Sharp corners usually are used on glass contours to meet the highly increasing demand for personalized products,but they result in a broken wheel center toolpath in edge grinding.To ensure that the whole wheel center ...Sharp corners usually are used on glass contours to meet the highly increasing demand for personalized products,but they result in a broken wheel center toolpath in edge grinding.To ensure that the whole wheel center toolpath is of G1 continuity and that the grinding depth is controllable at the corners,a transition toolpath generation method based on a velocity-blending algorithm is proposed.Taking the grinding depth into consideration,the sharp-corner grinding process is planned,and a velocity-blending algorithm is introduced.With the constraints,such as traverse displacement and grinding depth,the sharp-corner transition toolpath is generated with a three-phase motion arrangement and with confirmations of the acceleration/deceleration positions.A piece of glass with three sharp corners is ground on a three-axis numerical-control glass grinding equipment.The experimental results demonstrate that the proposed algorithm can protect the sharp corners from breakage efficiently and achieve satisfactory shape accuracy.This research proposed a toolpath generation method based on a velocity-blending algorithm for the manufacturing of personalized glass products,which generates the transition toolpath as needed around a sharp corner in real time.展开更多
Tool path generated by space-filling curve always turns frequently causing trembling to machine,reducing toollife and affecting workpiece quality. Length and generation time of tool paths are both relatively long. In ...Tool path generated by space-filling curve always turns frequently causing trembling to machine,reducing toollife and affecting workpiece quality. Length and generation time of tool paths are both relatively long. In order to solve these problems,a toolpath generation method of NC milling based on space-filling curve is proposed. First,T-spline surface is regarded as the modeling surface,the grid,which is based on the limited scallop-height,can be got in the parameter space,and the influence value of grid node is determined. Second,a box is defined and planned,and the tool paths are got preliminarily,which is based on minimal spanning tree; Finally,based on an improved chamfering algorithm,the whole tool paths are got. A simulation system is developed for computer simulation,and an experiment is carried out to verify the method. The results of simulation and experiment show that the method is effective and feasible,and length and time of the tool paths are reduced.展开更多
Smooth transitions between two adjacent five-axis toolpaths can reduce feedrate fluctuation,improving machining quality and efficiency.Hybrid robots’flexibility to adjust the orientation is advantageous in five-axis ...Smooth transitions between two adjacent five-axis toolpaths can reduce feedrate fluctuation,improving machining quality and efficiency.Hybrid robots’flexibility to adjust the orientation is advantageous in five-axis machining,but their kinematic issues raise challenges for toolpath smoothing.This paper proposes a G3continuous toolpath smoothing method for a hybrid robot.B-splines in the machine coordinate system(MCS)are inserted at corners to synchronize five-axis transitions.The transition errors of the tool position and orientation paths are estimated with the golden section method.These approximation errors are constrained by adaptively modifying the B-splines,i.e.,adding anchor points and optimizing the control points.A bisection search method is proposed for these geometric modifications,guaranteeing the user-defined error tolerance limit.Compared to the method based on the workpiece coordinate system(WCS),the proposed framework generates a smoother trajectory under the same error tolerance limit.Simulations and experiments are provided to validate the effectiveness.展开更多
The Blade Integrated Disk(Blisk) is one of the key components in the aero-engine, it is generally manufactured by the multi-axis milling and almost 90% raw materials are removed. To avoid the full immersion of a cutte...The Blade Integrated Disk(Blisk) is one of the key components in the aero-engine, it is generally manufactured by the multi-axis milling and almost 90% raw materials are removed. To avoid the full immersion of a cutter in the rough machining of a blisk channel, the trochoidal milling is a promising strategy since it can keep a small immersion angle in the rough milling process while maintaining the high machining efficiency. However, while toolpaths are being planned for the trochoidal milling process, the conventional methods are mainly for the planar machining area with fixed tool orientations, which cannot be used for complex channels where the multi-axis machining should be employed. To this end, this paper presents a four-axis trochoidal toolpath planning method with a ball-end cutter, and thus the blisk channel can be machined efficiently.For this to happen, the trochoidal paths are planned in the parametric domain and then mapped into the physical domain, with tool orientations controlled by the quaternion interpolation method to have smooth tool movement along the toolpaths. Both geometric simulation and physical milling experiments of the proposed method have convincingly demonstrated the validation of the proposed method.展开更多
Driven by the ever increasing demand in function integration,more and more next generation high value-added products,such as head-up displays,solar concentrators and intra-ocular-lens,etc.,are designed to possess free...Driven by the ever increasing demand in function integration,more and more next generation high value-added products,such as head-up displays,solar concentrators and intra-ocular-lens,etc.,are designed to possess freeform(i.e.,non-rotational symmetric)surfaces.The toolpath,composed of high density of short linear and circular segments,is generally used in computer numerical control(CNC)systems to machine those products.However,the discontinuity between toolpath segments leads to high-frequency fluctuation of feedrate and acceleration,which will decrease the machining efficiency and product surface finish.Driven by the ever-increasing need for high-speed high-precision machining of those products,many novel toolpath interpolation and smoothing approaches have been proposed in both academia and industry,aiming to alleviate the issues caused by the conventional toolpath representation and interpolation methods.This paper provides a comprehensive review of the state-of-the-art toolpath interpolation and smoothing approaches with systematic classifications.The advantages and disadvantages of these approaches are discussed.Possible future research directions are also offered.展开更多
基金Supported by National Key R&D Program of China(Grant No.2017YFB0309800)National Natural Science Foundation of China(Grant No.51405445)
文摘Sharp corners usually are used on glass contours to meet the highly increasing demand for personalized products,but they result in a broken wheel center toolpath in edge grinding.To ensure that the whole wheel center toolpath is of G1 continuity and that the grinding depth is controllable at the corners,a transition toolpath generation method based on a velocity-blending algorithm is proposed.Taking the grinding depth into consideration,the sharp-corner grinding process is planned,and a velocity-blending algorithm is introduced.With the constraints,such as traverse displacement and grinding depth,the sharp-corner transition toolpath is generated with a three-phase motion arrangement and with confirmations of the acceleration/deceleration positions.A piece of glass with three sharp corners is ground on a three-axis numerical-control glass grinding equipment.The experimental results demonstrate that the proposed algorithm can protect the sharp corners from breakage efficiently and achieve satisfactory shape accuracy.This research proposed a toolpath generation method based on a velocity-blending algorithm for the manufacturing of personalized glass products,which generates the transition toolpath as needed around a sharp corner in real time.
基金Supported by the National Natural Science Foundation of China(No.51575143)
文摘Tool path generated by space-filling curve always turns frequently causing trembling to machine,reducing toollife and affecting workpiece quality. Length and generation time of tool paths are both relatively long. In order to solve these problems,a toolpath generation method of NC milling based on space-filling curve is proposed. First,T-spline surface is regarded as the modeling surface,the grid,which is based on the limited scallop-height,can be got in the parameter space,and the influence value of grid node is determined. Second,a box is defined and planned,and the tool paths are got preliminarily,which is based on minimal spanning tree; Finally,based on an improved chamfering algorithm,the whole tool paths are got. A simulation system is developed for computer simulation,and an experiment is carried out to verify the method. The results of simulation and experiment show that the method is effective and feasible,and length and time of the tool paths are reduced.
基金supported by the National Natural Science Foundation of China(Grant Nos.51935010 and 52275501)。
文摘Smooth transitions between two adjacent five-axis toolpaths can reduce feedrate fluctuation,improving machining quality and efficiency.Hybrid robots’flexibility to adjust the orientation is advantageous in five-axis machining,but their kinematic issues raise challenges for toolpath smoothing.This paper proposes a G3continuous toolpath smoothing method for a hybrid robot.B-splines in the machine coordinate system(MCS)are inserted at corners to synchronize five-axis transitions.The transition errors of the tool position and orientation paths are estimated with the golden section method.These approximation errors are constrained by adaptively modifying the B-splines,i.e.,adding anchor points and optimizing the control points.A bisection search method is proposed for these geometric modifications,guaranteeing the user-defined error tolerance limit.Compared to the method based on the workpiece coordinate system(WCS),the proposed framework generates a smoother trajectory under the same error tolerance limit.Simulations and experiments are provided to validate the effectiveness.
基金supported by the China National Science and Technology Major Project(No.2015ZX04001202)
文摘The Blade Integrated Disk(Blisk) is one of the key components in the aero-engine, it is generally manufactured by the multi-axis milling and almost 90% raw materials are removed. To avoid the full immersion of a cutter in the rough machining of a blisk channel, the trochoidal milling is a promising strategy since it can keep a small immersion angle in the rough milling process while maintaining the high machining efficiency. However, while toolpaths are being planned for the trochoidal milling process, the conventional methods are mainly for the planar machining area with fixed tool orientations, which cannot be used for complex channels where the multi-axis machining should be employed. To this end, this paper presents a four-axis trochoidal toolpath planning method with a ball-end cutter, and thus the blisk channel can be machined efficiently.For this to happen, the trochoidal paths are planned in the parametric domain and then mapped into the physical domain, with tool orientations controlled by the quaternion interpolation method to have smooth tool movement along the toolpaths. Both geometric simulation and physical milling experiments of the proposed method have convincingly demonstrated the validation of the proposed method.
基金the support from the UK Engineering and Physical Sciences Research Council (EPSRC) under the program (No. EP/K018345/1)the International Cooperation Program of China (No. 2015DFA70630)
文摘Driven by the ever increasing demand in function integration,more and more next generation high value-added products,such as head-up displays,solar concentrators and intra-ocular-lens,etc.,are designed to possess freeform(i.e.,non-rotational symmetric)surfaces.The toolpath,composed of high density of short linear and circular segments,is generally used in computer numerical control(CNC)systems to machine those products.However,the discontinuity between toolpath segments leads to high-frequency fluctuation of feedrate and acceleration,which will decrease the machining efficiency and product surface finish.Driven by the ever-increasing need for high-speed high-precision machining of those products,many novel toolpath interpolation and smoothing approaches have been proposed in both academia and industry,aiming to alleviate the issues caused by the conventional toolpath representation and interpolation methods.This paper provides a comprehensive review of the state-of-the-art toolpath interpolation and smoothing approaches with systematic classifications.The advantages and disadvantages of these approaches are discussed.Possible future research directions are also offered.