确识别钻削刀具磨损状态,识别准确率可达98.246%。 展开更多
关键词 刀具磨损识别 声信号 经验模态分解 麻雀搜索算法 支持向量机
下载PDF
振动自感知刀具磨损无线监测 被引量:5
19
作者 郭宏 胡孔耀 +2 位作者 闫献国 伊亚聪 徐延 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第11期1-10,共10页
Zigbee无线技术监测切削刀具磨损的振动传感器系统,存在通信距离近、组网复杂等问题,故提出一种基于WiFi无线传感器网络采集振动信号的刀具磨损状态监测方法。首先,组建以ESP8266 WiFi开发板为核心、高精度振动传感器ADXL345为敏感元件... Zigbee无线技术监测切削刀具磨损的振动传感器系统,存在通信距离近、组网复杂等问题,故提出一种基于WiFi无线传感器网络采集振动信号的刀具磨损状态监测方法。首先,组建以ESP8266 WiFi开发板为核心、高精度振动传感器ADXL345为敏感元件的无线采集振动信号网络;然后,根据刀具整体形状,将振动传感器粘贴在刀具表面,并使用自感知刀具进行45钢棒料外圆切削实验无线采集振动信号,同时在相同的切削条件下采集振动信号与有线方式进行对比,验证该装置可行性;最后,将时域信号中部分统计量作为特征向量导入至支持向量机回归模型中进行训练,并获得刀具磨损预测模型。实验结果表明,自感知刀具无线采集信号的相对误差在3.61%以内,具有较好的可行性;支持向量机回归刀具磨损预测模型的分辨准确率达到94.38%,证明所设计的无线系统可以准确地监测刀具磨损。 展开更多
关键词 无线传感器网络 刀具磨损状态监测 振动信号 支持向量机回归
下载PDF
特征融合与GA-SVM在刀具状态监测中的应用研究 被引量:3
20
作者 李顺才 李巍 吴明明 《制造技术与机床》 北大核心 2015年第4期145-148,共4页
为保证监测的准确性,刀具监控系统往往采用多个传感器进行监测并采集数据,导致监测成本的增加。通过对一个传感器的信号数据建立多个信号处理模型,将多个模型的特征进行融合,深度挖掘信号中所蕴含有关刀具磨损的敏感特征,提高监测的准确... 为保证监测的准确性,刀具监控系统往往采用多个传感器进行监测并采集数据,导致监测成本的增加。通过对一个传感器的信号数据建立多个信号处理模型,将多个模型的特征进行融合,深度挖掘信号中所蕴含有关刀具磨损的敏感特征,提高监测的准确性,降低成本;同时针对将融合所得特征输入支持向量机(SVM)进行刀具磨损状态的识别时,常需要反复调整惩罚参数c和核函数g的问题,采用遗传算法(GA)对惩罚参数c和核函数g进行优化,减少了SVM模型的搭建时间,提高了SVM的识别准确率。 展开更多
关键词 刀具状态监控 特征融合 遗传算法 支持向量机 模式识别
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部