The mathematical model of conical involute gears is developed based on the theory of gearing and the generating mechanism. Tooth contact analysis (TCA) is performed to examine the meshing and bearing contact of the ...The mathematical model of conical involute gears is developed based on the theory of gearing and the generating mechanism. Tooth contact analysis (TCA) is performed to examine the meshing and bearing contact of the conical involute gear pairs with intersected and crossed axes. In addition, the principal directions and curvatures of the gear surfaces are investigated and the contact ellipses of the mating tooth surfaces are also studied. Finally, the numerical illustrative examples are provided to demonstrate the computational results, test gears are made for tooth-bearing tests, and the conclusion is verified that the theory has the applicability.展开更多
Beveloid gears,also known as conical gears,gain more and more importance in industry practice due to their abilities for power transmission between parallel,intersected and crossed axis.However,this type of gearing wi...Beveloid gears,also known as conical gears,gain more and more importance in industry practice due to their abilities for power transmission between parallel,intersected and crossed axis.However,this type of gearing with crossed axes has no common plane of action which results in a point contact and low tooth durability.Therefore,a geometry design approach assuming line contact is developed to analyze the tooth engagement process of crossed beveloid gears with small shaft angle for marine transmission applications.The loaded gear tooth contact behavior is simulated by applying a quasi-static analysis to study the effects of gearing parameters on mesh characteristics.Using the proposed method,a series of sensitivity analyses to examine the effects of critical gearing parameters such as shaft angle,cone angle,helix angle and profile-shift coefficient on the theoretical gear mesh is performed.The parametric analysis of pitch cone design shows that the dominant design parameters represented by the angle between the first principle directions(FPD) and normal angular factor are more sensitive to the shaft and cone angles than they are to the helix angle.The theoretical contact path is highly sensitive to the profile-shift coefficient,which is determined from the theoretical tooth contact analysis.The FPD angle is found to change the distribution of contact pattern,contact pressure and root stress as well as the translational transmission error and the variation of the mesh stiffness significantly.The contact pattern is clearly different between the drive and coast sides due to different designed FPD angles.Finally,a practical experimental setup for marine transmission is performed and tooth bearing test is conducted to demonstrate the proposed design procedure.The experimental result compared well with the simulation.Results of this study yield a better understanding of the geometry design and loaded gear mesh characteristics for crossed beveloid gears used in marine transmission.展开更多
A novel spiral non-circular bevel gear that could be applied to variable-speed driving in intersecting axes was proposed by combining the design principles of non-circular bevel gears and the manufacturing principles ...A novel spiral non-circular bevel gear that could be applied to variable-speed driving in intersecting axes was proposed by combining the design principles of non-circular bevel gears and the manufacturing principles of face-milling spiral bevel gears.Unlike straight non-circular bevel gears,spiral non-circular bevel gears have numerous advantages,such as a high contact ratio,high intensity,good dynamic performance,and an adjustable contact region.In addition,while manufacturing straight non-circular bevel gears is difficult,spiral non-circular bevel gears can be efficiently and precisely fabricated with a 6-axis bevel gear cutting machine.First,the generating principles of spiral non-circular bevel gears were introduced.Next,a mathematical model,including a generating tooth profile,tooth spiral,pressure angle,and generated tooth profile for this gear type was established.Then the precision of the model was verified by a tooth contact analysis using FEA,and the contact patterns and stress distributions of the spiral non-circular bevel gears were investigated.展开更多
A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate...A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate system of an APC face gear pair is established based on meshing theory.Combining the coordinate transformation matrix and the tooth profile of the cutter,the equations of the curve envelope of the APC face gear pair are obtained.Then the surface equations are solved to extract the point clouds data by programming in MATLAB,which contains the work surface and the fillet surface of the APC face gear pair.And the complex geometric model of the APC face gear pair is built by fitting its point clouds.At last,through the analysis of the tooth surface contact,the sensitivity of the APC face gear to the different types of mounting errors is obtained.The results show that the APC face gear pair is the most sensitive to mounting errors in the tooth thickness direction,and it should be strictly controlled in the actual application.展开更多
In order to implement the dynamic characteristic of a dual power-split transmission, a dynamic me- chanics model is built. Firstly, according to the method of theoretical analysis of the tooth contact analysis (TCA)...In order to implement the dynamic characteristic of a dual power-split transmission, a dynamic me- chanics model is built. Firstly, according to the method of theoretical analysis of the tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA), the actual meshing process of each gear pairs is simulated, and the time-varying mesh stiffness excitations are obtained, which can improve the numerical precision. Second- ly, by using the lumped mass method, the bending-torsional coupling three dimensional dynamic model of the dual power-split transmission is established, and the identical dimensionless equations are deduced by elimina- ting the effect of rigid displacement and the method of dimensional normalization. Finally, by the method of the fourth order Runge-Kutta algorithm with variable step lengths, the responses of this system in a frequency domain and time domain are obtained, and the dynamic load change characteristics of each gear pairs are analyzed. The results show that the establishment, solution and analysis of the system dynamics model could provide a basis for the dynamic design, and have an important significance for the dynamic efficiency analysis and dynamic perform- ance optimization design of the dual power-split transmission.展开更多
An approach for the contact analysis and load distribution of double-envelop hourglass worm gearing is presented, which is based on a 3-D elastic contact finite element method (FEM) model that accommodates the influen...An approach for the contact analysis and load distribution of double-envelop hourglass worm gearing is presented, which is based on a 3-D elastic contact finite element method (FEM) model that accommodates the influence of errors and load. As compared with existing tooth contact analysis model that assumes rigidity for the contacting surfaces, the proposed model provides a more realistic analysis on the contact patterns, the distribution of contact load and transmission errors. It is also capable of exploring the influence of different errors on meshing performances, the contact deformation, the shift of the contact zone and load share among the meshing tooth-pairs under different load.展开更多
The transmission characteristics of gear drive can be improved with the use of novel tooth profiles.A theoretical study on tooth profile of the hypocycloid pinwheel transmission and contact analysis of gear pair based...The transmission characteristics of gear drive can be improved with the use of novel tooth profiles.A theoretical study on tooth profile of the hypocycloid pinwheel transmission and contact analysis of gear pair based on finite element method(FEM) are carried out,respectively.The line contact between mated tooth surfaces becomes point contact according to a plus movement.Through loaded tooth contact analysis(LTCA),the contact stress and load distributions for the proposed hypocycloid pinwheel transmission and the traditional one are discussed.The analysis results show that the developed tooth surfaces have anticipatory point contact characteristics under loads and contact fatigue dangerous area locates around the ultimate contact position.展开更多
This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given...This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given control points on the tooth surface. The three meshing points are controlled to be on a predesigned straight contact path that meets the pre-designed parabolic function of transmission errors. Designed separately, the magnitude of transmission errors and the orientation of the contact path are subjected to precise control. In addition, in order to meet the manufacturing requirements, we suggest to modify the values of blank offset, one of the pinion machine tool-settings, and redesign pinion ma- chine tool-settings to ensure that the magnitude and the geometry of transmission errors should not be influenced apart from minor effects on the predesigned straight contact path. The proposed approach together with its ideas has been proven by a numerical example and the manufacturing practice of a pair of spiral bevel gears.展开更多
文摘The mathematical model of conical involute gears is developed based on the theory of gearing and the generating mechanism. Tooth contact analysis (TCA) is performed to examine the meshing and bearing contact of the conical involute gear pairs with intersected and crossed axes. In addition, the principal directions and curvatures of the gear surfaces are investigated and the contact ellipses of the mating tooth surfaces are also studied. Finally, the numerical illustrative examples are provided to demonstrate the computational results, test gears are made for tooth-bearing tests, and the conclusion is verified that the theory has the applicability.
基金supported by Fundamental Research Funds for Central Universities of China (Grant No. CDJXS11111138,Key Projects in the National Science & Technology Pillar Program during the 11th Five-Year Plan Period of China(Grant No. 2011BAF09B07)National Natural Science Foundatlon of China(Grant No. 51175523)
文摘Beveloid gears,also known as conical gears,gain more and more importance in industry practice due to their abilities for power transmission between parallel,intersected and crossed axis.However,this type of gearing with crossed axes has no common plane of action which results in a point contact and low tooth durability.Therefore,a geometry design approach assuming line contact is developed to analyze the tooth engagement process of crossed beveloid gears with small shaft angle for marine transmission applications.The loaded gear tooth contact behavior is simulated by applying a quasi-static analysis to study the effects of gearing parameters on mesh characteristics.Using the proposed method,a series of sensitivity analyses to examine the effects of critical gearing parameters such as shaft angle,cone angle,helix angle and profile-shift coefficient on the theoretical gear mesh is performed.The parametric analysis of pitch cone design shows that the dominant design parameters represented by the angle between the first principle directions(FPD) and normal angular factor are more sensitive to the shaft and cone angles than they are to the helix angle.The theoretical contact path is highly sensitive to the profile-shift coefficient,which is determined from the theoretical tooth contact analysis.The FPD angle is found to change the distribution of contact pattern,contact pressure and root stress as well as the translational transmission error and the variation of the mesh stiffness significantly.The contact pattern is clearly different between the drive and coast sides due to different designed FPD angles.Finally,a practical experimental setup for marine transmission is performed and tooth bearing test is conducted to demonstrate the proposed design procedure.The experimental result compared well with the simulation.Results of this study yield a better understanding of the geometry design and loaded gear mesh characteristics for crossed beveloid gears used in marine transmission.
基金Project(52175361)supported by the National Natural Science Foundation of ChinaProject(2019 CFA 041)supported by the Natural Science Foundation of Hubei Province,ChinaProject(WUT:202407002)supported by the Fundamental Research Funds for the Central Universities,China。
文摘A novel spiral non-circular bevel gear that could be applied to variable-speed driving in intersecting axes was proposed by combining the design principles of non-circular bevel gears and the manufacturing principles of face-milling spiral bevel gears.Unlike straight non-circular bevel gears,spiral non-circular bevel gears have numerous advantages,such as a high contact ratio,high intensity,good dynamic performance,and an adjustable contact region.In addition,while manufacturing straight non-circular bevel gears is difficult,spiral non-circular bevel gears can be efficiently and precisely fabricated with a 6-axis bevel gear cutting machine.First,the generating principles of spiral non-circular bevel gears were introduced.Next,a mathematical model,including a generating tooth profile,tooth spiral,pressure angle,and generated tooth profile for this gear type was established.Then the precision of the model was verified by a tooth contact analysis using FEA,and the contact patterns and stress distributions of the spiral non-circular bevel gears were investigated.
基金Project(51805368)supported by the National Natural Science Foundation of ChinaProject(2018QNRC001)supported by the Young Elite Scientists Sponsorship Program,China+1 种基金Project(DMETKF2021017)supported by the Fund of State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology,ChinaProject(HTL-0-21G07)supported by the National key Laboratory of Science and Technology on Heicopter Transmission,China。
文摘A complex geometric modeling method of a helical face gear pair with arc-tooth generated by an arc-profile cutting(APC)disc is proposed,and its tooth contact characteristics are analyzed.Firstly,the spatial coordinate system of an APC face gear pair is established based on meshing theory.Combining the coordinate transformation matrix and the tooth profile of the cutter,the equations of the curve envelope of the APC face gear pair are obtained.Then the surface equations are solved to extract the point clouds data by programming in MATLAB,which contains the work surface and the fillet surface of the APC face gear pair.And the complex geometric model of the APC face gear pair is built by fitting its point clouds.At last,through the analysis of the tooth surface contact,the sensitivity of the APC face gear to the different types of mounting errors is obtained.The results show that the APC face gear pair is the most sensitive to mounting errors in the tooth thickness direction,and it should be strictly controlled in the actual application.
基金supported by the Natural Science Foundation of China under Grant No.51175423
文摘In order to implement the dynamic characteristic of a dual power-split transmission, a dynamic me- chanics model is built. Firstly, according to the method of theoretical analysis of the tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA), the actual meshing process of each gear pairs is simulated, and the time-varying mesh stiffness excitations are obtained, which can improve the numerical precision. Second- ly, by using the lumped mass method, the bending-torsional coupling three dimensional dynamic model of the dual power-split transmission is established, and the identical dimensionless equations are deduced by elimina- ting the effect of rigid displacement and the method of dimensional normalization. Finally, by the method of the fourth order Runge-Kutta algorithm with variable step lengths, the responses of this system in a frequency domain and time domain are obtained, and the dynamic load change characteristics of each gear pairs are analyzed. The results show that the establishment, solution and analysis of the system dynamics model could provide a basis for the dynamic design, and have an important significance for the dynamic efficiency analysis and dynamic perform- ance optimization design of the dual power-split transmission.
基金the Doctorate Degree Program Foundation of the Ministry of Education (No. 2000061120)
文摘An approach for the contact analysis and load distribution of double-envelop hourglass worm gearing is presented, which is based on a 3-D elastic contact finite element method (FEM) model that accommodates the influence of errors and load. As compared with existing tooth contact analysis model that assumes rigidity for the contacting surfaces, the proposed model provides a more realistic analysis on the contact patterns, the distribution of contact load and transmission errors. It is also capable of exploring the influence of different errors on meshing performances, the contact deformation, the shift of the contact zone and load share among the meshing tooth-pairs under different load.
基金National Natural Science Foundation of China(No.51205425)National Science&Technology Pillar Program during the 12th Five-Year Plan Period of China(No.2013BAF01B04)
文摘The transmission characteristics of gear drive can be improved with the use of novel tooth profiles.A theoretical study on tooth profile of the hypocycloid pinwheel transmission and contact analysis of gear pair based on finite element method(FEM) are carried out,respectively.The line contact between mated tooth surfaces becomes point contact according to a plus movement.Through loaded tooth contact analysis(LTCA),the contact stress and load distributions for the proposed hypocycloid pinwheel transmission and the traditional one are discussed.The analysis results show that the developed tooth surfaces have anticipatory point contact characteristics under loads and contact fatigue dangerous area locates around the ultimate contact position.
基金National Natural Science Foundation of China (50475148)Aeronautical Science Foundation of China (04C53015)Areonautical Sci-tech Innovation Foundation of China (07B53004)
文摘This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given control points on the tooth surface. The three meshing points are controlled to be on a predesigned straight contact path that meets the pre-designed parabolic function of transmission errors. Designed separately, the magnitude of transmission errors and the orientation of the contact path are subjected to precise control. In addition, in order to meet the manufacturing requirements, we suggest to modify the values of blank offset, one of the pinion machine tool-settings, and redesign pinion ma- chine tool-settings to ensure that the magnitude and the geometry of transmission errors should not be influenced apart from minor effects on the predesigned straight contact path. The proposed approach together with its ideas has been proven by a numerical example and the manufacturing practice of a pair of spiral bevel gears.